| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/audio_processing_impl.h" |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <cstring> |
| #include <memory> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/nullability.h" |
| #include "absl/strings/match.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/optional.h" |
| #include "api/array_view.h" |
| #include "api/audio/audio_frame.h" |
| #include "api/task_queue/task_queue_base.h" |
| #include "common_audio/audio_converter.h" |
| #include "common_audio/include/audio_util.h" |
| #include "modules/audio_processing/aec_dump/aec_dump_factory.h" |
| #include "modules/audio_processing/audio_buffer.h" |
| #include "modules/audio_processing/include/audio_frame_view.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "modules/audio_processing/optionally_built_submodule_creators.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/experiments/field_trial_parser.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/time_utils.h" |
| #include "rtc_base/trace_event.h" |
| #include "system_wrappers/include/denormal_disabler.h" |
| #include "system_wrappers/include/field_trial.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| #define RETURN_ON_ERR(expr) \ |
| do { \ |
| int err = (expr); \ |
| if (err != kNoError) { \ |
| return err; \ |
| } \ |
| } while (0) |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| bool SampleRateSupportsMultiBand(int sample_rate_hz) { |
| return sample_rate_hz == AudioProcessing::kSampleRate32kHz || |
| sample_rate_hz == AudioProcessing::kSampleRate48kHz; |
| } |
| |
| // Checks whether the high-pass filter should be done in the full-band. |
| bool EnforceSplitBandHpf() { |
| return field_trial::IsEnabled("WebRTC-FullBandHpfKillSwitch"); |
| } |
| |
| // Checks whether AEC3 should be allowed to decide what the default |
| // configuration should be based on the render and capture channel configuration |
| // at hand. |
| bool UseSetupSpecificDefaultAec3Congfig() { |
| return !field_trial::IsEnabled( |
| "WebRTC-Aec3SetupSpecificDefaultConfigDefaultsKillSwitch"); |
| } |
| |
| // Identify the native processing rate that best handles a sample rate. |
| int SuitableProcessRate(int minimum_rate, |
| int max_splitting_rate, |
| bool band_splitting_required) { |
| const int uppermost_native_rate = |
| band_splitting_required ? max_splitting_rate : 48000; |
| for (auto rate : {16000, 32000, 48000}) { |
| if (rate >= uppermost_native_rate) { |
| return uppermost_native_rate; |
| } |
| if (rate >= minimum_rate) { |
| return rate; |
| } |
| } |
| RTC_DCHECK_NOTREACHED(); |
| return uppermost_native_rate; |
| } |
| |
| GainControl::Mode Agc1ConfigModeToInterfaceMode( |
| AudioProcessing::Config::GainController1::Mode mode) { |
| using Agc1Config = AudioProcessing::Config::GainController1; |
| switch (mode) { |
| case Agc1Config::kAdaptiveAnalog: |
| return GainControl::kAdaptiveAnalog; |
| case Agc1Config::kAdaptiveDigital: |
| return GainControl::kAdaptiveDigital; |
| case Agc1Config::kFixedDigital: |
| return GainControl::kFixedDigital; |
| } |
| RTC_CHECK_NOTREACHED(); |
| } |
| |
| bool MinimizeProcessingForUnusedOutput() { |
| return !field_trial::IsEnabled("WebRTC-MutedStateKillSwitch"); |
| } |
| |
| // Maximum lengths that frame of samples being passed from the render side to |
| // the capture side can have (does not apply to AEC3). |
| static const size_t kMaxAllowedValuesOfSamplesPerBand = 160; |
| static const size_t kMaxAllowedValuesOfSamplesPerFrame = 480; |
| |
| // Maximum number of frames to buffer in the render queue. |
| // TODO(peah): Decrease this once we properly handle hugely unbalanced |
| // reverse and forward call numbers. |
| static const size_t kMaxNumFramesToBuffer = 100; |
| |
| void PackRenderAudioBufferForEchoDetector(const AudioBuffer& audio, |
| std::vector<float>& packed_buffer) { |
| packed_buffer.clear(); |
| packed_buffer.insert(packed_buffer.end(), audio.channels_const()[0], |
| audio.channels_const()[0] + audio.num_frames()); |
| } |
| |
| // Options for gracefully handling processing errors. |
| enum class FormatErrorOutputOption { |
| kOutputExactCopyOfInput, |
| kOutputBroadcastCopyOfFirstInputChannel, |
| kOutputSilence, |
| kDoNothing |
| }; |
| |
| enum class AudioFormatValidity { |
| // Format is supported by APM. |
| kValidAndSupported, |
| // Format has a reasonable interpretation but is not supported. |
| kValidButUnsupportedSampleRate, |
| // The remaining enums values signal that the audio does not have a reasonable |
| // interpretation and cannot be used. |
| kInvalidSampleRate, |
| kInvalidChannelCount |
| }; |
| |
| AudioFormatValidity ValidateAudioFormat(const StreamConfig& config) { |
| if (config.sample_rate_hz() < 0) |
| return AudioFormatValidity::kInvalidSampleRate; |
| if (config.num_channels() == 0) |
| return AudioFormatValidity::kInvalidChannelCount; |
| |
| // Format has a reasonable interpretation, but may still be unsupported. |
| if (config.sample_rate_hz() < 8000 || |
| config.sample_rate_hz() > AudioBuffer::kMaxSampleRate) |
| return AudioFormatValidity::kValidButUnsupportedSampleRate; |
| |
| // Format is fully supported. |
| return AudioFormatValidity::kValidAndSupported; |
| } |
| |
| int AudioFormatValidityToErrorCode(AudioFormatValidity validity) { |
| switch (validity) { |
| case AudioFormatValidity::kValidAndSupported: |
| return AudioProcessing::kNoError; |
| case AudioFormatValidity::kValidButUnsupportedSampleRate: // fall-through |
| case AudioFormatValidity::kInvalidSampleRate: |
| return AudioProcessing::kBadSampleRateError; |
| case AudioFormatValidity::kInvalidChannelCount: |
| return AudioProcessing::kBadNumberChannelsError; |
| } |
| RTC_DCHECK(false); |
| } |
| |
| // Returns an AudioProcessing::Error together with the best possible option for |
| // output audio content. |
| std::pair<int, FormatErrorOutputOption> ChooseErrorOutputOption( |
| const StreamConfig& input_config, |
| const StreamConfig& output_config) { |
| AudioFormatValidity input_validity = ValidateAudioFormat(input_config); |
| AudioFormatValidity output_validity = ValidateAudioFormat(output_config); |
| |
| if (input_validity == AudioFormatValidity::kValidAndSupported && |
| output_validity == AudioFormatValidity::kValidAndSupported && |
| (output_config.num_channels() == 1 || |
| output_config.num_channels() == input_config.num_channels())) { |
| return {AudioProcessing::kNoError, FormatErrorOutputOption::kDoNothing}; |
| } |
| |
| int error_code = AudioFormatValidityToErrorCode(input_validity); |
| if (error_code == AudioProcessing::kNoError) { |
| error_code = AudioFormatValidityToErrorCode(output_validity); |
| } |
| if (error_code == AudioProcessing::kNoError) { |
| // The individual formats are valid but there is some error - must be |
| // channel mismatch. |
| error_code = AudioProcessing::kBadNumberChannelsError; |
| } |
| |
| FormatErrorOutputOption output_option; |
| if (output_validity != AudioFormatValidity::kValidAndSupported && |
| output_validity != AudioFormatValidity::kValidButUnsupportedSampleRate) { |
| // The output format is uninterpretable: cannot do anything. |
| output_option = FormatErrorOutputOption::kDoNothing; |
| } else if (input_validity != AudioFormatValidity::kValidAndSupported && |
| input_validity != |
| AudioFormatValidity::kValidButUnsupportedSampleRate) { |
| // The input format is uninterpretable: cannot use it, must output silence. |
| output_option = FormatErrorOutputOption::kOutputSilence; |
| } else if (input_config.sample_rate_hz() != output_config.sample_rate_hz()) { |
| // Sample rates do not match: Cannot copy input into output, output silence. |
| // Note: If the sample rates are in a supported range, we could resample. |
| // However, that would significantly increase complexity of this error |
| // handling code. |
| output_option = FormatErrorOutputOption::kOutputSilence; |
| } else if (input_config.num_channels() != output_config.num_channels()) { |
| // Channel counts do not match: We cannot easily map input channels to |
| // output channels. |
| output_option = |
| FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel; |
| } else { |
| // The formats match exactly. |
| RTC_DCHECK(input_config == output_config); |
| output_option = FormatErrorOutputOption::kOutputExactCopyOfInput; |
| } |
| return std::make_pair(error_code, output_option); |
| } |
| |
| // Checks if the audio format is supported. If not, the output is populated in a |
| // best-effort manner and an APM error code is returned. |
| int HandleUnsupportedAudioFormats(const int16_t* const src, |
| const StreamConfig& input_config, |
| const StreamConfig& output_config, |
| int16_t* const dest) { |
| RTC_DCHECK(src); |
| RTC_DCHECK(dest); |
| |
| auto [error_code, output_option] = |
| ChooseErrorOutputOption(input_config, output_config); |
| if (error_code == AudioProcessing::kNoError) |
| return AudioProcessing::kNoError; |
| |
| const size_t num_output_channels = output_config.num_channels(); |
| switch (output_option) { |
| case FormatErrorOutputOption::kOutputSilence: |
| memset(dest, 0, output_config.num_samples() * sizeof(int16_t)); |
| break; |
| case FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel: |
| for (size_t i = 0; i < output_config.num_frames(); ++i) { |
| int16_t sample = src[input_config.num_channels() * i]; |
| for (size_t ch = 0; ch < num_output_channels; ++ch) { |
| dest[ch + num_output_channels * i] = sample; |
| } |
| } |
| break; |
| case FormatErrorOutputOption::kOutputExactCopyOfInput: |
| memcpy(dest, src, output_config.num_samples() * sizeof(int16_t)); |
| break; |
| case FormatErrorOutputOption::kDoNothing: |
| break; |
| } |
| return error_code; |
| } |
| |
| // Checks if the audio format is supported. If not, the output is populated in a |
| // best-effort manner and an APM error code is returned. |
| int HandleUnsupportedAudioFormats(const float* const* src, |
| const StreamConfig& input_config, |
| const StreamConfig& output_config, |
| float* const* dest) { |
| RTC_DCHECK(src); |
| RTC_DCHECK(dest); |
| for (size_t i = 0; i < input_config.num_channels(); ++i) { |
| RTC_DCHECK(src[i]); |
| } |
| for (size_t i = 0; i < output_config.num_channels(); ++i) { |
| RTC_DCHECK(dest[i]); |
| } |
| |
| auto [error_code, output_option] = |
| ChooseErrorOutputOption(input_config, output_config); |
| if (error_code == AudioProcessing::kNoError) |
| return AudioProcessing::kNoError; |
| |
| const size_t num_output_channels = output_config.num_channels(); |
| switch (output_option) { |
| case FormatErrorOutputOption::kOutputSilence: |
| for (size_t ch = 0; ch < num_output_channels; ++ch) { |
| memset(dest[ch], 0, output_config.num_frames() * sizeof(float)); |
| } |
| break; |
| case FormatErrorOutputOption::kOutputBroadcastCopyOfFirstInputChannel: |
| for (size_t ch = 0; ch < num_output_channels; ++ch) { |
| memcpy(dest[ch], src[0], output_config.num_frames() * sizeof(float)); |
| } |
| break; |
| case FormatErrorOutputOption::kOutputExactCopyOfInput: |
| for (size_t ch = 0; ch < num_output_channels; ++ch) { |
| memcpy(dest[ch], src[ch], output_config.num_frames() * sizeof(float)); |
| } |
| break; |
| case FormatErrorOutputOption::kDoNothing: |
| break; |
| } |
| return error_code; |
| } |
| |
| using DownmixMethod = AudioProcessing::Config::Pipeline::DownmixMethod; |
| |
| void SetDownmixMethod(AudioBuffer& buffer, DownmixMethod method) { |
| switch (method) { |
| case DownmixMethod::kAverageChannels: |
| buffer.set_downmixing_by_averaging(); |
| break; |
| case DownmixMethod::kUseFirstChannel: |
| buffer.set_downmixing_to_specific_channel(/*channel=*/0); |
| break; |
| } |
| } |
| |
| constexpr int kUnspecifiedDataDumpInputVolume = -100; |
| |
| } // namespace |
| |
| // Throughout webrtc, it's assumed that success is represented by zero. |
| static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero"); |
| |
| absl::optional<AudioProcessingImpl::GainController2ExperimentParams> |
| AudioProcessingImpl::GetGainController2ExperimentParams() { |
| constexpr char kFieldTrialName[] = "WebRTC-Audio-GainController2"; |
| |
| if (!field_trial::IsEnabled(kFieldTrialName)) { |
| return absl::nullopt; |
| } |
| |
| FieldTrialFlag enabled("Enabled", false); |
| |
| // Whether the gain control should switch to AGC2. Enabled by default. |
| FieldTrialParameter<bool> switch_to_agc2("switch_to_agc2", true); |
| |
| // AGC2 input volume controller configuration. |
| constexpr InputVolumeController::Config kDefaultInputVolumeControllerConfig; |
| FieldTrialConstrained<int> min_input_volume( |
| "min_input_volume", kDefaultInputVolumeControllerConfig.min_input_volume, |
| 0, 255); |
| FieldTrialConstrained<int> clipped_level_min( |
| "clipped_level_min", |
| kDefaultInputVolumeControllerConfig.clipped_level_min, 0, 255); |
| FieldTrialConstrained<int> clipped_level_step( |
| "clipped_level_step", |
| kDefaultInputVolumeControllerConfig.clipped_level_step, 0, 255); |
| FieldTrialConstrained<double> clipped_ratio_threshold( |
| "clipped_ratio_threshold", |
| kDefaultInputVolumeControllerConfig.clipped_ratio_threshold, 0, 1); |
| FieldTrialConstrained<int> clipped_wait_frames( |
| "clipped_wait_frames", |
| kDefaultInputVolumeControllerConfig.clipped_wait_frames, 0, |
| absl::nullopt); |
| FieldTrialParameter<bool> enable_clipping_predictor( |
| "enable_clipping_predictor", |
| kDefaultInputVolumeControllerConfig.enable_clipping_predictor); |
| FieldTrialConstrained<int> target_range_max_dbfs( |
| "target_range_max_dbfs", |
| kDefaultInputVolumeControllerConfig.target_range_max_dbfs, -90, 30); |
| FieldTrialConstrained<int> target_range_min_dbfs( |
| "target_range_min_dbfs", |
| kDefaultInputVolumeControllerConfig.target_range_min_dbfs, -90, 30); |
| FieldTrialConstrained<int> update_input_volume_wait_frames( |
| "update_input_volume_wait_frames", |
| kDefaultInputVolumeControllerConfig.update_input_volume_wait_frames, 0, |
| absl::nullopt); |
| FieldTrialConstrained<double> speech_probability_threshold( |
| "speech_probability_threshold", |
| kDefaultInputVolumeControllerConfig.speech_probability_threshold, 0, 1); |
| FieldTrialConstrained<double> speech_ratio_threshold( |
| "speech_ratio_threshold", |
| kDefaultInputVolumeControllerConfig.speech_ratio_threshold, 0, 1); |
| |
| // AGC2 adaptive digital controller configuration. |
| constexpr AudioProcessing::Config::GainController2::AdaptiveDigital |
| kDefaultAdaptiveDigitalConfig; |
| FieldTrialConstrained<double> headroom_db( |
| "headroom_db", kDefaultAdaptiveDigitalConfig.headroom_db, 0, |
| absl::nullopt); |
| FieldTrialConstrained<double> max_gain_db( |
| "max_gain_db", kDefaultAdaptiveDigitalConfig.max_gain_db, 0, |
| absl::nullopt); |
| FieldTrialConstrained<double> initial_gain_db( |
| "initial_gain_db", kDefaultAdaptiveDigitalConfig.initial_gain_db, 0, |
| absl::nullopt); |
| FieldTrialConstrained<double> max_gain_change_db_per_second( |
| "max_gain_change_db_per_second", |
| kDefaultAdaptiveDigitalConfig.max_gain_change_db_per_second, 0, |
| absl::nullopt); |
| FieldTrialConstrained<double> max_output_noise_level_dbfs( |
| "max_output_noise_level_dbfs", |
| kDefaultAdaptiveDigitalConfig.max_output_noise_level_dbfs, absl::nullopt, |
| 0); |
| |
| // Transient suppressor. |
| FieldTrialParameter<bool> disallow_transient_suppressor_usage( |
| "disallow_transient_suppressor_usage", false); |
| |
| // Field-trial based override for the input volume controller and adaptive |
| // digital configs. |
| ParseFieldTrial( |
| {&enabled, &switch_to_agc2, &min_input_volume, &clipped_level_min, |
| &clipped_level_step, &clipped_ratio_threshold, &clipped_wait_frames, |
| &enable_clipping_predictor, &target_range_max_dbfs, |
| &target_range_min_dbfs, &update_input_volume_wait_frames, |
| &speech_probability_threshold, &speech_ratio_threshold, &headroom_db, |
| &max_gain_db, &initial_gain_db, &max_gain_change_db_per_second, |
| &max_output_noise_level_dbfs, &disallow_transient_suppressor_usage}, |
| field_trial::FindFullName(kFieldTrialName)); |
| // Checked already by `IsEnabled()` before parsing, therefore always true. |
| RTC_DCHECK(enabled); |
| |
| const bool do_not_change_agc_config = !switch_to_agc2.Get(); |
| if (do_not_change_agc_config && !disallow_transient_suppressor_usage.Get()) { |
| // Return an unspecifed value since, in this case, both the AGC2 and TS |
| // configurations won't be adjusted. |
| return absl::nullopt; |
| } |
| using Params = AudioProcessingImpl::GainController2ExperimentParams; |
| if (do_not_change_agc_config) { |
| // Return a value that leaves the AGC2 config unchanged and that always |
| // disables TS. |
| return Params{.agc2_config = absl::nullopt, |
| .disallow_transient_suppressor_usage = true}; |
| } |
| // Return a value that switches all the gain control to AGC2. |
| return Params{ |
| .agc2_config = |
| Params::Agc2Config{ |
| .input_volume_controller = |
| { |
| .min_input_volume = min_input_volume.Get(), |
| .clipped_level_min = clipped_level_min.Get(), |
| .clipped_level_step = clipped_level_step.Get(), |
| .clipped_ratio_threshold = |
| static_cast<float>(clipped_ratio_threshold.Get()), |
| .clipped_wait_frames = clipped_wait_frames.Get(), |
| .enable_clipping_predictor = |
| enable_clipping_predictor.Get(), |
| .target_range_max_dbfs = target_range_max_dbfs.Get(), |
| .target_range_min_dbfs = target_range_min_dbfs.Get(), |
| .update_input_volume_wait_frames = |
| update_input_volume_wait_frames.Get(), |
| .speech_probability_threshold = static_cast<float>( |
| speech_probability_threshold.Get()), |
| .speech_ratio_threshold = |
| static_cast<float>(speech_ratio_threshold.Get()), |
| }, |
| .adaptive_digital_controller = |
| { |
| .headroom_db = static_cast<float>(headroom_db.Get()), |
| .max_gain_db = static_cast<float>(max_gain_db.Get()), |
| .initial_gain_db = |
| static_cast<float>(initial_gain_db.Get()), |
| .max_gain_change_db_per_second = static_cast<float>( |
| max_gain_change_db_per_second.Get()), |
| .max_output_noise_level_dbfs = |
| static_cast<float>(max_output_noise_level_dbfs.Get()), |
| }}, |
| .disallow_transient_suppressor_usage = |
| disallow_transient_suppressor_usage.Get()}; |
| } |
| |
| AudioProcessing::Config AudioProcessingImpl::AdjustConfig( |
| const AudioProcessing::Config& config, |
| const absl::optional<AudioProcessingImpl::GainController2ExperimentParams>& |
| experiment_params) { |
| if (!experiment_params.has_value() || |
| (!experiment_params->agc2_config.has_value() && |
| !experiment_params->disallow_transient_suppressor_usage)) { |
| // When the experiment parameters are unspecified or when the AGC and TS |
| // configuration are not overridden, return the unmodified configuration. |
| return config; |
| } |
| |
| AudioProcessing::Config adjusted_config = config; |
| |
| // Override the transient suppressor configuration. |
| if (experiment_params->disallow_transient_suppressor_usage) { |
| adjusted_config.transient_suppression.enabled = false; |
| } |
| |
| // Override the auto gain control configuration if the AGC1 analog gain |
| // controller is active and `experiment_params->agc2_config` is specified. |
| const bool agc1_analog_enabled = |
| config.gain_controller1.enabled && |
| (config.gain_controller1.mode == |
| AudioProcessing::Config::GainController1::kAdaptiveAnalog || |
| config.gain_controller1.analog_gain_controller.enabled); |
| if (agc1_analog_enabled && experiment_params->agc2_config.has_value()) { |
| // Check that the unadjusted AGC config meets the preconditions. |
| const bool hybrid_agc_config_detected = |
| config.gain_controller1.enabled && |
| config.gain_controller1.analog_gain_controller.enabled && |
| !config.gain_controller1.analog_gain_controller |
| .enable_digital_adaptive && |
| config.gain_controller2.enabled && |
| config.gain_controller2.adaptive_digital.enabled; |
| const bool full_agc1_config_detected = |
| config.gain_controller1.enabled && |
| config.gain_controller1.analog_gain_controller.enabled && |
| config.gain_controller1.analog_gain_controller |
| .enable_digital_adaptive && |
| !config.gain_controller2.enabled; |
| const bool one_and_only_one_input_volume_controller = |
| hybrid_agc_config_detected != full_agc1_config_detected; |
| const bool agc2_input_volume_controller_enabled = |
| config.gain_controller2.enabled && |
| config.gain_controller2.input_volume_controller.enabled; |
| if (!one_and_only_one_input_volume_controller || |
| agc2_input_volume_controller_enabled) { |
| RTC_LOG(LS_ERROR) << "Cannot adjust AGC config (precondition failed)"; |
| if (!one_and_only_one_input_volume_controller) |
| RTC_LOG(LS_ERROR) |
| << "One and only one input volume controller must be enabled."; |
| if (agc2_input_volume_controller_enabled) |
| RTC_LOG(LS_ERROR) |
| << "The AGC2 input volume controller must be disabled."; |
| } else { |
| adjusted_config.gain_controller1.enabled = false; |
| adjusted_config.gain_controller1.analog_gain_controller.enabled = false; |
| |
| adjusted_config.gain_controller2.enabled = true; |
| adjusted_config.gain_controller2.input_volume_controller.enabled = true; |
| adjusted_config.gain_controller2.adaptive_digital = |
| experiment_params->agc2_config->adaptive_digital_controller; |
| adjusted_config.gain_controller2.adaptive_digital.enabled = true; |
| } |
| } |
| |
| return adjusted_config; |
| } |
| |
| bool AudioProcessingImpl::UseApmVadSubModule( |
| const AudioProcessing::Config& config, |
| const absl::optional<GainController2ExperimentParams>& experiment_params) { |
| // The VAD as an APM sub-module is needed only in one case, that is when TS |
| // and AGC2 are both enabled and when the AGC2 experiment is running and its |
| // parameters require to fully switch the gain control to AGC2. |
| return config.transient_suppression.enabled && |
| config.gain_controller2.enabled && |
| (config.gain_controller2.input_volume_controller.enabled || |
| config.gain_controller2.adaptive_digital.enabled) && |
| experiment_params.has_value() && |
| experiment_params->agc2_config.has_value(); |
| } |
| |
| AudioProcessingImpl::SubmoduleStates::SubmoduleStates( |
| bool capture_post_processor_enabled, |
| bool render_pre_processor_enabled, |
| bool capture_analyzer_enabled) |
| : capture_post_processor_enabled_(capture_post_processor_enabled), |
| render_pre_processor_enabled_(render_pre_processor_enabled), |
| capture_analyzer_enabled_(capture_analyzer_enabled) {} |
| |
| bool AudioProcessingImpl::SubmoduleStates::Update( |
| bool high_pass_filter_enabled, |
| bool mobile_echo_controller_enabled, |
| bool noise_suppressor_enabled, |
| bool adaptive_gain_controller_enabled, |
| bool gain_controller2_enabled, |
| bool voice_activity_detector_enabled, |
| bool gain_adjustment_enabled, |
| bool echo_controller_enabled, |
| bool transient_suppressor_enabled) { |
| bool changed = false; |
| changed |= (high_pass_filter_enabled != high_pass_filter_enabled_); |
| changed |= |
| (mobile_echo_controller_enabled != mobile_echo_controller_enabled_); |
| changed |= (noise_suppressor_enabled != noise_suppressor_enabled_); |
| changed |= |
| (adaptive_gain_controller_enabled != adaptive_gain_controller_enabled_); |
| changed |= (gain_controller2_enabled != gain_controller2_enabled_); |
| changed |= |
| (voice_activity_detector_enabled != voice_activity_detector_enabled_); |
| changed |= (gain_adjustment_enabled != gain_adjustment_enabled_); |
| changed |= (echo_controller_enabled != echo_controller_enabled_); |
| changed |= (transient_suppressor_enabled != transient_suppressor_enabled_); |
| if (changed) { |
| high_pass_filter_enabled_ = high_pass_filter_enabled; |
| mobile_echo_controller_enabled_ = mobile_echo_controller_enabled; |
| noise_suppressor_enabled_ = noise_suppressor_enabled; |
| adaptive_gain_controller_enabled_ = adaptive_gain_controller_enabled; |
| gain_controller2_enabled_ = gain_controller2_enabled; |
| voice_activity_detector_enabled_ = voice_activity_detector_enabled; |
| gain_adjustment_enabled_ = gain_adjustment_enabled; |
| echo_controller_enabled_ = echo_controller_enabled; |
| transient_suppressor_enabled_ = transient_suppressor_enabled; |
| } |
| |
| changed |= first_update_; |
| first_update_ = false; |
| return changed; |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandSubModulesActive() |
| const { |
| return CaptureMultiBandProcessingPresent(); |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingPresent() |
| const { |
| // If echo controller is present, assume it performs active processing. |
| return CaptureMultiBandProcessingActive(/*ec_processing_active=*/true); |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingActive( |
| bool ec_processing_active) const { |
| return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ || |
| noise_suppressor_enabled_ || adaptive_gain_controller_enabled_ || |
| (echo_controller_enabled_ && ec_processing_active); |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::CaptureFullBandProcessingActive() |
| const { |
| return gain_controller2_enabled_ || capture_post_processor_enabled_ || |
| gain_adjustment_enabled_; |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::CaptureAnalyzerActive() const { |
| return capture_analyzer_enabled_; |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandSubModulesActive() |
| const { |
| return RenderMultiBandProcessingActive() || mobile_echo_controller_enabled_ || |
| adaptive_gain_controller_enabled_ || echo_controller_enabled_; |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::RenderFullBandProcessingActive() |
| const { |
| return render_pre_processor_enabled_; |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandProcessingActive() |
| const { |
| return false; |
| } |
| |
| bool AudioProcessingImpl::SubmoduleStates::HighPassFilteringRequired() const { |
| return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ || |
| noise_suppressor_enabled_; |
| } |
| |
| AudioProcessingImpl::AudioProcessingImpl() |
| : AudioProcessingImpl(/*config=*/{}, |
| /*capture_post_processor=*/nullptr, |
| /*render_pre_processor=*/nullptr, |
| /*echo_control_factory=*/nullptr, |
| /*echo_detector=*/nullptr, |
| /*capture_analyzer=*/nullptr) {} |
| |
| std::atomic<int> AudioProcessingImpl::instance_count_(0); |
| |
| AudioProcessingImpl::AudioProcessingImpl( |
| const AudioProcessing::Config& config, |
| std::unique_ptr<CustomProcessing> capture_post_processor, |
| std::unique_ptr<CustomProcessing> render_pre_processor, |
| std::unique_ptr<EchoControlFactory> echo_control_factory, |
| rtc::scoped_refptr<EchoDetector> echo_detector, |
| std::unique_ptr<CustomAudioAnalyzer> capture_analyzer) |
| : data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)), |
| use_setup_specific_default_aec3_config_( |
| UseSetupSpecificDefaultAec3Congfig()), |
| gain_controller2_experiment_params_(GetGainController2ExperimentParams()), |
| transient_suppressor_vad_mode_(TransientSuppressor::VadMode::kDefault), |
| capture_runtime_settings_(RuntimeSettingQueueSize()), |
| render_runtime_settings_(RuntimeSettingQueueSize()), |
| capture_runtime_settings_enqueuer_(&capture_runtime_settings_), |
| render_runtime_settings_enqueuer_(&render_runtime_settings_), |
| echo_control_factory_(std::move(echo_control_factory)), |
| config_(AdjustConfig(config, gain_controller2_experiment_params_)), |
| submodule_states_(!!capture_post_processor, |
| !!render_pre_processor, |
| !!capture_analyzer), |
| submodules_(std::move(capture_post_processor), |
| std::move(render_pre_processor), |
| std::move(echo_detector), |
| std::move(capture_analyzer)), |
| constants_(!field_trial::IsEnabled( |
| "WebRTC-ApmExperimentalMultiChannelRenderKillSwitch"), |
| !field_trial::IsEnabled( |
| "WebRTC-ApmExperimentalMultiChannelCaptureKillSwitch"), |
| EnforceSplitBandHpf(), |
| MinimizeProcessingForUnusedOutput(), |
| field_trial::IsEnabled("WebRTC-TransientSuppressorForcedOff")), |
| capture_(), |
| capture_nonlocked_(), |
| applied_input_volume_stats_reporter_( |
| InputVolumeStatsReporter::InputVolumeType::kApplied), |
| recommended_input_volume_stats_reporter_( |
| InputVolumeStatsReporter::InputVolumeType::kRecommended) { |
| RTC_LOG(LS_INFO) << "Injected APM submodules:" |
| "\nEcho control factory: " |
| << !!echo_control_factory_ |
| << "\nEcho detector: " << !!submodules_.echo_detector |
| << "\nCapture analyzer: " << !!submodules_.capture_analyzer |
| << "\nCapture post processor: " |
| << !!submodules_.capture_post_processor |
| << "\nRender pre processor: " |
| << !!submodules_.render_pre_processor; |
| if (!DenormalDisabler::IsSupported()) { |
| RTC_LOG(LS_INFO) << "Denormal disabler unsupported"; |
| } |
| |
| RTC_LOG(LS_INFO) << "AudioProcessing: " << config_.ToString(); |
| |
| // Mark Echo Controller enabled if a factory is injected. |
| capture_nonlocked_.echo_controller_enabled = |
| static_cast<bool>(echo_control_factory_); |
| |
| Initialize(); |
| } |
| |
| AudioProcessingImpl::~AudioProcessingImpl() = default; |
| |
| int AudioProcessingImpl::Initialize() { |
| // Run in a single-threaded manner during initialization. |
| MutexLock lock_render(&mutex_render_); |
| MutexLock lock_capture(&mutex_capture_); |
| InitializeLocked(); |
| return kNoError; |
| } |
| |
| int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) { |
| // Run in a single-threaded manner during initialization. |
| MutexLock lock_render(&mutex_render_); |
| MutexLock lock_capture(&mutex_capture_); |
| InitializeLocked(processing_config); |
| return kNoError; |
| } |
| |
| void AudioProcessingImpl::MaybeInitializeRender( |
| const StreamConfig& input_config, |
| const StreamConfig& output_config) { |
| ProcessingConfig processing_config = formats_.api_format; |
| processing_config.reverse_input_stream() = input_config; |
| processing_config.reverse_output_stream() = output_config; |
| |
| if (processing_config == formats_.api_format) { |
| return; |
| } |
| |
| MutexLock lock_capture(&mutex_capture_); |
| InitializeLocked(processing_config); |
| } |
| |
| void AudioProcessingImpl::InitializeLocked() { |
| UpdateActiveSubmoduleStates(); |
| |
| const int render_audiobuffer_sample_rate_hz = |
| formats_.api_format.reverse_output_stream().num_frames() == 0 |
| ? formats_.render_processing_format.sample_rate_hz() |
| : formats_.api_format.reverse_output_stream().sample_rate_hz(); |
| if (formats_.api_format.reverse_input_stream().num_channels() > 0) { |
| render_.render_audio.reset(new AudioBuffer( |
| formats_.api_format.reverse_input_stream().sample_rate_hz(), |
| formats_.api_format.reverse_input_stream().num_channels(), |
| formats_.render_processing_format.sample_rate_hz(), |
| formats_.render_processing_format.num_channels(), |
| render_audiobuffer_sample_rate_hz, |
| formats_.render_processing_format.num_channels())); |
| if (formats_.api_format.reverse_input_stream() != |
| formats_.api_format.reverse_output_stream()) { |
| render_.render_converter = AudioConverter::Create( |
| formats_.api_format.reverse_input_stream().num_channels(), |
| formats_.api_format.reverse_input_stream().num_frames(), |
| formats_.api_format.reverse_output_stream().num_channels(), |
| formats_.api_format.reverse_output_stream().num_frames()); |
| } else { |
| render_.render_converter.reset(nullptr); |
| } |
| } else { |
| render_.render_audio.reset(nullptr); |
| render_.render_converter.reset(nullptr); |
| } |
| |
| capture_.capture_audio.reset(new AudioBuffer( |
| formats_.api_format.input_stream().sample_rate_hz(), |
| formats_.api_format.input_stream().num_channels(), |
| capture_nonlocked_.capture_processing_format.sample_rate_hz(), |
| formats_.api_format.output_stream().num_channels(), |
| formats_.api_format.output_stream().sample_rate_hz(), |
| formats_.api_format.output_stream().num_channels())); |
| SetDownmixMethod(*capture_.capture_audio, |
| config_.pipeline.capture_downmix_method); |
| |
| if (capture_nonlocked_.capture_processing_format.sample_rate_hz() < |
| formats_.api_format.output_stream().sample_rate_hz() && |
| formats_.api_format.output_stream().sample_rate_hz() == 48000) { |
| capture_.capture_fullband_audio.reset( |
| new AudioBuffer(formats_.api_format.input_stream().sample_rate_hz(), |
| formats_.api_format.input_stream().num_channels(), |
| formats_.api_format.output_stream().sample_rate_hz(), |
| formats_.api_format.output_stream().num_channels(), |
| formats_.api_format.output_stream().sample_rate_hz(), |
| formats_.api_format.output_stream().num_channels())); |
| SetDownmixMethod(*capture_.capture_fullband_audio, |
| config_.pipeline.capture_downmix_method); |
| } else { |
| capture_.capture_fullband_audio.reset(); |
| } |
| |
| AllocateRenderQueue(); |
| |
| InitializeGainController1(); |
| InitializeTransientSuppressor(); |
| InitializeHighPassFilter(true); |
| InitializeResidualEchoDetector(); |
| InitializeEchoController(); |
| InitializeGainController2(); |
| InitializeVoiceActivityDetector(); |
| InitializeNoiseSuppressor(); |
| InitializeAnalyzer(); |
| InitializePostProcessor(); |
| InitializePreProcessor(); |
| InitializeCaptureLevelsAdjuster(); |
| |
| if (aec_dump_) { |
| aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis()); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) { |
| UpdateActiveSubmoduleStates(); |
| |
| formats_.api_format = config; |
| |
| // Choose maximum rate to use for the split filtering. |
| RTC_DCHECK(config_.pipeline.maximum_internal_processing_rate == 48000 || |
| config_.pipeline.maximum_internal_processing_rate == 32000); |
| int max_splitting_rate = 48000; |
| if (config_.pipeline.maximum_internal_processing_rate == 32000) { |
| max_splitting_rate = config_.pipeline.maximum_internal_processing_rate; |
| } |
| |
| int capture_processing_rate = SuitableProcessRate( |
| std::min(formats_.api_format.input_stream().sample_rate_hz(), |
| formats_.api_format.output_stream().sample_rate_hz()), |
| max_splitting_rate, |
| submodule_states_.CaptureMultiBandSubModulesActive() || |
| submodule_states_.RenderMultiBandSubModulesActive()); |
| RTC_DCHECK_NE(8000, capture_processing_rate); |
| |
| capture_nonlocked_.capture_processing_format = |
| StreamConfig(capture_processing_rate); |
| |
| int render_processing_rate; |
| if (!capture_nonlocked_.echo_controller_enabled) { |
| render_processing_rate = SuitableProcessRate( |
| std::min(formats_.api_format.reverse_input_stream().sample_rate_hz(), |
| formats_.api_format.reverse_output_stream().sample_rate_hz()), |
| max_splitting_rate, |
| submodule_states_.CaptureMultiBandSubModulesActive() || |
| submodule_states_.RenderMultiBandSubModulesActive()); |
| } else { |
| render_processing_rate = capture_processing_rate; |
| } |
| |
| // If the forward sample rate is 8 kHz, the render stream is also processed |
| // at this rate. |
| if (capture_nonlocked_.capture_processing_format.sample_rate_hz() == |
| kSampleRate8kHz) { |
| render_processing_rate = kSampleRate8kHz; |
| } else { |
| render_processing_rate = |
| std::max(render_processing_rate, static_cast<int>(kSampleRate16kHz)); |
| } |
| |
| RTC_DCHECK_NE(8000, render_processing_rate); |
| |
| if (submodule_states_.RenderMultiBandSubModulesActive()) { |
| // By default, downmix the render stream to mono for analysis. This has been |
| // demonstrated to work well for AEC in most practical scenarios. |
| const bool multi_channel_render = config_.pipeline.multi_channel_render && |
| constants_.multi_channel_render_support; |
| int render_processing_num_channels = |
| multi_channel_render |
| ? formats_.api_format.reverse_input_stream().num_channels() |
| : 1; |
| formats_.render_processing_format = |
| StreamConfig(render_processing_rate, render_processing_num_channels); |
| } else { |
| formats_.render_processing_format = StreamConfig( |
| formats_.api_format.reverse_input_stream().sample_rate_hz(), |
| formats_.api_format.reverse_input_stream().num_channels()); |
| } |
| |
| if (capture_nonlocked_.capture_processing_format.sample_rate_hz() == |
| kSampleRate32kHz || |
| capture_nonlocked_.capture_processing_format.sample_rate_hz() == |
| kSampleRate48kHz) { |
| capture_nonlocked_.split_rate = kSampleRate16kHz; |
| } else { |
| capture_nonlocked_.split_rate = |
| capture_nonlocked_.capture_processing_format.sample_rate_hz(); |
| } |
| |
| InitializeLocked(); |
| } |
| |
| void AudioProcessingImpl::ApplyConfig(const AudioProcessing::Config& config) { |
| // Run in a single-threaded manner when applying the settings. |
| MutexLock lock_render(&mutex_render_); |
| MutexLock lock_capture(&mutex_capture_); |
| |
| const auto adjusted_config = |
| AdjustConfig(config, gain_controller2_experiment_params_); |
| RTC_LOG(LS_INFO) << "AudioProcessing::ApplyConfig: " |
| << adjusted_config.ToString(); |
| |
| const bool pipeline_config_changed = |
| config_.pipeline.multi_channel_render != |
| adjusted_config.pipeline.multi_channel_render || |
| config_.pipeline.multi_channel_capture != |
| adjusted_config.pipeline.multi_channel_capture || |
| config_.pipeline.maximum_internal_processing_rate != |
| adjusted_config.pipeline.maximum_internal_processing_rate || |
| config_.pipeline.capture_downmix_method != |
| adjusted_config.pipeline.capture_downmix_method; |
| |
| const bool aec_config_changed = |
| config_.echo_canceller.enabled != |
| adjusted_config.echo_canceller.enabled || |
| config_.echo_canceller.mobile_mode != |
| adjusted_config.echo_canceller.mobile_mode; |
| |
| const bool agc1_config_changed = |
| config_.gain_controller1 != adjusted_config.gain_controller1; |
| |
| const bool agc2_config_changed = |
| config_.gain_controller2 != adjusted_config.gain_controller2; |
| |
| const bool ns_config_changed = |
| config_.noise_suppression.enabled != |
| adjusted_config.noise_suppression.enabled || |
| config_.noise_suppression.level != |
| adjusted_config.noise_suppression.level; |
| |
| const bool ts_config_changed = config_.transient_suppression.enabled != |
| adjusted_config.transient_suppression.enabled; |
| |
| const bool pre_amplifier_config_changed = |
| config_.pre_amplifier.enabled != adjusted_config.pre_amplifier.enabled || |
| config_.pre_amplifier.fixed_gain_factor != |
| adjusted_config.pre_amplifier.fixed_gain_factor; |
| |
| const bool gain_adjustment_config_changed = |
| config_.capture_level_adjustment != |
| adjusted_config.capture_level_adjustment; |
| |
| config_ = adjusted_config; |
| |
| if (aec_config_changed) { |
| InitializeEchoController(); |
| } |
| |
| if (ns_config_changed) { |
| InitializeNoiseSuppressor(); |
| } |
| |
| if (ts_config_changed) { |
| InitializeTransientSuppressor(); |
| } |
| |
| InitializeHighPassFilter(false); |
| |
| if (agc1_config_changed) { |
| InitializeGainController1(); |
| } |
| |
| const bool config_ok = GainController2::Validate(config_.gain_controller2); |
| if (!config_ok) { |
| RTC_LOG(LS_ERROR) |
| << "Invalid Gain Controller 2 config; using the default config."; |
| config_.gain_controller2 = AudioProcessing::Config::GainController2(); |
| } |
| |
| if (agc2_config_changed || ts_config_changed) { |
| // AGC2 also depends on TS because of the possible dependency on the APM VAD |
| // sub-module. |
| InitializeGainController2(); |
| InitializeVoiceActivityDetector(); |
| } |
| |
| if (pre_amplifier_config_changed || gain_adjustment_config_changed) { |
| InitializeCaptureLevelsAdjuster(); |
| } |
| |
| // Reinitialization must happen after all submodule configuration to avoid |
| // additional reinitializations on the next capture / render processing call. |
| if (pipeline_config_changed) { |
| InitializeLocked(formats_.api_format); |
| } |
| } |
| |
| void AudioProcessingImpl::OverrideSubmoduleCreationForTesting( |
| const ApmSubmoduleCreationOverrides& overrides) { |
| MutexLock lock(&mutex_capture_); |
| submodule_creation_overrides_ = overrides; |
| } |
| |
| int AudioProcessingImpl::proc_sample_rate_hz() const { |
| // Used as callback from submodules, hence locking is not allowed. |
| return capture_nonlocked_.capture_processing_format.sample_rate_hz(); |
| } |
| |
| int AudioProcessingImpl::proc_fullband_sample_rate_hz() const { |
| return capture_.capture_fullband_audio |
| ? capture_.capture_fullband_audio->num_frames() * 100 |
| : capture_nonlocked_.capture_processing_format.sample_rate_hz(); |
| } |
| |
| int AudioProcessingImpl::proc_split_sample_rate_hz() const { |
| // Used as callback from submodules, hence locking is not allowed. |
| return capture_nonlocked_.split_rate; |
| } |
| |
| size_t AudioProcessingImpl::num_reverse_channels() const { |
| // Used as callback from submodules, hence locking is not allowed. |
| return formats_.render_processing_format.num_channels(); |
| } |
| |
| size_t AudioProcessingImpl::num_input_channels() const { |
| // Used as callback from submodules, hence locking is not allowed. |
| return formats_.api_format.input_stream().num_channels(); |
| } |
| |
| size_t AudioProcessingImpl::num_proc_channels() const { |
| // Used as callback from submodules, hence locking is not allowed. |
| const bool multi_channel_capture = config_.pipeline.multi_channel_capture && |
| constants_.multi_channel_capture_support; |
| if (capture_nonlocked_.echo_controller_enabled && !multi_channel_capture) { |
| return 1; |
| } |
| return num_output_channels(); |
| } |
| |
| size_t AudioProcessingImpl::num_output_channels() const { |
| // Used as callback from submodules, hence locking is not allowed. |
| return formats_.api_format.output_stream().num_channels(); |
| } |
| |
| void AudioProcessingImpl::set_output_will_be_muted(bool muted) { |
| MutexLock lock(&mutex_capture_); |
| HandleCaptureOutputUsedSetting(!muted); |
| } |
| |
| void AudioProcessingImpl::HandleCaptureOutputUsedSetting( |
| bool capture_output_used) { |
| capture_.capture_output_used = |
| capture_output_used || !constants_.minimize_processing_for_unused_output; |
| |
| if (submodules_.agc_manager.get()) { |
| submodules_.agc_manager->HandleCaptureOutputUsedChange( |
| capture_.capture_output_used); |
| } |
| if (submodules_.echo_controller) { |
| submodules_.echo_controller->SetCaptureOutputUsage( |
| capture_.capture_output_used); |
| } |
| if (submodules_.noise_suppressor) { |
| submodules_.noise_suppressor->SetCaptureOutputUsage( |
| capture_.capture_output_used); |
| } |
| if (submodules_.gain_controller2) { |
| submodules_.gain_controller2->SetCaptureOutputUsed( |
| capture_.capture_output_used); |
| } |
| } |
| |
| void AudioProcessingImpl::SetRuntimeSetting(RuntimeSetting setting) { |
| PostRuntimeSetting(setting); |
| } |
| |
| bool AudioProcessingImpl::PostRuntimeSetting(RuntimeSetting setting) { |
| switch (setting.type()) { |
| case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting: |
| case RuntimeSetting::Type::kPlayoutAudioDeviceChange: |
| return render_runtime_settings_enqueuer_.Enqueue(setting); |
| case RuntimeSetting::Type::kCapturePreGain: |
| case RuntimeSetting::Type::kCapturePostGain: |
| case RuntimeSetting::Type::kCaptureCompressionGain: |
| case RuntimeSetting::Type::kCaptureFixedPostGain: |
| case RuntimeSetting::Type::kCaptureOutputUsed: |
| return capture_runtime_settings_enqueuer_.Enqueue(setting); |
| case RuntimeSetting::Type::kPlayoutVolumeChange: { |
| bool enqueueing_successful; |
| enqueueing_successful = |
| capture_runtime_settings_enqueuer_.Enqueue(setting); |
| enqueueing_successful = |
| render_runtime_settings_enqueuer_.Enqueue(setting) && |
| enqueueing_successful; |
| return enqueueing_successful; |
| } |
| case RuntimeSetting::Type::kNotSpecified: |
| RTC_DCHECK_NOTREACHED(); |
| return true; |
| } |
| // The language allows the enum to have a non-enumerator |
| // value. Check that this doesn't happen. |
| RTC_DCHECK_NOTREACHED(); |
| return true; |
| } |
| |
| AudioProcessingImpl::RuntimeSettingEnqueuer::RuntimeSettingEnqueuer( |
| SwapQueue<RuntimeSetting>* runtime_settings) |
| : runtime_settings_(*runtime_settings) { |
| RTC_DCHECK(runtime_settings); |
| } |
| |
| AudioProcessingImpl::RuntimeSettingEnqueuer::~RuntimeSettingEnqueuer() = |
| default; |
| |
| bool AudioProcessingImpl::RuntimeSettingEnqueuer::Enqueue( |
| RuntimeSetting setting) { |
| const bool successful_insert = runtime_settings_.Insert(&setting); |
| |
| if (!successful_insert) { |
| RTC_LOG(LS_ERROR) << "Cannot enqueue a new runtime setting."; |
| } |
| return successful_insert; |
| } |
| |
| void AudioProcessingImpl::MaybeInitializeCapture( |
| const StreamConfig& input_config, |
| const StreamConfig& output_config) { |
| ProcessingConfig processing_config; |
| bool reinitialization_required = false; |
| { |
| // Acquire the capture lock in order to access api_format. The lock is |
| // released immediately, as we may need to acquire the render lock as part |
| // of the conditional reinitialization. |
| MutexLock lock_capture(&mutex_capture_); |
| processing_config = formats_.api_format; |
| reinitialization_required = UpdateActiveSubmoduleStates(); |
| } |
| |
| if (processing_config.input_stream() != input_config) { |
| reinitialization_required = true; |
| } |
| |
| if (processing_config.output_stream() != output_config) { |
| reinitialization_required = true; |
| } |
| |
| if (reinitialization_required) { |
| MutexLock lock_render(&mutex_render_); |
| MutexLock lock_capture(&mutex_capture_); |
| // Reread the API format since the render format may have changed. |
| processing_config = formats_.api_format; |
| processing_config.input_stream() = input_config; |
| processing_config.output_stream() = output_config; |
| InitializeLocked(processing_config); |
| } |
| } |
| |
| int AudioProcessingImpl::ProcessStream(const float* const* src, |
| const StreamConfig& input_config, |
| const StreamConfig& output_config, |
| float* const* dest) { |
| TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_StreamConfig"); |
| DenormalDisabler denormal_disabler; |
| RETURN_ON_ERR( |
| HandleUnsupportedAudioFormats(src, input_config, output_config, dest)); |
| MaybeInitializeCapture(input_config, output_config); |
| |
| MutexLock lock_capture(&mutex_capture_); |
| |
| if (aec_dump_) { |
| RecordUnprocessedCaptureStream(src); |
| } |
| |
| capture_.capture_audio->CopyFrom(src, formats_.api_format.input_stream()); |
| if (capture_.capture_fullband_audio) { |
| capture_.capture_fullband_audio->CopyFrom( |
| src, formats_.api_format.input_stream()); |
| } |
| RETURN_ON_ERR(ProcessCaptureStreamLocked()); |
| if (capture_.capture_fullband_audio) { |
| capture_.capture_fullband_audio->CopyTo(formats_.api_format.output_stream(), |
| dest); |
| } else { |
| capture_.capture_audio->CopyTo(formats_.api_format.output_stream(), dest); |
| } |
| |
| if (aec_dump_) { |
| RecordProcessedCaptureStream(dest); |
| } |
| return kNoError; |
| } |
| |
| void AudioProcessingImpl::HandleCaptureRuntimeSettings() { |
| RuntimeSetting setting; |
| int num_settings_processed = 0; |
| while (capture_runtime_settings_.Remove(&setting)) { |
| if (aec_dump_) { |
| aec_dump_->WriteRuntimeSetting(setting); |
| } |
| switch (setting.type()) { |
| case RuntimeSetting::Type::kCapturePreGain: |
| if (config_.pre_amplifier.enabled || |
| config_.capture_level_adjustment.enabled) { |
| float value; |
| setting.GetFloat(&value); |
| // If the pre-amplifier is used, apply the new gain to the |
| // pre-amplifier regardless if the capture level adjustment is |
| // activated. This approach allows both functionalities to coexist |
| // until they have been properly merged. |
| if (config_.pre_amplifier.enabled) { |
| config_.pre_amplifier.fixed_gain_factor = value; |
| } else { |
| config_.capture_level_adjustment.pre_gain_factor = value; |
| } |
| |
| // Use both the pre-amplifier and the capture level adjustment gains |
| // as pre-gains. |
| float gain = 1.f; |
| if (config_.pre_amplifier.enabled) { |
| gain *= config_.pre_amplifier.fixed_gain_factor; |
| } |
| if (config_.capture_level_adjustment.enabled) { |
| gain *= config_.capture_level_adjustment.pre_gain_factor; |
| } |
| |
| submodules_.capture_levels_adjuster->SetPreGain(gain); |
| } |
| // TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump. |
| break; |
| case RuntimeSetting::Type::kCapturePostGain: |
| if (config_.capture_level_adjustment.enabled) { |
| float value; |
| setting.GetFloat(&value); |
| config_.capture_level_adjustment.post_gain_factor = value; |
| submodules_.capture_levels_adjuster->SetPostGain( |
| config_.capture_level_adjustment.post_gain_factor); |
| } |
| // TODO(bugs.chromium.org/9138): Log setting handling by Aec Dump. |
| break; |
| case RuntimeSetting::Type::kCaptureCompressionGain: { |
| if (!submodules_.agc_manager && |
| !(submodules_.gain_controller2 && |
| config_.gain_controller2.input_volume_controller.enabled)) { |
| float value; |
| setting.GetFloat(&value); |
| int int_value = static_cast<int>(value + .5f); |
| config_.gain_controller1.compression_gain_db = int_value; |
| if (submodules_.gain_control) { |
| int error = |
| submodules_.gain_control->set_compression_gain_db(int_value); |
| RTC_DCHECK_EQ(kNoError, error); |
| } |
| } |
| break; |
| } |
| case RuntimeSetting::Type::kCaptureFixedPostGain: { |
| if (submodules_.gain_controller2) { |
| float value; |
| setting.GetFloat(&value); |
| config_.gain_controller2.fixed_digital.gain_db = value; |
| submodules_.gain_controller2->SetFixedGainDb(value); |
| } |
| break; |
| } |
| case RuntimeSetting::Type::kPlayoutVolumeChange: { |
| int value; |
| setting.GetInt(&value); |
| capture_.playout_volume = value; |
| break; |
| } |
| case RuntimeSetting::Type::kPlayoutAudioDeviceChange: |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting: |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| case RuntimeSetting::Type::kNotSpecified: |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| case RuntimeSetting::Type::kCaptureOutputUsed: |
| bool value; |
| setting.GetBool(&value); |
| HandleCaptureOutputUsedSetting(value); |
| break; |
| } |
| ++num_settings_processed; |
| } |
| |
| if (num_settings_processed >= RuntimeSettingQueueSize()) { |
| // Handle overrun of the runtime settings queue, which likely will has |
| // caused settings to be discarded. |
| HandleOverrunInCaptureRuntimeSettingsQueue(); |
| } |
| } |
| |
| void AudioProcessingImpl::HandleOverrunInCaptureRuntimeSettingsQueue() { |
| // Fall back to a safe state for the case when a setting for capture output |
| // usage setting has been missed. |
| HandleCaptureOutputUsedSetting(/*capture_output_used=*/true); |
| } |
| |
| void AudioProcessingImpl::HandleRenderRuntimeSettings() { |
| RuntimeSetting setting; |
| while (render_runtime_settings_.Remove(&setting)) { |
| if (aec_dump_) { |
| aec_dump_->WriteRuntimeSetting(setting); |
| } |
| switch (setting.type()) { |
| case RuntimeSetting::Type::kPlayoutAudioDeviceChange: // fall-through |
| case RuntimeSetting::Type::kPlayoutVolumeChange: // fall-through |
| case RuntimeSetting::Type::kCustomRenderProcessingRuntimeSetting: |
| if (submodules_.render_pre_processor) { |
| submodules_.render_pre_processor->SetRuntimeSetting(setting); |
| } |
| break; |
| case RuntimeSetting::Type::kCapturePreGain: // fall-through |
| case RuntimeSetting::Type::kCapturePostGain: // fall-through |
| case RuntimeSetting::Type::kCaptureCompressionGain: // fall-through |
| case RuntimeSetting::Type::kCaptureFixedPostGain: // fall-through |
| case RuntimeSetting::Type::kCaptureOutputUsed: // fall-through |
| case RuntimeSetting::Type::kNotSpecified: |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| } |
| } |
| } |
| |
| void AudioProcessingImpl::QueueBandedRenderAudio(AudioBuffer* audio) { |
| RTC_DCHECK_GE(160, audio->num_frames_per_band()); |
| |
| if (submodules_.echo_control_mobile) { |
| EchoControlMobileImpl::PackRenderAudioBuffer(audio, num_output_channels(), |
| num_reverse_channels(), |
| &aecm_render_queue_buffer_); |
| RTC_DCHECK(aecm_render_signal_queue_); |
| // Insert the samples into the queue. |
| if (!aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_)) { |
| // The data queue is full and needs to be emptied. |
| EmptyQueuedRenderAudio(); |
| |
| // Retry the insert (should always work). |
| bool result = |
| aecm_render_signal_queue_->Insert(&aecm_render_queue_buffer_); |
| RTC_DCHECK(result); |
| } |
| } |
| |
| if (!submodules_.agc_manager && submodules_.gain_control) { |
| GainControlImpl::PackRenderAudioBuffer(*audio, &agc_render_queue_buffer_); |
| // Insert the samples into the queue. |
| if (!agc_render_signal_queue_->Insert(&agc_render_queue_buffer_)) { |
| // The data queue is full and needs to be emptied. |
| EmptyQueuedRenderAudio(); |
| |
| // Retry the insert (should always work). |
| bool result = agc_render_signal_queue_->Insert(&agc_render_queue_buffer_); |
| RTC_DCHECK(result); |
| } |
| } |
| } |
| |
| void AudioProcessingImpl::QueueNonbandedRenderAudio(AudioBuffer* audio) { |
| if (submodules_.echo_detector) { |
| PackRenderAudioBufferForEchoDetector(*audio, red_render_queue_buffer_); |
| RTC_DCHECK(red_render_signal_queue_); |
| // Insert the samples into the queue. |
| if (!red_render_signal_queue_->Insert(&red_render_queue_buffer_)) { |
| // The data queue is full and needs to be emptied. |
| EmptyQueuedRenderAudio(); |
| |
| // Retry the insert (should always work). |
| bool result = red_render_signal_queue_->Insert(&red_render_queue_buffer_); |
| RTC_DCHECK(result); |
| } |
| } |
| } |
| |
| void AudioProcessingImpl::AllocateRenderQueue() { |
| const size_t new_agc_render_queue_element_max_size = |
| std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerBand); |
| |
| const size_t new_red_render_queue_element_max_size = |
| std::max(static_cast<size_t>(1), kMaxAllowedValuesOfSamplesPerFrame); |
| |
| // Reallocate the queues if the queue item sizes are too small to fit the |
| // data to put in the queues. |
| |
| if (agc_render_queue_element_max_size_ < |
| new_agc_render_queue_element_max_size) { |
| agc_render_queue_element_max_size_ = new_agc_render_queue_element_max_size; |
| |
| std::vector<int16_t> template_queue_element( |
| agc_render_queue_element_max_size_); |
| |
| agc_render_signal_queue_.reset( |
| new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>( |
| kMaxNumFramesToBuffer, template_queue_element, |
| RenderQueueItemVerifier<int16_t>( |
| agc_render_queue_element_max_size_))); |
| |
| agc_render_queue_buffer_.resize(agc_render_queue_element_max_size_); |
| agc_capture_queue_buffer_.resize(agc_render_queue_element_max_size_); |
| } else { |
| agc_render_signal_queue_->Clear(); |
| } |
| |
| if (submodules_.echo_detector) { |
| if (red_render_queue_element_max_size_ < |
| new_red_render_queue_element_max_size) { |
| red_render_queue_element_max_size_ = |
| new_red_render_queue_element_max_size; |
| |
| std::vector<float> template_queue_element( |
| red_render_queue_element_max_size_); |
| |
| red_render_signal_queue_.reset( |
| new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>( |
| kMaxNumFramesToBuffer, template_queue_element, |
| RenderQueueItemVerifier<float>( |
| red_render_queue_element_max_size_))); |
| |
| red_render_queue_buffer_.resize(red_render_queue_element_max_size_); |
| red_capture_queue_buffer_.resize(red_render_queue_element_max_size_); |
| } else { |
| red_render_signal_queue_->Clear(); |
| } |
| } |
| } |
| |
| void AudioProcessingImpl::EmptyQueuedRenderAudio() { |
| MutexLock lock_capture(&mutex_capture_); |
| EmptyQueuedRenderAudioLocked(); |
| } |
| |
| void AudioProcessingImpl::EmptyQueuedRenderAudioLocked() { |
| if (submodules_.echo_control_mobile) { |
| RTC_DCHECK(aecm_render_signal_queue_); |
| while (aecm_render_signal_queue_->Remove(&aecm_capture_queue_buffer_)) { |
| submodules_.echo_control_mobile->ProcessRenderAudio( |
| aecm_capture_queue_buffer_); |
| } |
| } |
| |
| if (submodules_.gain_control) { |
| while (agc_render_signal_queue_->Remove(&agc_capture_queue_buffer_)) { |
| submodules_.gain_control->ProcessRenderAudio(agc_capture_queue_buffer_); |
| } |
| } |
| |
| if (submodules_.echo_detector) { |
| while (red_render_signal_queue_->Remove(&red_capture_queue_buffer_)) { |
| submodules_.echo_detector->AnalyzeRenderAudio(red_capture_queue_buffer_); |
| } |
| } |
| } |
| |
| int AudioProcessingImpl::ProcessStream(const int16_t* const src, |
| const StreamConfig& input_config, |
| const StreamConfig& output_config, |
| int16_t* const dest) { |
| TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_AudioFrame"); |
| |
| RETURN_ON_ERR( |
| HandleUnsupportedAudioFormats(src, input_config, output_config, dest)); |
| MaybeInitializeCapture(input_config, output_config); |
| |
| MutexLock lock_capture(&mutex_capture_); |
| DenormalDisabler denormal_disabler; |
| |
| if (aec_dump_) { |
| RecordUnprocessedCaptureStream(src, input_config); |
| } |
| |
| capture_.capture_audio->CopyFrom(src, input_config); |
| if (capture_.capture_fullband_audio) { |
| capture_.capture_fullband_audio->CopyFrom(src, input_config); |
| } |
| RETURN_ON_ERR(ProcessCaptureStreamLocked()); |
| if (submodule_states_.CaptureMultiBandProcessingPresent() || |
| submodule_states_.CaptureFullBandProcessingActive()) { |
| if (capture_.capture_fullband_audio) { |
| capture_.capture_fullband_audio->CopyTo(output_config, dest); |
| } else { |
| capture_.capture_audio->CopyTo(output_config, dest); |
| } |
| } |
| |
| if (aec_dump_) { |
| RecordProcessedCaptureStream(dest, output_config); |
| } |
| return kNoError; |
| } |
| |
| int AudioProcessingImpl::ProcessCaptureStreamLocked() { |
| EmptyQueuedRenderAudioLocked(); |
| HandleCaptureRuntimeSettings(); |
| DenormalDisabler denormal_disabler; |
| |
| // Ensure that not both the AEC and AECM are active at the same time. |
| // TODO(peah): Simplify once the public API Enable functions for these |
| // are moved to APM. |
| RTC_DCHECK_LE( |
| !!submodules_.echo_controller + !!submodules_.echo_control_mobile, 1); |
| |
| data_dumper_->DumpRaw( |
| "applied_input_volume", |
| capture_.applied_input_volume.value_or(kUnspecifiedDataDumpInputVolume)); |
| |
| AudioBuffer* capture_buffer = capture_.capture_audio.get(); // For brevity. |
| AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get(); |
| |
| if (submodules_.high_pass_filter && |
| config_.high_pass_filter.apply_in_full_band && |
| !constants_.enforce_split_band_hpf) { |
| submodules_.high_pass_filter->Process(capture_buffer, |
| /*use_split_band_data=*/false); |
| } |
| |
| if (submodules_.capture_levels_adjuster) { |
| if (config_.capture_level_adjustment.analog_mic_gain_emulation.enabled) { |
| // When the input volume is emulated, retrieve the volume applied to the |
| // input audio and notify that to APM so that the volume is passed to the |
| // active AGC. |
| set_stream_analog_level_locked( |
| submodules_.capture_levels_adjuster->GetAnalogMicGainLevel()); |
| } |
| submodules_.capture_levels_adjuster->ApplyPreLevelAdjustment( |
| *capture_buffer); |
| } |
| |
| capture_input_rms_.Analyze(rtc::ArrayView<const float>( |
| capture_buffer->channels_const()[0], |
| capture_nonlocked_.capture_processing_format.num_frames())); |
| const bool log_rms = ++capture_rms_interval_counter_ >= 1000; |
| if (log_rms) { |
| capture_rms_interval_counter_ = 0; |
| RmsLevel::Levels levels = capture_input_rms_.AverageAndPeak(); |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelAverageRms", |
| levels.average, 1, RmsLevel::kMinLevelDb, 64); |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureInputLevelPeakRms", |
| levels.peak, 1, RmsLevel::kMinLevelDb, 64); |
| } |
| |
| if (capture_.applied_input_volume.has_value()) { |
| applied_input_volume_stats_reporter_.UpdateStatistics( |
| *capture_.applied_input_volume); |
| } |
| |
| if (submodules_.echo_controller) { |
| // Determine if the echo path gain has changed by checking all the gains |
| // applied before AEC. |
| capture_.echo_path_gain_change = capture_.applied_input_volume_changed; |
| |
| // Detect and flag any change in the capture level adjustment pre-gain. |
| if (submodules_.capture_levels_adjuster) { |
| float pre_adjustment_gain = |
| submodules_.capture_levels_adjuster->GetPreAdjustmentGain(); |
| capture_.echo_path_gain_change = |
| capture_.echo_path_gain_change || |
| (capture_.prev_pre_adjustment_gain != pre_adjustment_gain && |
| capture_.prev_pre_adjustment_gain >= 0.0f); |
| capture_.prev_pre_adjustment_gain = pre_adjustment_gain; |
| } |
| |
| // Detect volume change. |
| capture_.echo_path_gain_change = |
| capture_.echo_path_gain_change || |
| (capture_.prev_playout_volume != capture_.playout_volume && |
| capture_.prev_playout_volume >= 0); |
| capture_.prev_playout_volume = capture_.playout_volume; |
| |
| submodules_.echo_controller->AnalyzeCapture(capture_buffer); |
| } |
| |
| if (submodules_.agc_manager) { |
| submodules_.agc_manager->AnalyzePreProcess(*capture_buffer); |
| } |
| |
| if (submodules_.gain_controller2 && |
| config_.gain_controller2.input_volume_controller.enabled) { |
| // Expect the volume to be available if the input controller is enabled. |
| RTC_DCHECK(capture_.applied_input_volume.has_value()); |
| if (capture_.applied_input_volume.has_value()) { |
| submodules_.gain_controller2->Analyze(*capture_.applied_input_volume, |
| *capture_buffer); |
| } |
| } |
| |
| if (submodule_states_.CaptureMultiBandSubModulesActive() && |
| SampleRateSupportsMultiBand( |
| capture_nonlocked_.capture_processing_format.sample_rate_hz())) { |
| capture_buffer->SplitIntoFrequencyBands(); |
| } |
| |
| const bool multi_channel_capture = config_.pipeline.multi_channel_capture && |
| constants_.multi_channel_capture_support; |
| if (submodules_.echo_controller && !multi_channel_capture) { |
| // Force down-mixing of the number of channels after the detection of |
| // capture signal saturation. |
| // TODO(peah): Look into ensuring that this kind of tampering with the |
| // AudioBuffer functionality should not be needed. |
| capture_buffer->set_num_channels(1); |
| } |
| |
| if (submodules_.high_pass_filter && |
| (!config_.high_pass_filter.apply_in_full_band || |
| constants_.enforce_split_band_hpf)) { |
| submodules_.high_pass_filter->Process(capture_buffer, |
| /*use_split_band_data=*/true); |
| } |
| |
| if (submodules_.gain_control) { |
| RETURN_ON_ERR( |
| submodules_.gain_control->AnalyzeCaptureAudio(*capture_buffer)); |
| } |
| |
| if ((!config_.noise_suppression.analyze_linear_aec_output_when_available || |
| !linear_aec_buffer || submodules_.echo_control_mobile) && |
| submodules_.noise_suppressor) { |
| submodules_.noise_suppressor->Analyze(*capture_buffer); |
| } |
| |
| if (submodules_.echo_control_mobile) { |
| // Ensure that the stream delay was set before the call to the |
| // AECM ProcessCaptureAudio function. |
| if (!capture_.was_stream_delay_set) { |
| return AudioProcessing::kStreamParameterNotSetError; |
| } |
| |
| if (submodules_.noise_suppressor) { |
| submodules_.noise_suppressor->Process(capture_buffer); |
| } |
| |
| RETURN_ON_ERR(submodules_.echo_control_mobile->ProcessCaptureAudio( |
| capture_buffer, stream_delay_ms())); |
| } else { |
| if (submodules_.echo_controller) { |
| data_dumper_->DumpRaw("stream_delay", stream_delay_ms()); |
| |
| if (capture_.was_stream_delay_set) { |
| submodules_.echo_controller->SetAudioBufferDelay(stream_delay_ms()); |
| } |
| |
| submodules_.echo_controller->ProcessCapture( |
| capture_buffer, linear_aec_buffer, capture_.echo_path_gain_change); |
| } |
| |
| if (config_.noise_suppression.analyze_linear_aec_output_when_available && |
| linear_aec_buffer && submodules_.noise_suppressor) { |
| submodules_.noise_suppressor->Analyze(*linear_aec_buffer); |
| } |
| |
| if (submodules_.noise_suppressor) { |
| submodules_.noise_suppressor->Process(capture_buffer); |
| } |
| } |
| |
| if (submodules_.agc_manager) { |
| submodules_.agc_manager->Process(*capture_buffer); |
| |
| absl::optional<int> new_digital_gain = |
| submodules_.agc_manager->GetDigitalComressionGain(); |
| if (new_digital_gain && submodules_.gain_control) { |
| submodules_.gain_control->set_compression_gain_db(*new_digital_gain); |
| } |
| } |
| |
| if (submodules_.gain_control) { |
| // TODO(peah): Add reporting from AEC3 whether there is echo. |
| RETURN_ON_ERR(submodules_.gain_control->ProcessCaptureAudio( |
| capture_buffer, /*stream_has_echo*/ false)); |
| } |
| |
| if (submodule_states_.CaptureMultiBandProcessingPresent() && |
| SampleRateSupportsMultiBand( |
| capture_nonlocked_.capture_processing_format.sample_rate_hz())) { |
| capture_buffer->MergeFrequencyBands(); |
| } |
| |
| if (capture_.capture_output_used) { |
| if (capture_.capture_fullband_audio) { |
| const auto& ec = submodules_.echo_controller; |
| bool ec_active = ec ? ec->ActiveProcessing() : false; |
| // Only update the fullband buffer if the multiband processing has changed |
| // the signal. Keep the original signal otherwise. |
| if (submodule_states_.CaptureMultiBandProcessingActive(ec_active)) { |
| capture_buffer->CopyTo(capture_.capture_fullband_audio.get()); |
| } |
| capture_buffer = capture_.capture_fullband_audio.get(); |
| } |
| |
| if (submodules_.echo_detector) { |
| submodules_.echo_detector->AnalyzeCaptureAudio( |
| rtc::ArrayView<const float>(capture_buffer->channels()[0], |
| capture_buffer->num_frames())); |
| } |
| |
| absl::optional<float> voice_probability; |
| if (!!submodules_.voice_activity_detector) { |
| voice_probability = submodules_.voice_activity_detector->Analyze( |
| AudioFrameView<const float>(capture_buffer->channels(), |
| capture_buffer->num_channels(), |
| capture_buffer->num_frames())); |
| } |
| |
| if (submodules_.transient_suppressor) { |
| float transient_suppressor_voice_probability = 1.0f; |
| switch (transient_suppressor_vad_mode_) { |
| case TransientSuppressor::VadMode::kDefault: |
| if (submodules_.agc_manager) { |
| transient_suppressor_voice_probability = |
| submodules_.agc_manager->voice_probability(); |
| } |
| break; |
| case TransientSuppressor::VadMode::kRnnVad: |
| RTC_DCHECK(voice_probability.has_value()); |
| transient_suppressor_voice_probability = *voice_probability; |
| break; |
| case TransientSuppressor::VadMode::kNoVad: |
| // The transient suppressor will ignore `voice_probability`. |
| break; |
| } |
| float delayed_voice_probability = |
| submodules_.transient_suppressor->Suppress( |
| capture_buffer->channels()[0], capture_buffer->num_frames(), |
| capture_buffer->num_channels(), |
| capture_buffer->split_bands_const(0)[kBand0To8kHz], |
| capture_buffer->num_frames_per_band(), |
| /*reference_data=*/nullptr, /*reference_length=*/0, |
| transient_suppressor_voice_probability, capture_.key_pressed); |
| if (voice_probability.has_value()) { |
| *voice_probability = delayed_voice_probability; |
| } |
| } |
| |
| // Experimental APM sub-module that analyzes `capture_buffer`. |
| if (submodules_.capture_analyzer) { |
| submodules_.capture_analyzer->Analyze(capture_buffer); |
| } |
| |
| if (submodules_.gain_controller2) { |
| // TODO(bugs.webrtc.org/7494): Let AGC2 detect applied input volume |
| // changes. |
| submodules_.gain_controller2->Process( |
| voice_probability, capture_.applied_input_volume_changed, |
| capture_buffer); |
| } |
| |
| if (submodules_.capture_post_processor) { |
| submodules_.capture_post_processor->Process(capture_buffer); |
| } |
| |
| capture_output_rms_.Analyze(rtc::ArrayView<const float>( |
| capture_buffer->channels_const()[0], |
| capture_nonlocked_.capture_processing_format.num_frames())); |
| if (log_rms) { |
| RmsLevel::Levels levels = capture_output_rms_.AverageAndPeak(); |
| RTC_HISTOGRAM_COUNTS_LINEAR( |
| "WebRTC.Audio.ApmCaptureOutputLevelAverageRms", levels.average, 1, |
| RmsLevel::kMinLevelDb, 64); |
| RTC_HISTOGRAM_COUNTS_LINEAR("WebRTC.Audio.ApmCaptureOutputLevelPeakRms", |
| levels.peak, 1, RmsLevel::kMinLevelDb, 64); |
| } |
| |
| // Compute echo-detector stats. |
| if (submodules_.echo_detector) { |
| auto ed_metrics = submodules_.echo_detector->GetMetrics(); |
| capture_.stats.residual_echo_likelihood = ed_metrics.echo_likelihood; |
| capture_.stats.residual_echo_likelihood_recent_max = |
| ed_metrics.echo_likelihood_recent_max; |
| } |
| } |
| |
| // Compute echo-controller stats. |
| if (submodules_.echo_controller) { |
| auto ec_metrics = submodules_.echo_controller->GetMetrics(); |
| capture_.stats.echo_return_loss = ec_metrics.echo_return_loss; |
| capture_.stats.echo_return_loss_enhancement = |
| ec_metrics.echo_return_loss_enhancement; |
| capture_.stats.delay_ms = ec_metrics.delay_ms; |
| } |
| |
| // Pass stats for reporting. |
| stats_reporter_.UpdateStatistics(capture_.stats); |
| |
| UpdateRecommendedInputVolumeLocked(); |
| if (capture_.recommended_input_volume.has_value()) { |
| recommended_input_volume_stats_reporter_.UpdateStatistics( |
| *capture_.recommended_input_volume); |
| } |
| |
| if (submodules_.capture_levels_adjuster) { |
| submodules_.capture_levels_adjuster->ApplyPostLevelAdjustment( |
| *capture_buffer); |
| |
| if (config_.capture_level_adjustment.analog_mic_gain_emulation.enabled) { |
| // If the input volume emulation is used, retrieve the recommended input |
| // volume and set that to emulate the input volume on the next processed |
| // audio frame. |
| RTC_DCHECK(capture_.recommended_input_volume.has_value()); |
| submodules_.capture_levels_adjuster->SetAnalogMicGainLevel( |
| *capture_.recommended_input_volume); |
| } |
| } |
| |
| // Temporarily set the output to zero after the stream has been unmuted |
| // (capture output is again used). The purpose of this is to avoid clicks and |
| // artefacts in the audio that results when the processing again is |
| // reactivated after unmuting. |
| if (!capture_.capture_output_used_last_frame && |
| capture_.capture_output_used) { |
| for (size_t ch = 0; ch < capture_buffer->num_channels(); ++ch) { |
| rtc::ArrayView<float> channel_view(capture_buffer->channels()[ch], |
| capture_buffer->num_frames()); |
| std::fill(channel_view.begin(), channel_view.end(), 0.f); |
| } |
| } |
| capture_.capture_output_used_last_frame = capture_.capture_output_used; |
| |
| capture_.was_stream_delay_set = false; |
| |
| data_dumper_->DumpRaw("recommended_input_volume", |
| capture_.recommended_input_volume.value_or( |
| kUnspecifiedDataDumpInputVolume)); |
| |
| return kNoError; |
| } |
| |
| int AudioProcessingImpl::AnalyzeReverseStream( |
| const float* const* data, |
| const StreamConfig& reverse_config) { |
| TRACE_EVENT0("webrtc", "AudioProcessing::AnalyzeReverseStream_StreamConfig"); |
| MutexLock lock(&mutex_render_); |
| DenormalDisabler denormal_disabler; |
| RTC_DCHECK(data); |
| for (size_t i = 0; i < reverse_config.num_channels(); ++i) { |
| RTC_DCHECK(data[i]); |
| } |
| RETURN_ON_ERR( |
| AudioFormatValidityToErrorCode(ValidateAudioFormat(reverse_config))); |
| |
| MaybeInitializeRender(reverse_config, reverse_config); |
| return AnalyzeReverseStreamLocked(data, reverse_config, reverse_config); |
| } |
| |
| int AudioProcessingImpl::ProcessReverseStream(const float* const* src, |
| const StreamConfig& input_config, |
| const StreamConfig& output_config, |
| float* const* dest) { |
| TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_StreamConfig"); |
| MutexLock lock(&mutex_render_); |
| DenormalDisabler denormal_disabler; |
| RETURN_ON_ERR( |
| HandleUnsupportedAudioFormats(src, input_config, output_config, dest)); |
| |
| MaybeInitializeRender(input_config, output_config); |
| |
| RETURN_ON_ERR(AnalyzeReverseStreamLocked(src, input_config, output_config)); |
| |
| if (submodule_states_.RenderMultiBandProcessingActive() || |
| submodule_states_.RenderFullBandProcessingActive()) { |
| render_.render_audio->CopyTo(formats_.api_format.reverse_output_stream(), |
| dest); |
| } else if (formats_.api_format.reverse_input_stream() != |
| formats_.api_format.reverse_output_stream()) { |
| render_.render_converter->Convert(src, input_config.num_samples(), dest, |
| output_config.num_samples()); |
| } else { |
| CopyAudioIfNeeded(src, input_config.num_frames(), |
| input_config.num_channels(), dest); |
| } |
| |
| return kNoError; |
| } |
| |
| int AudioProcessingImpl::AnalyzeReverseStreamLocked( |
| const float* const* src, |
| const StreamConfig& input_config, |
| const StreamConfig& output_config) { |
| if (aec_dump_) { |
| const size_t channel_size = |
| formats_.api_format.reverse_input_stream().num_frames(); |
| const size_t num_channels = |
| formats_.api_format.reverse_input_stream().num_channels(); |
| aec_dump_->WriteRenderStreamMessage( |
| AudioFrameView<const float>(src, num_channels, channel_size)); |
| } |
| render_.render_audio->CopyFrom(src, |
| formats_.api_format.reverse_input_stream()); |
| return ProcessRenderStreamLocked(); |
| } |
| |
| int AudioProcessingImpl::ProcessReverseStream(const int16_t* const src, |
| const StreamConfig& input_config, |
| const StreamConfig& output_config, |
| int16_t* const dest) { |
| TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_AudioFrame"); |
| |
| MutexLock lock(&mutex_render_); |
| DenormalDisabler denormal_disabler; |
| |
| RETURN_ON_ERR( |
| HandleUnsupportedAudioFormats(src, input_config, output_config, dest)); |
| MaybeInitializeRender(input_config, output_config); |
| |
| if (aec_dump_) { |
| aec_dump_->WriteRenderStreamMessage(src, input_config.num_frames(), |
| input_config.num_channels()); |
| } |
| |
| render_.render_audio->CopyFrom(src, input_config); |
| RETURN_ON_ERR(ProcessRenderStreamLocked()); |
| if (submodule_states_.RenderMultiBandProcessingActive() || |
| submodule_states_.RenderFullBandProcessingActive()) { |
| render_.render_audio->CopyTo(output_config, dest); |
| } |
| return kNoError; |
| } |
| |
| int AudioProcessingImpl::ProcessRenderStreamLocked() { |
| AudioBuffer* render_buffer = render_.render_audio.get(); // For brevity. |
| |
| HandleRenderRuntimeSettings(); |
| DenormalDisabler denormal_disabler; |
| |
| if (submodules_.render_pre_processor) { |
| submodules_.render_pre_processor->Process(render_buffer); |
| } |
| |
| QueueNonbandedRenderAudio(render_buffer); |
| |
| if (submodule_states_.RenderMultiBandSubModulesActive() && |
| SampleRateSupportsMultiBand( |
| formats_.render_processing_format.sample_rate_hz())) { |
| render_buffer->SplitIntoFrequencyBands(); |
| } |
| |
| if (submodule_states_.RenderMultiBandSubModulesActive()) { |
| QueueBandedRenderAudio(render_buffer); |
| } |
| |
| // TODO(peah): Perform the queuing inside QueueRenderAudiuo(). |
| if (submodules_.echo_controller) { |
| submodules_.echo_controller->AnalyzeRender(render_buffer); |
| } |
| |
| if (submodule_states_.RenderMultiBandProcessingActive() && |
| SampleRateSupportsMultiBand( |
| formats_.render_processing_format.sample_rate_hz())) { |
| render_buffer->MergeFrequencyBands(); |
| } |
| |
| return kNoError; |
| } |
| |
| int AudioProcessingImpl::set_stream_delay_ms(int delay) { |
| MutexLock lock(&mutex_capture_); |
| Error retval = kNoError; |
| capture_.was_stream_delay_set = true; |
| |
| if (delay < 0) { |
| delay = 0; |
| retval = kBadStreamParameterWarning; |
| } |
| |
| // TODO(ajm): the max is rather arbitrarily chosen; investigate. |
| if (delay > 500) { |
| delay = 500; |
| retval = kBadStreamParameterWarning; |
| } |
| |
| capture_nonlocked_.stream_delay_ms = delay; |
| return retval; |
| } |
| |
| bool AudioProcessingImpl::GetLinearAecOutput( |
| rtc::ArrayView<std::array<float, 160>> linear_output) const { |
| MutexLock lock(&mutex_capture_); |
| AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get(); |
| |
| RTC_DCHECK(linear_aec_buffer); |
| if (linear_aec_buffer) { |
| RTC_DCHECK_EQ(1, linear_aec_buffer->num_bands()); |
| RTC_DCHECK_EQ(linear_output.size(), linear_aec_buffer->num_channels()); |
| |
| for (size_t ch = 0; ch < linear_aec_buffer->num_channels(); ++ch) { |
| RTC_DCHECK_EQ(linear_output[ch].size(), linear_aec_buffer->num_frames()); |
| rtc::ArrayView<const float> channel_view = |
| rtc::ArrayView<const float>(linear_aec_buffer->channels_const()[ch], |
| linear_aec_buffer->num_frames()); |
| FloatS16ToFloat(channel_view.data(), channel_view.size(), |
| linear_output[ch].data()); |
| } |
| return true; |
| } |
| RTC_LOG(LS_ERROR) << "No linear AEC output available"; |
| RTC_DCHECK_NOTREACHED(); |
| return false; |
| } |
| |
| int AudioProcessingImpl::stream_delay_ms() const { |
| // Used as callback from submodules, hence locking is not allowed. |
| return capture_nonlocked_.stream_delay_ms; |
| } |
| |
| void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) { |
| MutexLock lock(&mutex_capture_); |
| capture_.key_pressed = key_pressed; |
| } |
| |
| void AudioProcessingImpl::set_stream_analog_level(int level) { |
| MutexLock lock_capture(&mutex_capture_); |
| set_stream_analog_level_locked(level); |
| } |
| |
| void AudioProcessingImpl::set_stream_analog_level_locked(int level) { |
| capture_.applied_input_volume_changed = |
| capture_.applied_input_volume.has_value() && |
| *capture_.applied_input_volume != level; |
| capture_.applied_input_volume = level; |
| |
| // Invalidate any previously recommended input volume which will be updated by |
| // `ProcessStream()`. |
| capture_.recommended_input_volume = absl::nullopt; |
| |
| if (submodules_.agc_manager) { |
| submodules_.agc_manager->set_stream_analog_level(level); |
| return; |
| } |
| |
| if (submodules_.gain_control) { |
| int error = submodules_.gain_control->set_stream_analog_level(level); |
| RTC_DCHECK_EQ(kNoError, error); |
| return; |
| } |
| } |
| |
| int AudioProcessingImpl::recommended_stream_analog_level() const { |
| MutexLock lock_capture(&mutex_capture_); |
| if (!capture_.applied_input_volume.has_value()) { |
| RTC_LOG(LS_ERROR) << "set_stream_analog_level has not been called"; |
| } |
| // Input volume to recommend when `set_stream_analog_level()` is not called. |
| constexpr int kFallBackInputVolume = 255; |
| // When APM has no input volume to recommend, return the latest applied input |
| // volume that has been observed in order to possibly produce no input volume |
| // change. If no applied input volume has been observed, return a fall-back |
| // value. |
| return capture_.recommended_input_volume.value_or( |
| capture_.applied_input_volume.value_or(kFallBackInputVolume)); |
| } |
| |
| void AudioProcessingImpl::UpdateRecommendedInputVolumeLocked() { |
| if (!capture_.applied_input_volume.has_value()) { |
| // When `set_stream_analog_level()` is not called, no input level can be |
| // recommended. |
| capture_.recommended_input_volume = absl::nullopt; |
| return; |
| } |
| |
| if (submodules_.agc_manager) { |
| capture_.recommended_input_volume = |
| submodules_.agc_manager->recommended_analog_level(); |
| return; |
| } |
| |
| if (submodules_.gain_control) { |
| capture_.recommended_input_volume = |
| submodules_.gain_control->stream_analog_level(); |
| return; |
| } |
| |
| if (submodules_.gain_controller2 && |
| config_.gain_controller2.input_volume_controller.enabled) { |
| capture_.recommended_input_volume = |
| submodules_.gain_controller2->recommended_input_volume(); |
| return; |
| } |
| |
| capture_.recommended_input_volume = capture_.applied_input_volume; |
| } |
| |
| bool AudioProcessingImpl::CreateAndAttachAecDump( |
| absl::string_view file_name, |
| int64_t max_log_size_bytes, |
| absl::Nonnull<TaskQueueBase*> worker_queue) { |
| std::unique_ptr<AecDump> aec_dump = |
| AecDumpFactory::Create(file_name, max_log_size_bytes, worker_queue); |
| if (!aec_dump) { |
| return false; |
| } |
| |
| AttachAecDump(std::move(aec_dump)); |
| return true; |
| } |
| |
| bool AudioProcessingImpl::CreateAndAttachAecDump( |
| FILE* handle, |
| int64_t max_log_size_bytes, |
| absl::Nonnull<TaskQueueBase*> worker_queue) { |
| std::unique_ptr<AecDump> aec_dump = |
| AecDumpFactory::Create(handle, max_log_size_bytes, worker_queue); |
| if (!aec_dump) { |
| return false; |
| } |
| |
| AttachAecDump(std::move(aec_dump)); |
| return true; |
| } |
| |
| void AudioProcessingImpl::AttachAecDump(std::unique_ptr<AecDump> aec_dump) { |
| RTC_DCHECK(aec_dump); |
| MutexLock lock_render(&mutex_render_); |
| MutexLock lock_capture(&mutex_capture_); |
| |
| // The previously attached AecDump will be destroyed with the |
| // 'aec_dump' parameter, which is after locks are released. |
| aec_dump_.swap(aec_dump); |
| WriteAecDumpConfigMessage(true); |
| aec_dump_->WriteInitMessage(formats_.api_format, rtc::TimeUTCMillis()); |
| } |
| |
| void AudioProcessingImpl::DetachAecDump() { |
| // The d-tor of a task-queue based AecDump blocks until all pending |
| // tasks are done. This construction avoids blocking while holding |
| // the render and capture locks. |
| std::unique_ptr<AecDump> aec_dump = nullptr; |
| { |
| MutexLock lock_render(&mutex_render_); |
| MutexLock lock_capture(&mutex_capture_); |
| aec_dump = std::move(aec_dump_); |
| } |
| } |
| |
| AudioProcessing::Config AudioProcessingImpl::GetConfig() const { |
| MutexLock lock_render(&mutex_render_); |
| MutexLock lock_capture(&mutex_capture_); |
| return config_; |
| } |
| |
| bool AudioProcessingImpl::UpdateActiveSubmoduleStates() { |
| return submodule_states_.Update( |
| config_.high_pass_filter.enabled, !!submodules_.echo_control_mobile, |
| !!submodules_.noise_suppressor, !!submodules_.gain_control, |
| !!submodules_.gain_controller2, !!submodules_.voice_activity_detector, |
| config_.pre_amplifier.enabled || config_.capture_level_adjustment.enabled, |
| capture_nonlocked_.echo_controller_enabled, |
| !!submodules_.transient_suppressor); |
| } |
| |
| void AudioProcessingImpl::InitializeTransientSuppressor() { |
| // Choose the VAD mode for TS and detect a VAD mode change. |
| const TransientSuppressor::VadMode previous_vad_mode = |
| transient_suppressor_vad_mode_; |
| transient_suppressor_vad_mode_ = TransientSuppressor::VadMode::kDefault; |
| if (UseApmVadSubModule(config_, gain_controller2_experiment_params_)) { |
| transient_suppressor_vad_mode_ = TransientSuppressor::VadMode::kRnnVad; |
| } |
| const bool vad_mode_changed = |
| previous_vad_mode != transient_suppressor_vad_mode_; |
| |
| if (config_.transient_suppression.enabled && |
| !constants_.transient_suppressor_forced_off) { |
| // Attempt to create a transient suppressor, if one is not already created. |
| if (!submodules_.transient_suppressor || vad_mode_changed) { |
| submodules_.transient_suppressor = CreateTransientSuppressor( |
| submodule_creation_overrides_, transient_suppressor_vad_mode_, |
| proc_fullband_sample_rate_hz(), capture_nonlocked_.split_rate, |
| num_proc_channels()); |
| if (!submodules_.transient_suppressor) { |
| RTC_LOG(LS_WARNING) |
| << "No transient suppressor created (probably disabled)"; |
| } |
| } else { |
| submodules_.transient_suppressor->Initialize( |
| proc_fullband_sample_rate_hz(), capture_nonlocked_.split_rate, |
| num_proc_channels()); |
| } |
| } else { |
| submodules_.transient_suppressor.reset(); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializeHighPassFilter(bool forced_reset) { |
| bool high_pass_filter_needed_by_aec = |
| config_.echo_canceller.enabled && |
| config_.echo_canceller.enforce_high_pass_filtering && |
| !config_.echo_canceller.mobile_mode; |
| if (submodule_states_.HighPassFilteringRequired() || |
| high_pass_filter_needed_by_aec) { |
| bool use_full_band = config_.high_pass_filter.apply_in_full_band && |
| !constants_.enforce_split_band_hpf; |
| int rate = use_full_band ? proc_fullband_sample_rate_hz() |
| : proc_split_sample_rate_hz(); |
| size_t num_channels = |
| use_full_band ? num_output_channels() : num_proc_channels(); |
| |
| if (!submodules_.high_pass_filter || |
| rate != submodules_.high_pass_filter->sample_rate_hz() || |
| forced_reset || |
| num_channels != submodules_.high_pass_filter->num_channels()) { |
| submodules_.high_pass_filter.reset( |
| new HighPassFilter(rate, num_channels)); |
| } |
| } else { |
| submodules_.high_pass_filter.reset(); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializeEchoController() { |
| bool use_echo_controller = |
| echo_control_factory_ || |
| (config_.echo_canceller.enabled && !config_.echo_canceller.mobile_mode); |
| |
| if (use_echo_controller) { |
| // Create and activate the echo controller. |
| if (echo_control_factory_) { |
| submodules_.echo_controller = echo_control_factory_->Create( |
| proc_sample_rate_hz(), num_reverse_channels(), num_proc_channels()); |
| RTC_DCHECK(submodules_.echo_controller); |
| } else { |
| EchoCanceller3Config config; |
| absl::optional<EchoCanceller3Config> multichannel_config; |
| if (use_setup_specific_default_aec3_config_) { |
| multichannel_config = EchoCanceller3::CreateDefaultMultichannelConfig(); |
| } |
| submodules_.echo_controller = std::make_unique<EchoCanceller3>( |
| config, multichannel_config, proc_sample_rate_hz(), |
| num_reverse_channels(), num_proc_channels()); |
| } |
| |
| // Setup the storage for returning the linear AEC output. |
| if (config_.echo_canceller.export_linear_aec_output) { |
| constexpr int kLinearOutputRateHz = 16000; |
| capture_.linear_aec_output = std::make_unique<AudioBuffer>( |
| kLinearOutputRateHz, num_proc_channels(), kLinearOutputRateHz, |
| num_proc_channels(), kLinearOutputRateHz, num_proc_channels()); |
| } else { |
| capture_.linear_aec_output.reset(); |
| } |
| |
| capture_nonlocked_.echo_controller_enabled = true; |
| |
| submodules_.echo_control_mobile.reset(); |
| aecm_render_signal_queue_.reset(); |
| return; |
| } |
| |
| submodules_.echo_controller.reset(); |
| capture_nonlocked_.echo_controller_enabled = false; |
| capture_.linear_aec_output.reset(); |
| |
| if (!config_.echo_canceller.enabled) { |
| submodules_.echo_control_mobile.reset(); |
| aecm_render_signal_queue_.reset(); |
| return; |
| } |
| |
| if (config_.echo_canceller.mobile_mode) { |
| // Create and activate AECM. |
| size_t max_element_size = |
| std::max(static_cast<size_t>(1), |
| kMaxAllowedValuesOfSamplesPerBand * |
| EchoControlMobileImpl::NumCancellersRequired( |
| num_output_channels(), num_reverse_channels())); |
| |
| std::vector<int16_t> template_queue_element(max_element_size); |
| |
| aecm_render_signal_queue_.reset( |
| new SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>( |
| kMaxNumFramesToBuffer, template_queue_element, |
| RenderQueueItemVerifier<int16_t>(max_element_size))); |
| |
| aecm_render_queue_buffer_.resize(max_element_size); |
| aecm_capture_queue_buffer_.resize(max_element_size); |
| |
| submodules_.echo_control_mobile.reset(new EchoControlMobileImpl()); |
| |
| submodules_.echo_control_mobile->Initialize(proc_split_sample_rate_hz(), |
| num_reverse_channels(), |
| num_output_channels()); |
| return; |
| } |
| |
| submodules_.echo_control_mobile.reset(); |
| aecm_render_signal_queue_.reset(); |
| } |
| |
| void AudioProcessingImpl::InitializeGainController1() { |
| if (config_.gain_controller2.enabled && |
| config_.gain_controller2.input_volume_controller.enabled && |
| config_.gain_controller1.enabled && |
| (config_.gain_controller1.mode == |
| AudioProcessing::Config::GainController1::kAdaptiveAnalog || |
| config_.gain_controller1.analog_gain_controller.enabled)) { |
| RTC_LOG(LS_ERROR) << "APM configuration not valid: " |
| << "Multiple input volume controllers enabled."; |
| } |
| |
| if (!config_.gain_controller1.enabled) { |
| submodules_.agc_manager.reset(); |
| submodules_.gain_control.reset(); |
| return; |
| } |
| |
| RTC_HISTOGRAM_BOOLEAN( |
| "WebRTC.Audio.GainController.Analog.Enabled", |
| config_.gain_controller1.analog_gain_controller.enabled); |
| |
| if (!submodules_.gain_control) { |
| submodules_.gain_control.reset(new GainControlImpl()); |
| } |
| |
| submodules_.gain_control->Initialize(num_proc_channels(), |
| proc_sample_rate_hz()); |
| if (!config_.gain_controller1.analog_gain_controller.enabled) { |
| int error = submodules_.gain_control->set_mode( |
| Agc1ConfigModeToInterfaceMode(config_.gain_controller1.mode)); |
| RTC_DCHECK_EQ(kNoError, error); |
| error = submodules_.gain_control->set_target_level_dbfs( |
| config_.gain_controller1.target_level_dbfs); |
| RTC_DCHECK_EQ(kNoError, error); |
| error = submodules_.gain_control->set_compression_gain_db( |
| config_.gain_controller1.compression_gain_db); |
| RTC_DCHECK_EQ(kNoError, error); |
| error = submodules_.gain_control->enable_limiter( |
| config_.gain_controller1.enable_limiter); |
| RTC_DCHECK_EQ(kNoError, error); |
| constexpr int kAnalogLevelMinimum = 0; |
| constexpr int kAnalogLevelMaximum = 255; |
| error = submodules_.gain_control->set_analog_level_limits( |
| kAnalogLevelMinimum, kAnalogLevelMaximum); |
| RTC_DCHECK_EQ(kNoError, error); |
| |
| submodules_.agc_manager.reset(); |
| return; |
| } |
| |
| if (!submodules_.agc_manager.get() || |
| submodules_.agc_manager->num_channels() != |
| static_cast<int>(num_proc_channels())) { |
| int stream_analog_level = -1; |
| const bool re_creation = !!submodules_.agc_manager; |
| if (re_creation) { |
| stream_analog_level = submodules_.agc_manager->recommended_analog_level(); |
| } |
| submodules_.agc_manager.reset(new AgcManagerDirect( |
| num_proc_channels(), config_.gain_controller1.analog_gain_controller)); |
| if (re_creation) { |
| submodules_.agc_manager->set_stream_analog_level(stream_analog_level); |
| } |
| } |
| submodules_.agc_manager->Initialize(); |
| submodules_.agc_manager->SetupDigitalGainControl(*submodules_.gain_control); |
| submodules_.agc_manager->HandleCaptureOutputUsedChange( |
| capture_.capture_output_used); |
| } |
| |
| void AudioProcessingImpl::InitializeGainController2() { |
| if (!config_.gain_controller2.enabled) { |
| submodules_.gain_controller2.reset(); |
| return; |
| } |
| // Override the input volume controller configuration if the AGC2 experiment |
| // is running and its parameters require to fully switch the gain control to |
| // AGC2. |
| const bool input_volume_controller_config_overridden = |
| gain_controller2_experiment_params_.has_value() && |
| gain_controller2_experiment_params_->agc2_config.has_value(); |
| const InputVolumeController::Config input_volume_controller_config = |
| input_volume_controller_config_overridden |
| ? gain_controller2_experiment_params_->agc2_config |
| ->input_volume_controller |
| : InputVolumeController::Config{}; |
| // If the APM VAD sub-module is not used, let AGC2 use its internal VAD. |
| const bool use_internal_vad = |
| !UseApmVadSubModule(config_, gain_controller2_experiment_params_); |
| submodules_.gain_controller2 = std::make_unique<GainController2>( |
| config_.gain_controller2, input_volume_controller_config, |
| proc_fullband_sample_rate_hz(), num_output_channels(), use_internal_vad); |
| submodules_.gain_controller2->SetCaptureOutputUsed( |
| capture_.capture_output_used); |
| } |
| |
| void AudioProcessingImpl::InitializeVoiceActivityDetector() { |
| if (!UseApmVadSubModule(config_, gain_controller2_experiment_params_)) { |
| submodules_.voice_activity_detector.reset(); |
| return; |
| } |
| |
| if (!submodules_.voice_activity_detector) { |
| RTC_DCHECK(!!submodules_.gain_controller2); |
| // TODO(bugs.webrtc.org/13663): Cache CPU features in APM and use here. |
| submodules_.voice_activity_detector = |
| std::make_unique<VoiceActivityDetectorWrapper>( |
| submodules_.gain_controller2->GetCpuFeatures(), |
| proc_fullband_sample_rate_hz()); |
| } else { |
| submodules_.voice_activity_detector->Initialize( |
| proc_fullband_sample_rate_hz()); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializeNoiseSuppressor() { |
| submodules_.noise_suppressor.reset(); |
| |
| if (config_.noise_suppression.enabled) { |
| auto map_level = |
| [](AudioProcessing::Config::NoiseSuppression::Level level) { |
| using NoiseSuppresionConfig = |
| AudioProcessing::Config::NoiseSuppression; |
| switch (level) { |
| case NoiseSuppresionConfig::kLow: |
| return NsConfig::SuppressionLevel::k6dB; |
| case NoiseSuppresionConfig::kModerate: |
| return NsConfig::SuppressionLevel::k12dB; |
| case NoiseSuppresionConfig::kHigh: |
| return NsConfig::SuppressionLevel::k18dB; |
| case NoiseSuppresionConfig::kVeryHigh: |
| return NsConfig::SuppressionLevel::k21dB; |
| } |
| RTC_CHECK_NOTREACHED(); |
| }; |
| |
| NsConfig cfg; |
| cfg.target_level = map_level(config_.noise_suppression.level); |
| submodules_.noise_suppressor = std::make_unique<NoiseSuppressor>( |
| cfg, proc_sample_rate_hz(), num_proc_channels()); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializeCaptureLevelsAdjuster() { |
| if (config_.pre_amplifier.enabled || |
| config_.capture_level_adjustment.enabled) { |
| // Use both the pre-amplifier and the capture level adjustment gains as |
| // pre-gains. |
| float pre_gain = 1.f; |
| if (config_.pre_amplifier.enabled) { |
| pre_gain *= config_.pre_amplifier.fixed_gain_factor; |
| } |
| if (config_.capture_level_adjustment.enabled) { |
| pre_gain *= config_.capture_level_adjustment.pre_gain_factor; |
| } |
| |
| submodules_.capture_levels_adjuster = |
| std::make_unique<CaptureLevelsAdjuster>( |
| config_.capture_level_adjustment.analog_mic_gain_emulation.enabled, |
| config_.capture_level_adjustment.analog_mic_gain_emulation |
| .initial_level, |
| pre_gain, config_.capture_level_adjustment.post_gain_factor); |
| } else { |
| submodules_.capture_levels_adjuster.reset(); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializeResidualEchoDetector() { |
| if (submodules_.echo_detector) { |
| submodules_.echo_detector->Initialize( |
| proc_fullband_sample_rate_hz(), 1, |
| formats_.render_processing_format.sample_rate_hz(), 1); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializeAnalyzer() { |
| if (submodules_.capture_analyzer) { |
| submodules_.capture_analyzer->Initialize(proc_fullband_sample_rate_hz(), |
| num_proc_channels()); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializePostProcessor() { |
| if (submodules_.capture_post_processor) { |
| submodules_.capture_post_processor->Initialize( |
| proc_fullband_sample_rate_hz(), num_proc_channels()); |
| } |
| } |
| |
| void AudioProcessingImpl::InitializePreProcessor() { |
| if (submodules_.render_pre_processor) { |
| submodules_.render_pre_processor->Initialize( |
| formats_.render_processing_format.sample_rate_hz(), |
| formats_.render_processing_format.num_channels()); |
| } |
| } |
| |
| void AudioProcessingImpl::WriteAecDumpConfigMessage(bool forced) { |
| if (!aec_dump_) { |
| return; |
| } |
| |
| std::string experiments_description = ""; |
| // TODO(peah): Add semicolon-separated concatenations of experiment |
| // descriptions for other submodules. |
| if (!!submodules_.capture_post_processor) { |
| experiments_description += "CapturePostProcessor;"; |
| } |
| if (!!submodules_.render_pre_processor) { |
| experiments_description += "RenderPreProcessor;"; |
| } |
| if (capture_nonlocked_.echo_controller_enabled) { |
| experiments_description += "EchoController;"; |
| } |
| if (config_.gain_controller2.enabled) { |
| experiments_description += "GainController2;"; |
| } |
| |
| InternalAPMConfig apm_config; |
| |
| apm_config.aec_enabled = config_.echo_canceller.enabled; |
| apm_config.aec_delay_agnostic_enabled = false; |
| apm_config.aec_extended_filter_enabled = false; |
| apm_config.aec_suppression_level = 0; |
| |
| apm_config.aecm_enabled = !!submodules_.echo_control_mobile; |
| apm_config.aecm_comfort_noise_enabled = |
| submodules_.echo_control_mobile && |
| submodules_.echo_control_mobile->is_comfort_noise_enabled(); |
| apm_config.aecm_routing_mode = |
| submodules_.echo_control_mobile |
| ? static_cast<int>(submodules_.echo_control_mobile->routing_mode()) |
| : 0; |
| |
| apm_config.agc_enabled = !!submodules_.gain_control; |
| |
| apm_config.agc_mode = submodules_.gain_control |
| ? static_cast<int>(submodules_.gain_control->mode()) |
| : GainControl::kAdaptiveAnalog; |
| apm_config.agc_limiter_enabled = |
| submodules_.gain_control ? submodules_.gain_control->is_limiter_enabled() |
| : false; |
| apm_config.noise_robust_agc_enabled = !!submodules_.agc_manager; |
| |
| apm_config.hpf_enabled = config_.high_pass_filter.enabled; |
| |
| apm_config.ns_enabled = config_.noise_suppression.enabled; |
| apm_config.ns_level = static_cast<int>(config_.noise_suppression.level); |
| |
| apm_config.transient_suppression_enabled = |
| config_.transient_suppression.enabled; |
| apm_config.experiments_description = experiments_description; |
| apm_config.pre_amplifier_enabled = config_.pre_amplifier.enabled; |
| apm_config.pre_amplifier_fixed_gain_factor = |
| config_.pre_amplifier.fixed_gain_factor; |
| |
| if (!forced && apm_config == apm_config_for_aec_dump_) { |
| return; |
| } |
| aec_dump_->WriteConfig(apm_config); |
| apm_config_for_aec_dump_ = apm_config; |
| } |
| |
| void AudioProcessingImpl::RecordUnprocessedCaptureStream( |
| const float* const* src) { |
| RTC_DCHECK(aec_dump_); |
| WriteAecDumpConfigMessage(false); |
| |
| const size_t channel_size = formats_.api_format.input_stream().num_frames(); |
| const size_t num_channels = formats_.api_format.input_stream().num_channels(); |
| aec_dump_->AddCaptureStreamInput( |
| AudioFrameView<const float>(src, num_channels, channel_size)); |
| RecordAudioProcessingState(); |
| } |
| |
| void AudioProcessingImpl::RecordUnprocessedCaptureStream( |
| const int16_t* const data, |
| const StreamConfig& config) { |
| RTC_DCHECK(aec_dump_); |
| WriteAecDumpConfigMessage(false); |
| |
| aec_dump_->AddCaptureStreamInput(data, config.num_channels(), |
| config.num_frames()); |
| RecordAudioProcessingState(); |
| } |
| |
| void AudioProcessingImpl::RecordProcessedCaptureStream( |
| const float* const* processed_capture_stream) { |
| RTC_DCHECK(aec_dump_); |
| |
| const size_t channel_size = formats_.api_format.output_stream().num_frames(); |
| const size_t num_channels = |
| formats_.api_format.output_stream().num_channels(); |
| aec_dump_->AddCaptureStreamOutput(AudioFrameView<const float>( |
| processed_capture_stream, num_channels, channel_size)); |
| aec_dump_->WriteCaptureStreamMessage(); |
| } |
| |
| void AudioProcessingImpl::RecordProcessedCaptureStream( |
| const int16_t* const data, |
| const StreamConfig& config) { |
| RTC_DCHECK(aec_dump_); |
| |
| aec_dump_->AddCaptureStreamOutput(data, config.num_channels(), |
| config.num_frames()); |
| aec_dump_->WriteCaptureStreamMessage(); |
| } |
| |
| void AudioProcessingImpl::RecordAudioProcessingState() { |
| RTC_DCHECK(aec_dump_); |
| AecDump::AudioProcessingState audio_proc_state; |
| audio_proc_state.delay = capture_nonlocked_.stream_delay_ms; |
| audio_proc_state.drift = 0; |
| audio_proc_state.applied_input_volume = capture_.applied_input_volume; |
| audio_proc_state.keypress = capture_.key_pressed; |
| aec_dump_->AddAudioProcessingState(audio_proc_state); |
| } |
| |
| AudioProcessingImpl::ApmCaptureState::ApmCaptureState() |
| : was_stream_delay_set(false), |
| capture_output_used(true), |
| capture_output_used_last_frame(true), |
| key_pressed(false), |
| capture_processing_format(kSampleRate16kHz), |
| split_rate(kSampleRate16kHz), |
| echo_path_gain_change(false), |
| prev_pre_adjustment_gain(-1.0f), |
| playout_volume(-1), |
| prev_playout_volume(-1), |
| applied_input_volume_changed(false) {} |
| |
| AudioProcessingImpl::ApmCaptureState::~ApmCaptureState() = default; |
| |
| AudioProcessingImpl::ApmRenderState::ApmRenderState() = default; |
| |
| AudioProcessingImpl::ApmRenderState::~ApmRenderState() = default; |
| |
| AudioProcessingImpl::ApmStatsReporter::ApmStatsReporter() |
| : stats_message_queue_(1) {} |
| |
| AudioProcessingImpl::ApmStatsReporter::~ApmStatsReporter() = default; |
| |
| AudioProcessingStats AudioProcessingImpl::ApmStatsReporter::GetStatistics() { |
| MutexLock lock_stats(&mutex_stats_); |
| bool new_stats_available = stats_message_queue_.Remove(&cached_stats_); |
| // If the message queue is full, return the cached stats. |
| static_cast<void>(new_stats_available); |
| |
| return cached_stats_; |
| } |
| |
| void AudioProcessingImpl::ApmStatsReporter::UpdateStatistics( |
| const AudioProcessingStats& new_stats) { |
| AudioProcessingStats stats_to_queue = new_stats; |
| bool stats_message_passed = stats_message_queue_.Insert(&stats_to_queue); |
| // If the message queue is full, discard the new stats. |
| static_cast<void>(stats_message_passed); |
| } |
| |
| } // namespace webrtc |