|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  | #include "modules/audio_processing/include/audio_processing.h" | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  | #include <queue> | 
|  |  | 
|  | #include "absl/flags/flag.h" | 
|  | #include "common_audio/include/audio_util.h" | 
|  | #include "common_audio/resampler/include/push_resampler.h" | 
|  | #include "common_audio/resampler/push_sinc_resampler.h" | 
|  | #include "common_audio/signal_processing/include/signal_processing_library.h" | 
|  | #include "modules/audio_processing/aec_dump/aec_dump_factory.h" | 
|  | #include "modules/audio_processing/audio_processing_impl.h" | 
|  | #include "modules/audio_processing/common.h" | 
|  | #include "modules/audio_processing/include/mock_audio_processing.h" | 
|  | #include "modules/audio_processing/test/audio_processing_builder_for_testing.h" | 
|  | #include "modules/audio_processing/test/protobuf_utils.h" | 
|  | #include "modules/audio_processing/test/test_utils.h" | 
|  | #include "rtc_base/arraysize.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/fake_clock.h" | 
|  | #include "rtc_base/gtest_prod_util.h" | 
|  | #include "rtc_base/ignore_wundef.h" | 
|  | #include "rtc_base/numerics/safe_conversions.h" | 
|  | #include "rtc_base/numerics/safe_minmax.h" | 
|  | #include "rtc_base/protobuf_utils.h" | 
|  | #include "rtc_base/ref_counted_object.h" | 
|  | #include "rtc_base/strings/string_builder.h" | 
|  | #include "rtc_base/swap_queue.h" | 
|  | #include "rtc_base/system/arch.h" | 
|  | #include "rtc_base/task_queue_for_test.h" | 
|  | #include "rtc_base/thread.h" | 
|  | #include "system_wrappers/include/cpu_features_wrapper.h" | 
|  | #include "test/gtest.h" | 
|  | #include "test/testsupport/file_utils.h" | 
|  |  | 
|  | RTC_PUSH_IGNORING_WUNDEF() | 
|  | #ifdef WEBRTC_ANDROID_PLATFORM_BUILD | 
|  | #include "external/webrtc/webrtc/modules/audio_processing/test/unittest.pb.h" | 
|  | #else | 
|  | #include "modules/audio_processing/test/unittest.pb.h" | 
|  | #endif | 
|  | RTC_POP_IGNORING_WUNDEF() | 
|  |  | 
|  | ABSL_FLAG(bool, | 
|  | write_apm_ref_data, | 
|  | false, | 
|  | "Write ApmTest.Process results to file, instead of comparing results " | 
|  | "to the existing reference data file."); | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | // TODO(ekmeyerson): Switch to using StreamConfig and ProcessingConfig where | 
|  | // applicable. | 
|  |  | 
|  | const int32_t kChannels[] = {1, 2}; | 
|  | const int kSampleRates[] = {8000, 16000, 32000, 48000}; | 
|  |  | 
|  | #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) | 
|  | // Android doesn't support 48kHz. | 
|  | const int kProcessSampleRates[] = {8000, 16000, 32000}; | 
|  | #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | const int kProcessSampleRates[] = {8000, 16000, 32000, 48000}; | 
|  | #endif | 
|  |  | 
|  | enum StreamDirection { kForward = 0, kReverse }; | 
|  |  | 
|  | void ConvertToFloat(const int16_t* int_data, ChannelBuffer<float>* cb) { | 
|  | ChannelBuffer<int16_t> cb_int(cb->num_frames(), cb->num_channels()); | 
|  | Deinterleave(int_data, cb->num_frames(), cb->num_channels(), | 
|  | cb_int.channels()); | 
|  | for (size_t i = 0; i < cb->num_channels(); ++i) { | 
|  | S16ToFloat(cb_int.channels()[i], cb->num_frames(), cb->channels()[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ConvertToFloat(const Int16FrameData& frame, ChannelBuffer<float>* cb) { | 
|  | ConvertToFloat(frame.data.data(), cb); | 
|  | } | 
|  |  | 
|  | // Number of channels including the keyboard channel. | 
|  | size_t TotalChannelsFromLayout(AudioProcessing::ChannelLayout layout) { | 
|  | switch (layout) { | 
|  | case AudioProcessing::kMono: | 
|  | return 1; | 
|  | case AudioProcessing::kMonoAndKeyboard: | 
|  | case AudioProcessing::kStereo: | 
|  | return 2; | 
|  | case AudioProcessing::kStereoAndKeyboard: | 
|  | return 3; | 
|  | } | 
|  | RTC_NOTREACHED(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void MixStereoToMono(const float* stereo, | 
|  | float* mono, | 
|  | size_t samples_per_channel) { | 
|  | for (size_t i = 0; i < samples_per_channel; ++i) | 
|  | mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) / 2; | 
|  | } | 
|  |  | 
|  | void MixStereoToMono(const int16_t* stereo, | 
|  | int16_t* mono, | 
|  | size_t samples_per_channel) { | 
|  | for (size_t i = 0; i < samples_per_channel; ++i) | 
|  | mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) >> 1; | 
|  | } | 
|  |  | 
|  | void CopyLeftToRightChannel(int16_t* stereo, size_t samples_per_channel) { | 
|  | for (size_t i = 0; i < samples_per_channel; i++) { | 
|  | stereo[i * 2 + 1] = stereo[i * 2]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void VerifyChannelsAreEqual(const int16_t* stereo, size_t samples_per_channel) { | 
|  | for (size_t i = 0; i < samples_per_channel; i++) { | 
|  | EXPECT_EQ(stereo[i * 2 + 1], stereo[i * 2]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SetFrameTo(Int16FrameData* frame, int16_t value) { | 
|  | for (size_t i = 0; i < frame->samples_per_channel * frame->num_channels; | 
|  | ++i) { | 
|  | frame->data[i] = value; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SetFrameTo(Int16FrameData* frame, int16_t left, int16_t right) { | 
|  | ASSERT_EQ(2u, frame->num_channels); | 
|  | for (size_t i = 0; i < frame->samples_per_channel * 2; i += 2) { | 
|  | frame->data[i] = left; | 
|  | frame->data[i + 1] = right; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ScaleFrame(Int16FrameData* frame, float scale) { | 
|  | for (size_t i = 0; i < frame->samples_per_channel * frame->num_channels; | 
|  | ++i) { | 
|  | frame->data[i] = FloatS16ToS16(frame->data[i] * scale); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FrameDataAreEqual(const Int16FrameData& frame1, | 
|  | const Int16FrameData& frame2) { | 
|  | if (frame1.samples_per_channel != frame2.samples_per_channel) { | 
|  | return false; | 
|  | } | 
|  | if (frame1.num_channels != frame2.num_channels) { | 
|  | return false; | 
|  | } | 
|  | if (memcmp( | 
|  | frame1.data.data(), frame2.data.data(), | 
|  | frame1.samples_per_channel * frame1.num_channels * sizeof(int16_t))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | rtc::ArrayView<int16_t> GetMutableFrameData(Int16FrameData* frame) { | 
|  | int16_t* ptr = frame->data.data(); | 
|  | const size_t len = frame->samples_per_channel * frame->num_channels; | 
|  | return rtc::ArrayView<int16_t>(ptr, len); | 
|  | } | 
|  |  | 
|  | rtc::ArrayView<const int16_t> GetFrameData(const Int16FrameData& frame) { | 
|  | const int16_t* ptr = frame.data.data(); | 
|  | const size_t len = frame.samples_per_channel * frame.num_channels; | 
|  | return rtc::ArrayView<const int16_t>(ptr, len); | 
|  | } | 
|  |  | 
|  | void EnableAllAPComponents(AudioProcessing* ap) { | 
|  | AudioProcessing::Config apm_config = ap->GetConfig(); | 
|  | apm_config.echo_canceller.enabled = true; | 
|  | #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) | 
|  | apm_config.echo_canceller.mobile_mode = true; | 
|  |  | 
|  | apm_config.gain_controller1.enabled = true; | 
|  | apm_config.gain_controller1.mode = | 
|  | AudioProcessing::Config::GainController1::kAdaptiveDigital; | 
|  | #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | apm_config.echo_canceller.mobile_mode = false; | 
|  |  | 
|  | apm_config.gain_controller1.enabled = true; | 
|  | apm_config.gain_controller1.mode = | 
|  | AudioProcessing::Config::GainController1::kAdaptiveAnalog; | 
|  | apm_config.gain_controller1.analog_level_minimum = 0; | 
|  | apm_config.gain_controller1.analog_level_maximum = 255; | 
|  | #endif | 
|  |  | 
|  | apm_config.noise_suppression.enabled = true; | 
|  |  | 
|  | apm_config.high_pass_filter.enabled = true; | 
|  | apm_config.level_estimation.enabled = true; | 
|  | apm_config.voice_detection.enabled = true; | 
|  | apm_config.pipeline.maximum_internal_processing_rate = 48000; | 
|  | ap->ApplyConfig(apm_config); | 
|  | } | 
|  |  | 
|  | // These functions are only used by ApmTest.Process. | 
|  | template <class T> | 
|  | T AbsValue(T a) { | 
|  | return a > 0 ? a : -a; | 
|  | } | 
|  |  | 
|  | int16_t MaxAudioFrame(const Int16FrameData& frame) { | 
|  | const size_t length = frame.samples_per_channel * frame.num_channels; | 
|  | int16_t max_data = AbsValue(frame.data[0]); | 
|  | for (size_t i = 1; i < length; i++) { | 
|  | max_data = std::max(max_data, AbsValue(frame.data[i])); | 
|  | } | 
|  |  | 
|  | return max_data; | 
|  | } | 
|  |  | 
|  | void OpenFileAndWriteMessage(const std::string& filename, | 
|  | const MessageLite& msg) { | 
|  | FILE* file = fopen(filename.c_str(), "wb"); | 
|  | ASSERT_TRUE(file != NULL); | 
|  |  | 
|  | int32_t size = rtc::checked_cast<int32_t>(msg.ByteSizeLong()); | 
|  | ASSERT_GT(size, 0); | 
|  | std::unique_ptr<uint8_t[]> array(new uint8_t[size]); | 
|  | ASSERT_TRUE(msg.SerializeToArray(array.get(), size)); | 
|  |  | 
|  | ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file)); | 
|  | ASSERT_EQ(static_cast<size_t>(size), | 
|  | fwrite(array.get(), sizeof(array[0]), size, file)); | 
|  | fclose(file); | 
|  | } | 
|  |  | 
|  | std::string ResourceFilePath(const std::string& name, int sample_rate_hz) { | 
|  | rtc::StringBuilder ss; | 
|  | // Resource files are all stereo. | 
|  | ss << name << sample_rate_hz / 1000 << "_stereo"; | 
|  | return test::ResourcePath(ss.str(), "pcm"); | 
|  | } | 
|  |  | 
|  | // Temporary filenames unique to this process. Used to be able to run these | 
|  | // tests in parallel as each process needs to be running in isolation they can't | 
|  | // have competing filenames. | 
|  | std::map<std::string, std::string> temp_filenames; | 
|  |  | 
|  | std::string OutputFilePath(const std::string& name, | 
|  | int input_rate, | 
|  | int output_rate, | 
|  | int reverse_input_rate, | 
|  | int reverse_output_rate, | 
|  | size_t num_input_channels, | 
|  | size_t num_output_channels, | 
|  | size_t num_reverse_input_channels, | 
|  | size_t num_reverse_output_channels, | 
|  | StreamDirection file_direction) { | 
|  | rtc::StringBuilder ss; | 
|  | ss << name << "_i" << num_input_channels << "_" << input_rate / 1000 << "_ir" | 
|  | << num_reverse_input_channels << "_" << reverse_input_rate / 1000 << "_"; | 
|  | if (num_output_channels == 1) { | 
|  | ss << "mono"; | 
|  | } else if (num_output_channels == 2) { | 
|  | ss << "stereo"; | 
|  | } else { | 
|  | RTC_NOTREACHED(); | 
|  | } | 
|  | ss << output_rate / 1000; | 
|  | if (num_reverse_output_channels == 1) { | 
|  | ss << "_rmono"; | 
|  | } else if (num_reverse_output_channels == 2) { | 
|  | ss << "_rstereo"; | 
|  | } else { | 
|  | RTC_NOTREACHED(); | 
|  | } | 
|  | ss << reverse_output_rate / 1000; | 
|  | ss << "_d" << file_direction << "_pcm"; | 
|  |  | 
|  | std::string filename = ss.str(); | 
|  | if (temp_filenames[filename].empty()) | 
|  | temp_filenames[filename] = test::TempFilename(test::OutputPath(), filename); | 
|  | return temp_filenames[filename]; | 
|  | } | 
|  |  | 
|  | void ClearTempFiles() { | 
|  | for (auto& kv : temp_filenames) | 
|  | remove(kv.second.c_str()); | 
|  | } | 
|  |  | 
|  | // Only remove "out" files. Keep "ref" files. | 
|  | void ClearTempOutFiles() { | 
|  | for (auto it = temp_filenames.begin(); it != temp_filenames.end();) { | 
|  | const std::string& filename = it->first; | 
|  | if (filename.substr(0, 3).compare("out") == 0) { | 
|  | remove(it->second.c_str()); | 
|  | temp_filenames.erase(it++); | 
|  | } else { | 
|  | it++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void OpenFileAndReadMessage(const std::string& filename, MessageLite* msg) { | 
|  | FILE* file = fopen(filename.c_str(), "rb"); | 
|  | ASSERT_TRUE(file != NULL); | 
|  | ReadMessageFromFile(file, msg); | 
|  | fclose(file); | 
|  | } | 
|  |  | 
|  | // Reads a 10 ms chunk of int16 interleaved audio from the given (assumed | 
|  | // stereo) file, converts to deinterleaved float (optionally downmixing) and | 
|  | // returns the result in |cb|. Returns false if the file ended (or on error) and | 
|  | // true otherwise. | 
|  | // | 
|  | // |int_data| and |float_data| are just temporary space that must be | 
|  | // sufficiently large to hold the 10 ms chunk. | 
|  | bool ReadChunk(FILE* file, | 
|  | int16_t* int_data, | 
|  | float* float_data, | 
|  | ChannelBuffer<float>* cb) { | 
|  | // The files always contain stereo audio. | 
|  | size_t frame_size = cb->num_frames() * 2; | 
|  | size_t read_count = fread(int_data, sizeof(int16_t), frame_size, file); | 
|  | if (read_count != frame_size) { | 
|  | // Check that the file really ended. | 
|  | RTC_DCHECK(feof(file)); | 
|  | return false;  // This is expected. | 
|  | } | 
|  |  | 
|  | S16ToFloat(int_data, frame_size, float_data); | 
|  | if (cb->num_channels() == 1) { | 
|  | MixStereoToMono(float_data, cb->channels()[0], cb->num_frames()); | 
|  | } else { | 
|  | Deinterleave(float_data, cb->num_frames(), 2, cb->channels()); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns the reference file name that matches the current CPU | 
|  | // architecture/optimizations. | 
|  | std::string GetReferenceFilename() { | 
|  | #if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) | 
|  | return test::ResourcePath("audio_processing/output_data_fixed", "pb"); | 
|  | #elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | if (GetCPUInfo(kAVX2) != 0) { | 
|  | return test::ResourcePath("audio_processing/output_data_float_avx2", "pb"); | 
|  | } | 
|  | return test::ResourcePath("audio_processing/output_data_float", "pb"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | class ApmTest : public ::testing::Test { | 
|  | protected: | 
|  | ApmTest(); | 
|  | virtual void SetUp(); | 
|  | virtual void TearDown(); | 
|  |  | 
|  | static void SetUpTestSuite() {} | 
|  |  | 
|  | static void TearDownTestSuite() { ClearTempFiles(); } | 
|  |  | 
|  | // Used to select between int and float interface tests. | 
|  | enum Format { kIntFormat, kFloatFormat }; | 
|  |  | 
|  | void Init(int sample_rate_hz, | 
|  | int output_sample_rate_hz, | 
|  | int reverse_sample_rate_hz, | 
|  | size_t num_input_channels, | 
|  | size_t num_output_channels, | 
|  | size_t num_reverse_channels, | 
|  | bool open_output_file); | 
|  | void Init(AudioProcessing* ap); | 
|  | void EnableAllComponents(); | 
|  | bool ReadFrame(FILE* file, Int16FrameData* frame); | 
|  | bool ReadFrame(FILE* file, Int16FrameData* frame, ChannelBuffer<float>* cb); | 
|  | void ReadFrameWithRewind(FILE* file, Int16FrameData* frame); | 
|  | void ReadFrameWithRewind(FILE* file, | 
|  | Int16FrameData* frame, | 
|  | ChannelBuffer<float>* cb); | 
|  | void ProcessDelayVerificationTest(int delay_ms, | 
|  | int system_delay_ms, | 
|  | int delay_min, | 
|  | int delay_max); | 
|  | void TestChangingChannelsInt16Interface( | 
|  | size_t num_channels, | 
|  | AudioProcessing::Error expected_return); | 
|  | void TestChangingForwardChannels(size_t num_in_channels, | 
|  | size_t num_out_channels, | 
|  | AudioProcessing::Error expected_return); | 
|  | void TestChangingReverseChannels(size_t num_rev_channels, | 
|  | AudioProcessing::Error expected_return); | 
|  | void RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate); | 
|  | void RunManualVolumeChangeIsPossibleTest(int sample_rate); | 
|  | void StreamParametersTest(Format format); | 
|  | int ProcessStreamChooser(Format format); | 
|  | int AnalyzeReverseStreamChooser(Format format); | 
|  | void ProcessDebugDump(const std::string& in_filename, | 
|  | const std::string& out_filename, | 
|  | Format format, | 
|  | int max_size_bytes); | 
|  | void VerifyDebugDumpTest(Format format); | 
|  |  | 
|  | const std::string output_path_; | 
|  | const std::string ref_filename_; | 
|  | std::unique_ptr<AudioProcessing> apm_; | 
|  | Int16FrameData frame_; | 
|  | Int16FrameData revframe_; | 
|  | std::unique_ptr<ChannelBuffer<float> > float_cb_; | 
|  | std::unique_ptr<ChannelBuffer<float> > revfloat_cb_; | 
|  | int output_sample_rate_hz_; | 
|  | size_t num_output_channels_; | 
|  | FILE* far_file_; | 
|  | FILE* near_file_; | 
|  | FILE* out_file_; | 
|  | }; | 
|  |  | 
|  | ApmTest::ApmTest() | 
|  | : output_path_(test::OutputPath()), | 
|  | ref_filename_(GetReferenceFilename()), | 
|  | output_sample_rate_hz_(0), | 
|  | num_output_channels_(0), | 
|  | far_file_(NULL), | 
|  | near_file_(NULL), | 
|  | out_file_(NULL) { | 
|  | apm_.reset(AudioProcessingBuilderForTesting().Create()); | 
|  | AudioProcessing::Config apm_config = apm_->GetConfig(); | 
|  | apm_config.gain_controller1.analog_gain_controller.enabled = false; | 
|  | apm_config.pipeline.maximum_internal_processing_rate = 48000; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | } | 
|  |  | 
|  | void ApmTest::SetUp() { | 
|  | ASSERT_TRUE(apm_.get() != NULL); | 
|  |  | 
|  | Init(32000, 32000, 32000, 2, 2, 2, false); | 
|  | } | 
|  |  | 
|  | void ApmTest::TearDown() { | 
|  | if (far_file_) { | 
|  | ASSERT_EQ(0, fclose(far_file_)); | 
|  | } | 
|  | far_file_ = NULL; | 
|  |  | 
|  | if (near_file_) { | 
|  | ASSERT_EQ(0, fclose(near_file_)); | 
|  | } | 
|  | near_file_ = NULL; | 
|  |  | 
|  | if (out_file_) { | 
|  | ASSERT_EQ(0, fclose(out_file_)); | 
|  | } | 
|  | out_file_ = NULL; | 
|  | } | 
|  |  | 
|  | void ApmTest::Init(AudioProcessing* ap) { | 
|  | ASSERT_EQ( | 
|  | kNoErr, | 
|  | ap->Initialize({{{frame_.sample_rate_hz, frame_.num_channels}, | 
|  | {output_sample_rate_hz_, num_output_channels_}, | 
|  | {revframe_.sample_rate_hz, revframe_.num_channels}, | 
|  | {revframe_.sample_rate_hz, revframe_.num_channels}}})); | 
|  | } | 
|  |  | 
|  | void ApmTest::Init(int sample_rate_hz, | 
|  | int output_sample_rate_hz, | 
|  | int reverse_sample_rate_hz, | 
|  | size_t num_input_channels, | 
|  | size_t num_output_channels, | 
|  | size_t num_reverse_channels, | 
|  | bool open_output_file) { | 
|  | SetContainerFormat(sample_rate_hz, num_input_channels, &frame_, &float_cb_); | 
|  | output_sample_rate_hz_ = output_sample_rate_hz; | 
|  | num_output_channels_ = num_output_channels; | 
|  |  | 
|  | SetContainerFormat(reverse_sample_rate_hz, num_reverse_channels, &revframe_, | 
|  | &revfloat_cb_); | 
|  | Init(apm_.get()); | 
|  |  | 
|  | if (far_file_) { | 
|  | ASSERT_EQ(0, fclose(far_file_)); | 
|  | } | 
|  | std::string filename = ResourceFilePath("far", sample_rate_hz); | 
|  | far_file_ = fopen(filename.c_str(), "rb"); | 
|  | ASSERT_TRUE(far_file_ != NULL) << "Could not open file " << filename << "\n"; | 
|  |  | 
|  | if (near_file_) { | 
|  | ASSERT_EQ(0, fclose(near_file_)); | 
|  | } | 
|  | filename = ResourceFilePath("near", sample_rate_hz); | 
|  | near_file_ = fopen(filename.c_str(), "rb"); | 
|  | ASSERT_TRUE(near_file_ != NULL) << "Could not open file " << filename << "\n"; | 
|  |  | 
|  | if (open_output_file) { | 
|  | if (out_file_) { | 
|  | ASSERT_EQ(0, fclose(out_file_)); | 
|  | } | 
|  | filename = OutputFilePath( | 
|  | "out", sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz, | 
|  | reverse_sample_rate_hz, num_input_channels, num_output_channels, | 
|  | num_reverse_channels, num_reverse_channels, kForward); | 
|  | out_file_ = fopen(filename.c_str(), "wb"); | 
|  | ASSERT_TRUE(out_file_ != NULL) | 
|  | << "Could not open file " << filename << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ApmTest::EnableAllComponents() { | 
|  | EnableAllAPComponents(apm_.get()); | 
|  | } | 
|  |  | 
|  | bool ApmTest::ReadFrame(FILE* file, | 
|  | Int16FrameData* frame, | 
|  | ChannelBuffer<float>* cb) { | 
|  | // The files always contain stereo audio. | 
|  | size_t frame_size = frame->samples_per_channel * 2; | 
|  | size_t read_count = | 
|  | fread(frame->data.data(), sizeof(int16_t), frame_size, file); | 
|  | if (read_count != frame_size) { | 
|  | // Check that the file really ended. | 
|  | EXPECT_NE(0, feof(file)); | 
|  | return false;  // This is expected. | 
|  | } | 
|  |  | 
|  | if (frame->num_channels == 1) { | 
|  | MixStereoToMono(frame->data.data(), frame->data.data(), | 
|  | frame->samples_per_channel); | 
|  | } | 
|  |  | 
|  | if (cb) { | 
|  | ConvertToFloat(*frame, cb); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ApmTest::ReadFrame(FILE* file, Int16FrameData* frame) { | 
|  | return ReadFrame(file, frame, NULL); | 
|  | } | 
|  |  | 
|  | // If the end of the file has been reached, rewind it and attempt to read the | 
|  | // frame again. | 
|  | void ApmTest::ReadFrameWithRewind(FILE* file, | 
|  | Int16FrameData* frame, | 
|  | ChannelBuffer<float>* cb) { | 
|  | if (!ReadFrame(near_file_, &frame_, cb)) { | 
|  | rewind(near_file_); | 
|  | ASSERT_TRUE(ReadFrame(near_file_, &frame_, cb)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ApmTest::ReadFrameWithRewind(FILE* file, Int16FrameData* frame) { | 
|  | ReadFrameWithRewind(file, frame, NULL); | 
|  | } | 
|  |  | 
|  | int ApmTest::ProcessStreamChooser(Format format) { | 
|  | if (format == kIntFormat) { | 
|  | return apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data()); | 
|  | } | 
|  | return apm_->ProcessStream( | 
|  | float_cb_->channels(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(output_sample_rate_hz_, num_output_channels_), | 
|  | float_cb_->channels()); | 
|  | } | 
|  |  | 
|  | int ApmTest::AnalyzeReverseStreamChooser(Format format) { | 
|  | if (format == kIntFormat) { | 
|  | return apm_->ProcessReverseStream( | 
|  | revframe_.data.data(), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | revframe_.data.data()); | 
|  | } | 
|  | return apm_->AnalyzeReverseStream( | 
|  | revfloat_cb_->channels(), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels)); | 
|  | } | 
|  |  | 
|  | void ApmTest::ProcessDelayVerificationTest(int delay_ms, | 
|  | int system_delay_ms, | 
|  | int delay_min, | 
|  | int delay_max) { | 
|  | // The |revframe_| and |frame_| should include the proper frame information, | 
|  | // hence can be used for extracting information. | 
|  | Int16FrameData tmp_frame; | 
|  | std::queue<Int16FrameData*> frame_queue; | 
|  | bool causal = true; | 
|  |  | 
|  | tmp_frame.CopyFrom(revframe_); | 
|  | SetFrameTo(&tmp_frame, 0); | 
|  |  | 
|  | EXPECT_EQ(apm_->kNoError, apm_->Initialize()); | 
|  | // Initialize the |frame_queue| with empty frames. | 
|  | int frame_delay = delay_ms / 10; | 
|  | while (frame_delay < 0) { | 
|  | Int16FrameData* frame = new Int16FrameData(); | 
|  | frame->CopyFrom(tmp_frame); | 
|  | frame_queue.push(frame); | 
|  | frame_delay++; | 
|  | causal = false; | 
|  | } | 
|  | while (frame_delay > 0) { | 
|  | Int16FrameData* frame = new Int16FrameData(); | 
|  | frame->CopyFrom(tmp_frame); | 
|  | frame_queue.push(frame); | 
|  | frame_delay--; | 
|  | } | 
|  | // Run for 4.5 seconds, skipping statistics from the first 2.5 seconds.  We | 
|  | // need enough frames with audio to have reliable estimates, but as few as | 
|  | // possible to keep processing time down.  4.5 seconds seemed to be a good | 
|  | // compromise for this recording. | 
|  | for (int frame_count = 0; frame_count < 450; ++frame_count) { | 
|  | Int16FrameData* frame = new Int16FrameData(); | 
|  | frame->CopyFrom(tmp_frame); | 
|  | // Use the near end recording, since that has more speech in it. | 
|  | ASSERT_TRUE(ReadFrame(near_file_, frame)); | 
|  | frame_queue.push(frame); | 
|  | Int16FrameData* reverse_frame = frame; | 
|  | Int16FrameData* process_frame = frame_queue.front(); | 
|  | if (!causal) { | 
|  | reverse_frame = frame_queue.front(); | 
|  | // When we call ProcessStream() the frame is modified, so we can't use the | 
|  | // pointer directly when things are non-causal. Use an intermediate frame | 
|  | // and copy the data. | 
|  | process_frame = &tmp_frame; | 
|  | process_frame->CopyFrom(*frame); | 
|  | } | 
|  | EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream( | 
|  | reverse_frame->data.data(), | 
|  | StreamConfig(reverse_frame->sample_rate_hz, | 
|  | reverse_frame->num_channels), | 
|  | StreamConfig(reverse_frame->sample_rate_hz, | 
|  | reverse_frame->num_channels), | 
|  | reverse_frame->data.data())); | 
|  | EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(system_delay_ms)); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream(process_frame->data.data(), | 
|  | StreamConfig(process_frame->sample_rate_hz, | 
|  | process_frame->num_channels), | 
|  | StreamConfig(process_frame->sample_rate_hz, | 
|  | process_frame->num_channels), | 
|  | process_frame->data.data())); | 
|  | frame = frame_queue.front(); | 
|  | frame_queue.pop(); | 
|  | delete frame; | 
|  |  | 
|  | if (frame_count == 250) { | 
|  | // Discard the first delay metrics to avoid convergence effects. | 
|  | static_cast<void>(apm_->GetStatistics()); | 
|  | } | 
|  | } | 
|  |  | 
|  | rewind(near_file_); | 
|  | while (!frame_queue.empty()) { | 
|  | Int16FrameData* frame = frame_queue.front(); | 
|  | frame_queue.pop(); | 
|  | delete frame; | 
|  | } | 
|  | // Calculate expected delay estimate and acceptable regions. Further, | 
|  | // limit them w.r.t. AEC delay estimation support. | 
|  | const size_t samples_per_ms = | 
|  | rtc::SafeMin<size_t>(16u, frame_.samples_per_channel / 10); | 
|  | const int expected_median = | 
|  | rtc::SafeClamp<int>(delay_ms - system_delay_ms, delay_min, delay_max); | 
|  | const int expected_median_high = rtc::SafeClamp<int>( | 
|  | expected_median + rtc::dchecked_cast<int>(96 / samples_per_ms), delay_min, | 
|  | delay_max); | 
|  | const int expected_median_low = rtc::SafeClamp<int>( | 
|  | expected_median - rtc::dchecked_cast<int>(96 / samples_per_ms), delay_min, | 
|  | delay_max); | 
|  | // Verify delay metrics. | 
|  | AudioProcessingStats stats = apm_->GetStatistics(); | 
|  | ASSERT_TRUE(stats.delay_median_ms.has_value()); | 
|  | int32_t median = *stats.delay_median_ms; | 
|  | EXPECT_GE(expected_median_high, median); | 
|  | EXPECT_LE(expected_median_low, median); | 
|  | } | 
|  |  | 
|  | void ApmTest::StreamParametersTest(Format format) { | 
|  | // No errors when the components are disabled. | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  |  | 
|  | // -- Missing AGC level -- | 
|  | AudioProcessing::Config apm_config = apm_->GetConfig(); | 
|  | apm_config.gain_controller1.enabled = true; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); | 
|  |  | 
|  | // Resets after successful ProcessStream(). | 
|  | apm_->set_stream_analog_level(127); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  | EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); | 
|  |  | 
|  | // Other stream parameters set correctly. | 
|  | apm_config.echo_canceller.enabled = true; | 
|  | apm_config.echo_canceller.mobile_mode = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); | 
|  | EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format)); | 
|  | apm_config.gain_controller1.enabled = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  |  | 
|  | // -- Missing delay -- | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  |  | 
|  | // Resets after successful ProcessStream(). | 
|  | EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  |  | 
|  | // Other stream parameters set correctly. | 
|  | apm_config.gain_controller1.enabled = true; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | apm_->set_stream_analog_level(127); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  | apm_config.gain_controller1.enabled = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  |  | 
|  | // -- No stream parameters -- | 
|  | EXPECT_EQ(apm_->kNoError, AnalyzeReverseStreamChooser(format)); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  |  | 
|  | // -- All there -- | 
|  | EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); | 
|  | apm_->set_stream_analog_level(127); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format)); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, StreamParametersInt) { | 
|  | StreamParametersTest(kIntFormat); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, StreamParametersFloat) { | 
|  | StreamParametersTest(kFloatFormat); | 
|  | } | 
|  |  | 
|  | void ApmTest::TestChangingChannelsInt16Interface( | 
|  | size_t num_channels, | 
|  | AudioProcessing::Error expected_return) { | 
|  | frame_.num_channels = num_channels; | 
|  |  | 
|  | EXPECT_EQ(expected_return, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_EQ(expected_return, | 
|  | apm_->ProcessReverseStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | } | 
|  |  | 
|  | void ApmTest::TestChangingForwardChannels( | 
|  | size_t num_in_channels, | 
|  | size_t num_out_channels, | 
|  | AudioProcessing::Error expected_return) { | 
|  | const StreamConfig input_stream = {frame_.sample_rate_hz, num_in_channels}; | 
|  | const StreamConfig output_stream = {output_sample_rate_hz_, num_out_channels}; | 
|  |  | 
|  | EXPECT_EQ(expected_return, | 
|  | apm_->ProcessStream(float_cb_->channels(), input_stream, | 
|  | output_stream, float_cb_->channels())); | 
|  | } | 
|  |  | 
|  | void ApmTest::TestChangingReverseChannels( | 
|  | size_t num_rev_channels, | 
|  | AudioProcessing::Error expected_return) { | 
|  | const ProcessingConfig processing_config = { | 
|  | {{frame_.sample_rate_hz, apm_->num_input_channels()}, | 
|  | {output_sample_rate_hz_, apm_->num_output_channels()}, | 
|  | {frame_.sample_rate_hz, num_rev_channels}, | 
|  | {frame_.sample_rate_hz, num_rev_channels}}}; | 
|  |  | 
|  | EXPECT_EQ( | 
|  | expected_return, | 
|  | apm_->ProcessReverseStream( | 
|  | float_cb_->channels(), processing_config.reverse_input_stream(), | 
|  | processing_config.reverse_output_stream(), float_cb_->channels())); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, ChannelsInt16Interface) { | 
|  | // Testing number of invalid and valid channels. | 
|  | Init(16000, 16000, 16000, 4, 4, 4, false); | 
|  |  | 
|  | TestChangingChannelsInt16Interface(0, apm_->kBadNumberChannelsError); | 
|  |  | 
|  | for (size_t i = 1; i < 4; i++) { | 
|  | TestChangingChannelsInt16Interface(i, kNoErr); | 
|  | EXPECT_EQ(i, apm_->num_input_channels()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, Channels) { | 
|  | // Testing number of invalid and valid channels. | 
|  | Init(16000, 16000, 16000, 4, 4, 4, false); | 
|  |  | 
|  | TestChangingForwardChannels(0, 1, apm_->kBadNumberChannelsError); | 
|  | TestChangingReverseChannels(0, apm_->kBadNumberChannelsError); | 
|  |  | 
|  | for (size_t i = 1; i < 4; ++i) { | 
|  | for (size_t j = 0; j < 1; ++j) { | 
|  | // Output channels much be one or match input channels. | 
|  | if (j == 1 || i == j) { | 
|  | TestChangingForwardChannels(i, j, kNoErr); | 
|  | TestChangingReverseChannels(i, kNoErr); | 
|  |  | 
|  | EXPECT_EQ(i, apm_->num_input_channels()); | 
|  | EXPECT_EQ(j, apm_->num_output_channels()); | 
|  | // The number of reverse channels used for processing to is always 1. | 
|  | EXPECT_EQ(1u, apm_->num_reverse_channels()); | 
|  | } else { | 
|  | TestChangingForwardChannels(i, j, | 
|  | AudioProcessing::kBadNumberChannelsError); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, SampleRatesInt) { | 
|  | // Testing some valid sample rates. | 
|  | for (int sample_rate : {8000, 12000, 16000, 32000, 44100, 48000, 96000}) { | 
|  | SetContainerFormat(sample_rate, 2, &frame_, &float_cb_); | 
|  | EXPECT_NOERR(ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This test repeatedly reconfigures the pre-amplifier in APM, processes a | 
|  | // number of frames, and checks that output signal has the right level. | 
|  | TEST_F(ApmTest, PreAmplifier) { | 
|  | // Fill the audio frame with a sawtooth pattern. | 
|  | rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_); | 
|  | const size_t samples_per_channel = frame_.samples_per_channel; | 
|  | for (size_t i = 0; i < samples_per_channel; i++) { | 
|  | for (size_t ch = 0; ch < frame_.num_channels; ++ch) { | 
|  | frame_data[i + ch * samples_per_channel] = 10000 * ((i % 3) - 1); | 
|  | } | 
|  | } | 
|  | // Cache the frame in tmp_frame. | 
|  | Int16FrameData tmp_frame; | 
|  | tmp_frame.CopyFrom(frame_); | 
|  |  | 
|  | auto compute_power = [](const Int16FrameData& frame) { | 
|  | rtc::ArrayView<const int16_t> data = GetFrameData(frame); | 
|  | return std::accumulate(data.begin(), data.end(), 0.0f, | 
|  | [](float a, float b) { return a + b * b; }) / | 
|  | data.size() / 32768 / 32768; | 
|  | }; | 
|  |  | 
|  | const float input_power = compute_power(tmp_frame); | 
|  | // Double-check that the input data is large compared to the error kEpsilon. | 
|  | constexpr float kEpsilon = 1e-4f; | 
|  | RTC_DCHECK_GE(input_power, 10 * kEpsilon); | 
|  |  | 
|  | // 1. Enable pre-amp with 0 dB gain. | 
|  | AudioProcessing::Config config = apm_->GetConfig(); | 
|  | config.pre_amplifier.enabled = true; | 
|  | config.pre_amplifier.fixed_gain_factor = 1.0f; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | frame_.CopyFrom(tmp_frame); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | float output_power = compute_power(frame_); | 
|  | EXPECT_NEAR(output_power, input_power, kEpsilon); | 
|  | config = apm_->GetConfig(); | 
|  | EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 1.0f); | 
|  |  | 
|  | // 2. Change pre-amp gain via ApplyConfig. | 
|  | config.pre_amplifier.fixed_gain_factor = 2.0f; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | frame_.CopyFrom(tmp_frame); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | output_power = compute_power(frame_); | 
|  | EXPECT_NEAR(output_power, 4 * input_power, kEpsilon); | 
|  | config = apm_->GetConfig(); | 
|  | EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 2.0f); | 
|  |  | 
|  | // 3. Change pre-amp gain via a RuntimeSetting. | 
|  | apm_->SetRuntimeSetting( | 
|  | AudioProcessing::RuntimeSetting::CreateCapturePreGain(1.5f)); | 
|  |  | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | frame_.CopyFrom(tmp_frame); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | output_power = compute_power(frame_); | 
|  | EXPECT_NEAR(output_power, 2.25 * input_power, kEpsilon); | 
|  | config = apm_->GetConfig(); | 
|  | EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 1.5f); | 
|  | } | 
|  |  | 
|  | // This test a simple test that ensures that the emulated analog mic gain | 
|  | // functionality runs without crashing. | 
|  | TEST_F(ApmTest, AnalogMicGainEmulation) { | 
|  | // Fill the audio frame with a sawtooth pattern. | 
|  | rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_); | 
|  | const size_t samples_per_channel = frame_.samples_per_channel; | 
|  | for (size_t i = 0; i < samples_per_channel; i++) { | 
|  | for (size_t ch = 0; ch < frame_.num_channels; ++ch) { | 
|  | frame_data[i + ch * samples_per_channel] = 100 * ((i % 3) - 1); | 
|  | } | 
|  | } | 
|  | // Cache the frame in tmp_frame. | 
|  | Int16FrameData tmp_frame; | 
|  | tmp_frame.CopyFrom(frame_); | 
|  |  | 
|  | // Enable the analog gain emulation. | 
|  | AudioProcessing::Config config = apm_->GetConfig(); | 
|  | config.capture_level_adjustment.enabled = true; | 
|  | config.capture_level_adjustment.analog_mic_gain_emulation.enabled = true; | 
|  | config.capture_level_adjustment.analog_mic_gain_emulation.initial_level = 21; | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.mode = | 
|  | AudioProcessing::Config::GainController1::Mode::kAdaptiveAnalog; | 
|  | config.gain_controller1.analog_gain_controller.enabled = true; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | // Process a number of frames to ensure that the code runs without crashes. | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | frame_.CopyFrom(tmp_frame); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This test repeatedly reconfigures the capture level adjustment functionality | 
|  | // in APM, processes a number of frames, and checks that output signal has the | 
|  | // right level. | 
|  | TEST_F(ApmTest, CaptureLevelAdjustment) { | 
|  | // Fill the audio frame with a sawtooth pattern. | 
|  | rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_); | 
|  | const size_t samples_per_channel = frame_.samples_per_channel; | 
|  | for (size_t i = 0; i < samples_per_channel; i++) { | 
|  | for (size_t ch = 0; ch < frame_.num_channels; ++ch) { | 
|  | frame_data[i + ch * samples_per_channel] = 100 * ((i % 3) - 1); | 
|  | } | 
|  | } | 
|  | // Cache the frame in tmp_frame. | 
|  | Int16FrameData tmp_frame; | 
|  | tmp_frame.CopyFrom(frame_); | 
|  |  | 
|  | auto compute_power = [](const Int16FrameData& frame) { | 
|  | rtc::ArrayView<const int16_t> data = GetFrameData(frame); | 
|  | return std::accumulate(data.begin(), data.end(), 0.0f, | 
|  | [](float a, float b) { return a + b * b; }) / | 
|  | data.size() / 32768 / 32768; | 
|  | }; | 
|  |  | 
|  | const float input_power = compute_power(tmp_frame); | 
|  | // Double-check that the input data is large compared to the error kEpsilon. | 
|  | constexpr float kEpsilon = 1e-20f; | 
|  | RTC_DCHECK_GE(input_power, 10 * kEpsilon); | 
|  |  | 
|  | // 1. Enable pre-amp with 0 dB gain. | 
|  | AudioProcessing::Config config = apm_->GetConfig(); | 
|  | config.capture_level_adjustment.enabled = true; | 
|  | config.capture_level_adjustment.pre_gain_factor = 0.5f; | 
|  | config.capture_level_adjustment.post_gain_factor = 4.f; | 
|  | const float expected_output_power1 = | 
|  | config.capture_level_adjustment.pre_gain_factor * | 
|  | config.capture_level_adjustment.pre_gain_factor * | 
|  | config.capture_level_adjustment.post_gain_factor * | 
|  | config.capture_level_adjustment.post_gain_factor * input_power; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | frame_.CopyFrom(tmp_frame); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | float output_power = compute_power(frame_); | 
|  | EXPECT_NEAR(output_power, expected_output_power1, kEpsilon); | 
|  | config = apm_->GetConfig(); | 
|  | EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 0.5f); | 
|  | EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 4.f); | 
|  |  | 
|  | // 2. Change pre-amp gain via ApplyConfig. | 
|  | config.capture_level_adjustment.pre_gain_factor = 1.0f; | 
|  | config.capture_level_adjustment.post_gain_factor = 2.f; | 
|  | const float expected_output_power2 = | 
|  | config.capture_level_adjustment.pre_gain_factor * | 
|  | config.capture_level_adjustment.pre_gain_factor * | 
|  | config.capture_level_adjustment.post_gain_factor * | 
|  | config.capture_level_adjustment.post_gain_factor * input_power; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | frame_.CopyFrom(tmp_frame); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | output_power = compute_power(frame_); | 
|  | EXPECT_NEAR(output_power, expected_output_power2, kEpsilon); | 
|  | config = apm_->GetConfig(); | 
|  | EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 1.0f); | 
|  | EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 2.f); | 
|  |  | 
|  | // 3. Change pre-amp gain via a RuntimeSetting. | 
|  | constexpr float kPreGain3 = 0.5f; | 
|  | constexpr float kPostGain3 = 3.f; | 
|  | const float expected_output_power3 = | 
|  | kPreGain3 * kPreGain3 * kPostGain3 * kPostGain3 * input_power; | 
|  |  | 
|  | apm_->SetRuntimeSetting( | 
|  | AudioProcessing::RuntimeSetting::CreateCapturePreGain(kPreGain3)); | 
|  | apm_->SetRuntimeSetting( | 
|  | AudioProcessing::RuntimeSetting::CreateCapturePostGain(kPostGain3)); | 
|  |  | 
|  | for (int i = 0; i < 20; ++i) { | 
|  | frame_.CopyFrom(tmp_frame); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat)); | 
|  | } | 
|  | output_power = compute_power(frame_); | 
|  | EXPECT_NEAR(output_power, expected_output_power3, kEpsilon); | 
|  | config = apm_->GetConfig(); | 
|  | EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 0.5f); | 
|  | EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 3.f); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, GainControl) { | 
|  | AudioProcessing::Config config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = false; | 
|  | apm_->ApplyConfig(config); | 
|  | config.gain_controller1.enabled = true; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | // Testing gain modes | 
|  | for (auto mode : | 
|  | {AudioProcessing::Config::GainController1::kAdaptiveDigital, | 
|  | AudioProcessing::Config::GainController1::kFixedDigital, | 
|  | AudioProcessing::Config::GainController1::kAdaptiveAnalog}) { | 
|  | config.gain_controller1.mode = mode; | 
|  | apm_->ApplyConfig(config); | 
|  | apm_->set_stream_analog_level(100); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat)); | 
|  | } | 
|  |  | 
|  | // Testing target levels | 
|  | for (int target_level_dbfs : {0, 15, 31}) { | 
|  | config.gain_controller1.target_level_dbfs = target_level_dbfs; | 
|  | apm_->ApplyConfig(config); | 
|  | apm_->set_stream_analog_level(100); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat)); | 
|  | } | 
|  |  | 
|  | // Testing compression gains | 
|  | for (int compression_gain_db : {0, 10, 90}) { | 
|  | config.gain_controller1.compression_gain_db = compression_gain_db; | 
|  | apm_->ApplyConfig(config); | 
|  | apm_->set_stream_analog_level(100); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat)); | 
|  | } | 
|  |  | 
|  | // Testing limiter off/on | 
|  | for (bool enable : {false, true}) { | 
|  | config.gain_controller1.enable_limiter = enable; | 
|  | apm_->ApplyConfig(config); | 
|  | apm_->set_stream_analog_level(100); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat)); | 
|  | } | 
|  |  | 
|  | // Testing level limits | 
|  | std::array<int, 4> kMinLevels = {0, 0, 255, 65000}; | 
|  | std::array<int, 4> kMaxLevels = {255, 1024, 65535, 65535}; | 
|  | for (size_t i = 0; i < kMinLevels.size(); ++i) { | 
|  | int min_level = kMinLevels[i]; | 
|  | int max_level = kMaxLevels[i]; | 
|  | config.gain_controller1.analog_level_minimum = min_level; | 
|  | config.gain_controller1.analog_level_maximum = max_level; | 
|  | apm_->ApplyConfig(config); | 
|  | apm_->set_stream_analog_level((min_level + max_level) / 2); | 
|  | EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) | 
|  | using ApmDeathTest = ApmTest; | 
|  |  | 
|  | TEST_F(ApmDeathTest, GainControlDiesOnTooLowTargetLevelDbfs) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.target_level_dbfs = -1; | 
|  | EXPECT_DEATH(apm_->ApplyConfig(config), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, GainControlDiesOnTooHighTargetLevelDbfs) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.target_level_dbfs = 32; | 
|  | EXPECT_DEATH(apm_->ApplyConfig(config), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, GainControlDiesOnTooLowCompressionGainDb) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.compression_gain_db = -1; | 
|  | EXPECT_DEATH(apm_->ApplyConfig(config), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, GainControlDiesOnTooHighCompressionGainDb) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.compression_gain_db = 91; | 
|  | EXPECT_DEATH(apm_->ApplyConfig(config), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, GainControlDiesOnTooLowAnalogLevelLowerLimit) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.analog_level_minimum = -1; | 
|  | EXPECT_DEATH(apm_->ApplyConfig(config), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, GainControlDiesOnTooHighAnalogLevelUpperLimit) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.analog_level_maximum = 65536; | 
|  | EXPECT_DEATH(apm_->ApplyConfig(config), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, GainControlDiesOnInvertedAnalogLevelLimits) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.analog_level_minimum = 512; | 
|  | config.gain_controller1.analog_level_maximum = 255; | 
|  | EXPECT_DEATH(apm_->ApplyConfig(config), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, ApmDiesOnTooLowAnalogLevel) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.analog_level_minimum = 255; | 
|  | config.gain_controller1.analog_level_maximum = 512; | 
|  | apm_->ApplyConfig(config); | 
|  | EXPECT_DEATH(apm_->set_stream_analog_level(254), ""); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmDeathTest, ApmDiesOnTooHighAnalogLevel) { | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.analog_level_minimum = 255; | 
|  | config.gain_controller1.analog_level_maximum = 512; | 
|  | apm_->ApplyConfig(config); | 
|  | EXPECT_DEATH(apm_->set_stream_analog_level(513), ""); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void ApmTest::RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate) { | 
|  | Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false); | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.mode = | 
|  | AudioProcessing::Config::GainController1::kAdaptiveAnalog; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | int out_analog_level = 0; | 
|  | for (int i = 0; i < 2000; ++i) { | 
|  | ReadFrameWithRewind(near_file_, &frame_); | 
|  | // Ensure the audio is at a low level, so the AGC will try to increase it. | 
|  | ScaleFrame(&frame_, 0.25); | 
|  |  | 
|  | // Always pass in the same volume. | 
|  | apm_->set_stream_analog_level(100); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | out_analog_level = apm_->recommended_stream_analog_level(); | 
|  | } | 
|  |  | 
|  | // Ensure the AGC is still able to reach the maximum. | 
|  | EXPECT_EQ(255, out_analog_level); | 
|  | } | 
|  |  | 
|  | // Verifies that despite volume slider quantization, the AGC can continue to | 
|  | // increase its volume. | 
|  | TEST_F(ApmTest, QuantizedVolumeDoesNotGetStuck) { | 
|  | for (size_t i = 0; i < arraysize(kSampleRates); ++i) { | 
|  | RunQuantizedVolumeDoesNotGetStuckTest(kSampleRates[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ApmTest::RunManualVolumeChangeIsPossibleTest(int sample_rate) { | 
|  | Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false); | 
|  | auto config = apm_->GetConfig(); | 
|  | config.gain_controller1.enabled = true; | 
|  | config.gain_controller1.mode = | 
|  | AudioProcessing::Config::GainController1::kAdaptiveAnalog; | 
|  | apm_->ApplyConfig(config); | 
|  |  | 
|  | int out_analog_level = 100; | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | ReadFrameWithRewind(near_file_, &frame_); | 
|  | // Ensure the audio is at a low level, so the AGC will try to increase it. | 
|  | ScaleFrame(&frame_, 0.25); | 
|  |  | 
|  | apm_->set_stream_analog_level(out_analog_level); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | out_analog_level = apm_->recommended_stream_analog_level(); | 
|  | } | 
|  |  | 
|  | // Ensure the volume was raised. | 
|  | EXPECT_GT(out_analog_level, 100); | 
|  | int highest_level_reached = out_analog_level; | 
|  | // Simulate a user manual volume change. | 
|  | out_analog_level = 100; | 
|  |  | 
|  | for (int i = 0; i < 300; ++i) { | 
|  | ReadFrameWithRewind(near_file_, &frame_); | 
|  | ScaleFrame(&frame_, 0.25); | 
|  |  | 
|  | apm_->set_stream_analog_level(out_analog_level); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | out_analog_level = apm_->recommended_stream_analog_level(); | 
|  | // Check that AGC respected the manually adjusted volume. | 
|  | EXPECT_LT(out_analog_level, highest_level_reached); | 
|  | } | 
|  | // Check that the volume was still raised. | 
|  | EXPECT_GT(out_analog_level, 100); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, ManualVolumeChangeIsPossible) { | 
|  | for (size_t i = 0; i < arraysize(kSampleRates); ++i) { | 
|  | RunManualVolumeChangeIsPossibleTest(kSampleRates[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, HighPassFilter) { | 
|  | // Turn HP filter on/off | 
|  | AudioProcessing::Config apm_config; | 
|  | apm_config.high_pass_filter.enabled = true; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | apm_config.high_pass_filter.enabled = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, AllProcessingDisabledByDefault) { | 
|  | AudioProcessing::Config config = apm_->GetConfig(); | 
|  | EXPECT_FALSE(config.echo_canceller.enabled); | 
|  | EXPECT_FALSE(config.high_pass_filter.enabled); | 
|  | EXPECT_FALSE(config.gain_controller1.enabled); | 
|  | EXPECT_FALSE(config.level_estimation.enabled); | 
|  | EXPECT_FALSE(config.noise_suppression.enabled); | 
|  | EXPECT_FALSE(config.voice_detection.enabled); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabled) { | 
|  | for (size_t i = 0; i < arraysize(kSampleRates); i++) { | 
|  | Init(kSampleRates[i], kSampleRates[i], kSampleRates[i], 2, 2, 2, false); | 
|  | SetFrameTo(&frame_, 1000, 2000); | 
|  | Int16FrameData frame_copy; | 
|  | frame_copy.CopyFrom(frame_); | 
|  | for (int j = 0; j < 1000; j++) { | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy)); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessReverseStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledFloat) { | 
|  | // Test that ProcessStream copies input to output even with no processing. | 
|  | const size_t kSamples = 160; | 
|  | const int sample_rate = 16000; | 
|  | const float src[kSamples] = {-1.0f, 0.0f, 1.0f}; | 
|  | float dest[kSamples] = {}; | 
|  |  | 
|  | auto src_channels = &src[0]; | 
|  | auto dest_channels = &dest[0]; | 
|  |  | 
|  | apm_.reset(AudioProcessingBuilderForTesting().Create()); | 
|  | EXPECT_NOERR(apm_->ProcessStream(&src_channels, StreamConfig(sample_rate, 1), | 
|  | StreamConfig(sample_rate, 1), | 
|  | &dest_channels)); | 
|  |  | 
|  | for (size_t i = 0; i < kSamples; ++i) { | 
|  | EXPECT_EQ(src[i], dest[i]); | 
|  | } | 
|  |  | 
|  | // Same for ProcessReverseStream. | 
|  | float rev_dest[kSamples] = {}; | 
|  | auto rev_dest_channels = &rev_dest[0]; | 
|  |  | 
|  | StreamConfig input_stream = {sample_rate, 1}; | 
|  | StreamConfig output_stream = {sample_rate, 1}; | 
|  | EXPECT_NOERR(apm_->ProcessReverseStream(&src_channels, input_stream, | 
|  | output_stream, &rev_dest_channels)); | 
|  |  | 
|  | for (size_t i = 0; i < kSamples; ++i) { | 
|  | EXPECT_EQ(src[i], rev_dest[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, IdenticalInputChannelsResultInIdenticalOutputChannels) { | 
|  | EnableAllComponents(); | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) { | 
|  | Init(kProcessSampleRates[i], kProcessSampleRates[i], kProcessSampleRates[i], | 
|  | 2, 2, 2, false); | 
|  | int analog_level = 127; | 
|  | ASSERT_EQ(0, feof(far_file_)); | 
|  | ASSERT_EQ(0, feof(near_file_)); | 
|  | while (ReadFrame(far_file_, &revframe_) && ReadFrame(near_file_, &frame_)) { | 
|  | CopyLeftToRightChannel(revframe_.data.data(), | 
|  | revframe_.samples_per_channel); | 
|  |  | 
|  | ASSERT_EQ( | 
|  | kNoErr, | 
|  | apm_->ProcessReverseStream( | 
|  | revframe_.data.data(), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | revframe_.data.data())); | 
|  |  | 
|  | CopyLeftToRightChannel(frame_.data.data(), frame_.samples_per_channel); | 
|  |  | 
|  | ASSERT_EQ(kNoErr, apm_->set_stream_delay_ms(0)); | 
|  | apm_->set_stream_analog_level(analog_level); | 
|  | ASSERT_EQ(kNoErr, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | analog_level = apm_->recommended_stream_analog_level(); | 
|  |  | 
|  | VerifyChannelsAreEqual(frame_.data.data(), frame_.samples_per_channel); | 
|  | } | 
|  | rewind(far_file_); | 
|  | rewind(near_file_); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, SplittingFilter) { | 
|  | // Verify the filter is not active through undistorted audio when: | 
|  | // 1. No components are enabled... | 
|  | SetFrameTo(&frame_, 1000); | 
|  | Int16FrameData frame_copy; | 
|  | frame_copy.CopyFrom(frame_); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy)); | 
|  |  | 
|  | // 2. Only the level estimator is enabled... | 
|  | auto apm_config = apm_->GetConfig(); | 
|  | SetFrameTo(&frame_, 1000); | 
|  | frame_copy.CopyFrom(frame_); | 
|  | apm_config.level_estimation.enabled = true; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy)); | 
|  | apm_config.level_estimation.enabled = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  |  | 
|  | // 3. Only GetStatistics-reporting VAD is enabled... | 
|  | SetFrameTo(&frame_, 1000); | 
|  | frame_copy.CopyFrom(frame_); | 
|  | apm_config.voice_detection.enabled = true; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy)); | 
|  | apm_config.voice_detection.enabled = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  |  | 
|  | // 4. Both the VAD and the level estimator are enabled... | 
|  | SetFrameTo(&frame_, 1000); | 
|  | frame_copy.CopyFrom(frame_); | 
|  | apm_config.voice_detection.enabled = true; | 
|  | apm_config.level_estimation.enabled = true; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy)); | 
|  | apm_config.voice_detection.enabled = false; | 
|  | apm_config.level_estimation.enabled = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  |  | 
|  | // Check the test is valid. We should have distortion from the filter | 
|  | // when AEC is enabled (which won't affect the audio). | 
|  | apm_config.echo_canceller.enabled = true; | 
|  | apm_config.echo_canceller.mobile_mode = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  | frame_.samples_per_channel = 320; | 
|  | frame_.num_channels = 2; | 
|  | frame_.sample_rate_hz = 32000; | 
|  | SetFrameTo(&frame_, 1000); | 
|  | frame_copy.CopyFrom(frame_); | 
|  | EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_FALSE(FrameDataAreEqual(frame_, frame_copy)); | 
|  | } | 
|  |  | 
|  | #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP | 
|  | void ApmTest::ProcessDebugDump(const std::string& in_filename, | 
|  | const std::string& out_filename, | 
|  | Format format, | 
|  | int max_size_bytes) { | 
|  | TaskQueueForTest worker_queue("ApmTest_worker_queue"); | 
|  | FILE* in_file = fopen(in_filename.c_str(), "rb"); | 
|  | ASSERT_TRUE(in_file != NULL); | 
|  | audioproc::Event event_msg; | 
|  | bool first_init = true; | 
|  |  | 
|  | while (ReadMessageFromFile(in_file, &event_msg)) { | 
|  | if (event_msg.type() == audioproc::Event::INIT) { | 
|  | const audioproc::Init msg = event_msg.init(); | 
|  | int reverse_sample_rate = msg.sample_rate(); | 
|  | if (msg.has_reverse_sample_rate()) { | 
|  | reverse_sample_rate = msg.reverse_sample_rate(); | 
|  | } | 
|  | int output_sample_rate = msg.sample_rate(); | 
|  | if (msg.has_output_sample_rate()) { | 
|  | output_sample_rate = msg.output_sample_rate(); | 
|  | } | 
|  |  | 
|  | Init(msg.sample_rate(), output_sample_rate, reverse_sample_rate, | 
|  | msg.num_input_channels(), msg.num_output_channels(), | 
|  | msg.num_reverse_channels(), false); | 
|  | if (first_init) { | 
|  | // AttachAecDump() writes an additional init message. Don't start | 
|  | // recording until after the first init to avoid the extra message. | 
|  | auto aec_dump = | 
|  | AecDumpFactory::Create(out_filename, max_size_bytes, &worker_queue); | 
|  | EXPECT_TRUE(aec_dump); | 
|  | apm_->AttachAecDump(std::move(aec_dump)); | 
|  | first_init = false; | 
|  | } | 
|  |  | 
|  | } else if (event_msg.type() == audioproc::Event::REVERSE_STREAM) { | 
|  | const audioproc::ReverseStream msg = event_msg.reverse_stream(); | 
|  |  | 
|  | if (msg.channel_size() > 0) { | 
|  | ASSERT_EQ(revframe_.num_channels, | 
|  | static_cast<size_t>(msg.channel_size())); | 
|  | for (int i = 0; i < msg.channel_size(); ++i) { | 
|  | memcpy(revfloat_cb_->channels()[i], msg.channel(i).data(), | 
|  | msg.channel(i).size()); | 
|  | } | 
|  | } else { | 
|  | memcpy(revframe_.data.data(), msg.data().data(), msg.data().size()); | 
|  | if (format == kFloatFormat) { | 
|  | // We're using an int16 input file; convert to float. | 
|  | ConvertToFloat(revframe_, revfloat_cb_.get()); | 
|  | } | 
|  | } | 
|  | AnalyzeReverseStreamChooser(format); | 
|  |  | 
|  | } else if (event_msg.type() == audioproc::Event::STREAM) { | 
|  | const audioproc::Stream msg = event_msg.stream(); | 
|  | // ProcessStream could have changed this for the output frame. | 
|  | frame_.num_channels = apm_->num_input_channels(); | 
|  |  | 
|  | apm_->set_stream_analog_level(msg.level()); | 
|  | EXPECT_NOERR(apm_->set_stream_delay_ms(msg.delay())); | 
|  | if (msg.has_keypress()) { | 
|  | apm_->set_stream_key_pressed(msg.keypress()); | 
|  | } else { | 
|  | apm_->set_stream_key_pressed(true); | 
|  | } | 
|  |  | 
|  | if (msg.input_channel_size() > 0) { | 
|  | ASSERT_EQ(frame_.num_channels, | 
|  | static_cast<size_t>(msg.input_channel_size())); | 
|  | for (int i = 0; i < msg.input_channel_size(); ++i) { | 
|  | memcpy(float_cb_->channels()[i], msg.input_channel(i).data(), | 
|  | msg.input_channel(i).size()); | 
|  | } | 
|  | } else { | 
|  | memcpy(frame_.data.data(), msg.input_data().data(), | 
|  | msg.input_data().size()); | 
|  | if (format == kFloatFormat) { | 
|  | // We're using an int16 input file; convert to float. | 
|  | ConvertToFloat(frame_, float_cb_.get()); | 
|  | } | 
|  | } | 
|  | ProcessStreamChooser(format); | 
|  | } | 
|  | } | 
|  | apm_->DetachAecDump(); | 
|  | fclose(in_file); | 
|  | } | 
|  |  | 
|  | void ApmTest::VerifyDebugDumpTest(Format format) { | 
|  | rtc::ScopedFakeClock fake_clock; | 
|  | const std::string in_filename = test::ResourcePath("ref03", "aecdump"); | 
|  | std::string format_string; | 
|  | switch (format) { | 
|  | case kIntFormat: | 
|  | format_string = "_int"; | 
|  | break; | 
|  | case kFloatFormat: | 
|  | format_string = "_float"; | 
|  | break; | 
|  | } | 
|  | const std::string ref_filename = test::TempFilename( | 
|  | test::OutputPath(), std::string("ref") + format_string + "_aecdump"); | 
|  | const std::string out_filename = test::TempFilename( | 
|  | test::OutputPath(), std::string("out") + format_string + "_aecdump"); | 
|  | const std::string limited_filename = test::TempFilename( | 
|  | test::OutputPath(), std::string("limited") + format_string + "_aecdump"); | 
|  | const size_t logging_limit_bytes = 100000; | 
|  | // We expect at least this many bytes in the created logfile. | 
|  | const size_t logging_expected_bytes = 95000; | 
|  | EnableAllComponents(); | 
|  | ProcessDebugDump(in_filename, ref_filename, format, -1); | 
|  | ProcessDebugDump(ref_filename, out_filename, format, -1); | 
|  | ProcessDebugDump(ref_filename, limited_filename, format, logging_limit_bytes); | 
|  |  | 
|  | FILE* ref_file = fopen(ref_filename.c_str(), "rb"); | 
|  | FILE* out_file = fopen(out_filename.c_str(), "rb"); | 
|  | FILE* limited_file = fopen(limited_filename.c_str(), "rb"); | 
|  | ASSERT_TRUE(ref_file != NULL); | 
|  | ASSERT_TRUE(out_file != NULL); | 
|  | ASSERT_TRUE(limited_file != NULL); | 
|  | std::unique_ptr<uint8_t[]> ref_bytes; | 
|  | std::unique_ptr<uint8_t[]> out_bytes; | 
|  | std::unique_ptr<uint8_t[]> limited_bytes; | 
|  |  | 
|  | size_t ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes); | 
|  | size_t out_size = ReadMessageBytesFromFile(out_file, &out_bytes); | 
|  | size_t limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes); | 
|  | size_t bytes_read = 0; | 
|  | size_t bytes_read_limited = 0; | 
|  | while (ref_size > 0 && out_size > 0) { | 
|  | bytes_read += ref_size; | 
|  | bytes_read_limited += limited_size; | 
|  | EXPECT_EQ(ref_size, out_size); | 
|  | EXPECT_GE(ref_size, limited_size); | 
|  | EXPECT_EQ(0, memcmp(ref_bytes.get(), out_bytes.get(), ref_size)); | 
|  | EXPECT_EQ(0, memcmp(ref_bytes.get(), limited_bytes.get(), limited_size)); | 
|  | ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes); | 
|  | out_size = ReadMessageBytesFromFile(out_file, &out_bytes); | 
|  | limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes); | 
|  | } | 
|  | EXPECT_GT(bytes_read, 0u); | 
|  | EXPECT_GT(bytes_read_limited, logging_expected_bytes); | 
|  | EXPECT_LE(bytes_read_limited, logging_limit_bytes); | 
|  | EXPECT_NE(0, feof(ref_file)); | 
|  | EXPECT_NE(0, feof(out_file)); | 
|  | EXPECT_NE(0, feof(limited_file)); | 
|  | ASSERT_EQ(0, fclose(ref_file)); | 
|  | ASSERT_EQ(0, fclose(out_file)); | 
|  | ASSERT_EQ(0, fclose(limited_file)); | 
|  | remove(ref_filename.c_str()); | 
|  | remove(out_filename.c_str()); | 
|  | remove(limited_filename.c_str()); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, VerifyDebugDumpInt) { | 
|  | VerifyDebugDumpTest(kIntFormat); | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, VerifyDebugDumpFloat) { | 
|  | VerifyDebugDumpTest(kFloatFormat); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // TODO(andrew): expand test to verify output. | 
|  | TEST_F(ApmTest, DebugDump) { | 
|  | TaskQueueForTest worker_queue("ApmTest_worker_queue"); | 
|  | const std::string filename = | 
|  | test::TempFilename(test::OutputPath(), "debug_aec"); | 
|  | { | 
|  | auto aec_dump = AecDumpFactory::Create("", -1, &worker_queue); | 
|  | EXPECT_FALSE(aec_dump); | 
|  | } | 
|  |  | 
|  | #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP | 
|  | // Stopping without having started should be OK. | 
|  | apm_->DetachAecDump(); | 
|  |  | 
|  | auto aec_dump = AecDumpFactory::Create(filename, -1, &worker_queue); | 
|  | EXPECT_TRUE(aec_dump); | 
|  | apm_->AttachAecDump(std::move(aec_dump)); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessReverseStream( | 
|  | revframe_.data.data(), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | revframe_.data.data())); | 
|  | apm_->DetachAecDump(); | 
|  |  | 
|  | // Verify the file has been written. | 
|  | FILE* fid = fopen(filename.c_str(), "r"); | 
|  | ASSERT_TRUE(fid != NULL); | 
|  |  | 
|  | // Clean it up. | 
|  | ASSERT_EQ(0, fclose(fid)); | 
|  | ASSERT_EQ(0, remove(filename.c_str())); | 
|  | #else | 
|  | // Verify the file has NOT been written. | 
|  | ASSERT_TRUE(fopen(filename.c_str(), "r") == NULL); | 
|  | #endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP | 
|  | } | 
|  |  | 
|  | // TODO(andrew): expand test to verify output. | 
|  | TEST_F(ApmTest, DebugDumpFromFileHandle) { | 
|  | TaskQueueForTest worker_queue("ApmTest_worker_queue"); | 
|  |  | 
|  | const std::string filename = | 
|  | test::TempFilename(test::OutputPath(), "debug_aec"); | 
|  | FileWrapper f = FileWrapper::OpenWriteOnly(filename.c_str()); | 
|  | ASSERT_TRUE(f.is_open()); | 
|  |  | 
|  | #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP | 
|  | // Stopping without having started should be OK. | 
|  | apm_->DetachAecDump(); | 
|  |  | 
|  | auto aec_dump = AecDumpFactory::Create(std::move(f), -1, &worker_queue); | 
|  | EXPECT_TRUE(aec_dump); | 
|  | apm_->AttachAecDump(std::move(aec_dump)); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessReverseStream( | 
|  | revframe_.data.data(), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | revframe_.data.data())); | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  | apm_->DetachAecDump(); | 
|  |  | 
|  | // Verify the file has been written. | 
|  | FILE* fid = fopen(filename.c_str(), "r"); | 
|  | ASSERT_TRUE(fid != NULL); | 
|  |  | 
|  | // Clean it up. | 
|  | ASSERT_EQ(0, fclose(fid)); | 
|  | ASSERT_EQ(0, remove(filename.c_str())); | 
|  | #endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP | 
|  | } | 
|  |  | 
|  | // TODO(andrew): Add a test to process a few frames with different combinations | 
|  | // of enabled components. | 
|  |  | 
|  | TEST_F(ApmTest, Process) { | 
|  | GOOGLE_PROTOBUF_VERIFY_VERSION; | 
|  | audioproc::OutputData ref_data; | 
|  |  | 
|  | if (!absl::GetFlag(FLAGS_write_apm_ref_data)) { | 
|  | OpenFileAndReadMessage(ref_filename_, &ref_data); | 
|  | } else { | 
|  | // Write the desired tests to the protobuf reference file. | 
|  | for (size_t i = 0; i < arraysize(kChannels); i++) { | 
|  | for (size_t j = 0; j < arraysize(kChannels); j++) { | 
|  | for (size_t l = 0; l < arraysize(kProcessSampleRates); l++) { | 
|  | audioproc::Test* test = ref_data.add_test(); | 
|  | test->set_num_reverse_channels(kChannels[i]); | 
|  | test->set_num_input_channels(kChannels[j]); | 
|  | test->set_num_output_channels(kChannels[j]); | 
|  | test->set_sample_rate(kProcessSampleRates[l]); | 
|  | test->set_use_aec_extended_filter(false); | 
|  | } | 
|  | } | 
|  | } | 
|  | #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | // To test the extended filter mode. | 
|  | audioproc::Test* test = ref_data.add_test(); | 
|  | test->set_num_reverse_channels(2); | 
|  | test->set_num_input_channels(2); | 
|  | test->set_num_output_channels(2); | 
|  | test->set_sample_rate(AudioProcessing::kSampleRate32kHz); | 
|  | test->set_use_aec_extended_filter(true); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < ref_data.test_size(); i++) { | 
|  | printf("Running test %d of %d...\n", i + 1, ref_data.test_size()); | 
|  |  | 
|  | audioproc::Test* test = ref_data.mutable_test(i); | 
|  | // TODO(ajm): We no longer allow different input and output channels. Skip | 
|  | // these tests for now, but they should be removed from the set. | 
|  | if (test->num_input_channels() != test->num_output_channels()) | 
|  | continue; | 
|  |  | 
|  | apm_.reset(AudioProcessingBuilderForTesting().Create()); | 
|  | AudioProcessing::Config apm_config = apm_->GetConfig(); | 
|  | apm_config.gain_controller1.analog_gain_controller.enabled = false; | 
|  | apm_->ApplyConfig(apm_config); | 
|  |  | 
|  | EnableAllComponents(); | 
|  |  | 
|  | Init(test->sample_rate(), test->sample_rate(), test->sample_rate(), | 
|  | static_cast<size_t>(test->num_input_channels()), | 
|  | static_cast<size_t>(test->num_output_channels()), | 
|  | static_cast<size_t>(test->num_reverse_channels()), true); | 
|  |  | 
|  | int frame_count = 0; | 
|  | int has_voice_count = 0; | 
|  | int analog_level = 127; | 
|  | int analog_level_average = 0; | 
|  | int max_output_average = 0; | 
|  | float rms_dbfs_average = 0.0f; | 
|  | #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | int stats_index = 0; | 
|  | #endif | 
|  |  | 
|  | while (ReadFrame(far_file_, &revframe_) && ReadFrame(near_file_, &frame_)) { | 
|  | EXPECT_EQ( | 
|  | apm_->kNoError, | 
|  | apm_->ProcessReverseStream( | 
|  | revframe_.data.data(), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels), | 
|  | revframe_.data.data())); | 
|  |  | 
|  | EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); | 
|  | apm_->set_stream_analog_level(analog_level); | 
|  |  | 
|  | EXPECT_EQ(apm_->kNoError, | 
|  | apm_->ProcessStream( | 
|  | frame_.data.data(), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | StreamConfig(frame_.sample_rate_hz, frame_.num_channels), | 
|  | frame_.data.data())); | 
|  |  | 
|  | // Ensure the frame was downmixed properly. | 
|  | EXPECT_EQ(static_cast<size_t>(test->num_output_channels()), | 
|  | frame_.num_channels); | 
|  |  | 
|  | max_output_average += MaxAudioFrame(frame_); | 
|  |  | 
|  | analog_level = apm_->recommended_stream_analog_level(); | 
|  | analog_level_average += analog_level; | 
|  | AudioProcessingStats stats = apm_->GetStatistics(); | 
|  | EXPECT_TRUE(stats.voice_detected); | 
|  | EXPECT_TRUE(stats.output_rms_dbfs); | 
|  | has_voice_count += *stats.voice_detected ? 1 : 0; | 
|  | rms_dbfs_average += *stats.output_rms_dbfs; | 
|  |  | 
|  | size_t frame_size = frame_.samples_per_channel * frame_.num_channels; | 
|  | size_t write_count = | 
|  | fwrite(frame_.data.data(), sizeof(int16_t), frame_size, out_file_); | 
|  | ASSERT_EQ(frame_size, write_count); | 
|  |  | 
|  | // Reset in case of downmixing. | 
|  | frame_.num_channels = static_cast<size_t>(test->num_input_channels()); | 
|  | frame_count++; | 
|  |  | 
|  | #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | const int kStatsAggregationFrameNum = 100;  // 1 second. | 
|  | if (frame_count % kStatsAggregationFrameNum == 0) { | 
|  | // Get echo and delay metrics. | 
|  | AudioProcessingStats stats = apm_->GetStatistics(); | 
|  |  | 
|  | // Echo metrics. | 
|  | const float echo_return_loss = stats.echo_return_loss.value_or(-1.0f); | 
|  | const float echo_return_loss_enhancement = | 
|  | stats.echo_return_loss_enhancement.value_or(-1.0f); | 
|  | const float residual_echo_likelihood = | 
|  | stats.residual_echo_likelihood.value_or(-1.0f); | 
|  | const float residual_echo_likelihood_recent_max = | 
|  | stats.residual_echo_likelihood_recent_max.value_or(-1.0f); | 
|  |  | 
|  | if (!absl::GetFlag(FLAGS_write_apm_ref_data)) { | 
|  | const audioproc::Test::EchoMetrics& reference = | 
|  | test->echo_metrics(stats_index); | 
|  | constexpr float kEpsilon = 0.01; | 
|  | EXPECT_NEAR(echo_return_loss, reference.echo_return_loss(), kEpsilon); | 
|  | EXPECT_NEAR(echo_return_loss_enhancement, | 
|  | reference.echo_return_loss_enhancement(), kEpsilon); | 
|  | EXPECT_NEAR(residual_echo_likelihood, | 
|  | reference.residual_echo_likelihood(), kEpsilon); | 
|  | EXPECT_NEAR(residual_echo_likelihood_recent_max, | 
|  | reference.residual_echo_likelihood_recent_max(), | 
|  | kEpsilon); | 
|  | ++stats_index; | 
|  | } else { | 
|  | audioproc::Test::EchoMetrics* message_echo = test->add_echo_metrics(); | 
|  | message_echo->set_echo_return_loss(echo_return_loss); | 
|  | message_echo->set_echo_return_loss_enhancement( | 
|  | echo_return_loss_enhancement); | 
|  | message_echo->set_residual_echo_likelihood(residual_echo_likelihood); | 
|  | message_echo->set_residual_echo_likelihood_recent_max( | 
|  | residual_echo_likelihood_recent_max); | 
|  | } | 
|  | } | 
|  | #endif  // defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE). | 
|  | } | 
|  | max_output_average /= frame_count; | 
|  | analog_level_average /= frame_count; | 
|  | rms_dbfs_average /= frame_count; | 
|  |  | 
|  | if (!absl::GetFlag(FLAGS_write_apm_ref_data)) { | 
|  | const int kIntNear = 1; | 
|  | // When running the test on a N7 we get a {2, 6} difference of | 
|  | // |has_voice_count| and |max_output_average| is up to 18 higher. | 
|  | // All numbers being consistently higher on N7 compare to ref_data. | 
|  | // TODO(bjornv): If we start getting more of these offsets on Android we | 
|  | // should consider a different approach. Either using one slack for all, | 
|  | // or generate a separate android reference. | 
|  | #if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) | 
|  | const int kHasVoiceCountOffset = 3; | 
|  | const int kHasVoiceCountNear = 8; | 
|  | const int kMaxOutputAverageOffset = 9; | 
|  | const int kMaxOutputAverageNear = 26; | 
|  | #else | 
|  | const int kHasVoiceCountOffset = 0; | 
|  | const int kHasVoiceCountNear = kIntNear; | 
|  | const int kMaxOutputAverageOffset = 0; | 
|  | const int kMaxOutputAverageNear = kIntNear; | 
|  | #endif | 
|  | EXPECT_NEAR(test->has_voice_count(), | 
|  | has_voice_count - kHasVoiceCountOffset, kHasVoiceCountNear); | 
|  |  | 
|  | EXPECT_NEAR(test->analog_level_average(), analog_level_average, kIntNear); | 
|  | EXPECT_NEAR(test->max_output_average(), | 
|  | max_output_average - kMaxOutputAverageOffset, | 
|  | kMaxOutputAverageNear); | 
|  | #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | const double kFloatNear = 0.002; | 
|  | EXPECT_NEAR(test->rms_dbfs_average(), rms_dbfs_average, kFloatNear); | 
|  | #endif | 
|  | } else { | 
|  | test->set_has_voice_count(has_voice_count); | 
|  |  | 
|  | test->set_analog_level_average(analog_level_average); | 
|  | test->set_max_output_average(max_output_average); | 
|  |  | 
|  | #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | test->set_rms_dbfs_average(rms_dbfs_average); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | rewind(far_file_); | 
|  | rewind(near_file_); | 
|  | } | 
|  |  | 
|  | if (absl::GetFlag(FLAGS_write_apm_ref_data)) { | 
|  | OpenFileAndWriteMessage(ref_filename_, ref_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(ApmTest, NoErrorsWithKeyboardChannel) { | 
|  | struct ChannelFormat { | 
|  | AudioProcessing::ChannelLayout in_layout; | 
|  | AudioProcessing::ChannelLayout out_layout; | 
|  | }; | 
|  | ChannelFormat cf[] = { | 
|  | {AudioProcessing::kMonoAndKeyboard, AudioProcessing::kMono}, | 
|  | {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kMono}, | 
|  | {AudioProcessing::kStereoAndKeyboard, AudioProcessing::kStereo}, | 
|  | }; | 
|  |  | 
|  | std::unique_ptr<AudioProcessing> ap( | 
|  | AudioProcessingBuilderForTesting().Create()); | 
|  | // Enable one component just to ensure some processing takes place. | 
|  | AudioProcessing::Config config; | 
|  | config.noise_suppression.enabled = true; | 
|  | ap->ApplyConfig(config); | 
|  | for (size_t i = 0; i < arraysize(cf); ++i) { | 
|  | const int in_rate = 44100; | 
|  | const int out_rate = 48000; | 
|  | ChannelBuffer<float> in_cb(SamplesFromRate(in_rate), | 
|  | TotalChannelsFromLayout(cf[i].in_layout)); | 
|  | ChannelBuffer<float> out_cb(SamplesFromRate(out_rate), | 
|  | ChannelsFromLayout(cf[i].out_layout)); | 
|  | bool has_keyboard = cf[i].in_layout == AudioProcessing::kMonoAndKeyboard || | 
|  | cf[i].in_layout == AudioProcessing::kStereoAndKeyboard; | 
|  | StreamConfig in_sc(in_rate, ChannelsFromLayout(cf[i].in_layout), | 
|  | has_keyboard); | 
|  | StreamConfig out_sc(out_rate, ChannelsFromLayout(cf[i].out_layout)); | 
|  |  | 
|  | // Run over a few chunks. | 
|  | for (int j = 0; j < 10; ++j) { | 
|  | EXPECT_NOERR(ap->ProcessStream(in_cb.channels(), in_sc, out_sc, | 
|  | out_cb.channels())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compares the reference and test arrays over a region around the expected | 
|  | // delay. Finds the highest SNR in that region and adds the variance and squared | 
|  | // error results to the supplied accumulators. | 
|  | void UpdateBestSNR(const float* ref, | 
|  | const float* test, | 
|  | size_t length, | 
|  | int expected_delay, | 
|  | double* variance_acc, | 
|  | double* sq_error_acc) { | 
|  | double best_snr = std::numeric_limits<double>::min(); | 
|  | double best_variance = 0; | 
|  | double best_sq_error = 0; | 
|  | // Search over a region of eight samples around the expected delay. | 
|  | for (int delay = std::max(expected_delay - 4, 0); delay <= expected_delay + 4; | 
|  | ++delay) { | 
|  | double sq_error = 0; | 
|  | double variance = 0; | 
|  | for (size_t i = 0; i < length - delay; ++i) { | 
|  | double error = test[i + delay] - ref[i]; | 
|  | sq_error += error * error; | 
|  | variance += ref[i] * ref[i]; | 
|  | } | 
|  |  | 
|  | if (sq_error == 0) { | 
|  | *variance_acc += variance; | 
|  | return; | 
|  | } | 
|  | double snr = variance / sq_error; | 
|  | if (snr > best_snr) { | 
|  | best_snr = snr; | 
|  | best_variance = variance; | 
|  | best_sq_error = sq_error; | 
|  | } | 
|  | } | 
|  |  | 
|  | *variance_acc += best_variance; | 
|  | *sq_error_acc += best_sq_error; | 
|  | } | 
|  |  | 
|  | // Used to test a multitude of sample rate and channel combinations. It works | 
|  | // by first producing a set of reference files (in SetUpTestCase) that are | 
|  | // assumed to be correct, as the used parameters are verified by other tests | 
|  | // in this collection. Primarily the reference files are all produced at | 
|  | // "native" rates which do not involve any resampling. | 
|  |  | 
|  | // Each test pass produces an output file with a particular format. The output | 
|  | // is matched against the reference file closest to its internal processing | 
|  | // format. If necessary the output is resampled back to its process format. | 
|  | // Due to the resampling distortion, we don't expect identical results, but | 
|  | // enforce SNR thresholds which vary depending on the format. 0 is a special | 
|  | // case SNR which corresponds to inf, or zero error. | 
|  | typedef std::tuple<int, int, int, int, double, double> AudioProcessingTestData; | 
|  | class AudioProcessingTest | 
|  | : public ::testing::TestWithParam<AudioProcessingTestData> { | 
|  | public: | 
|  | AudioProcessingTest() | 
|  | : input_rate_(std::get<0>(GetParam())), | 
|  | output_rate_(std::get<1>(GetParam())), | 
|  | reverse_input_rate_(std::get<2>(GetParam())), | 
|  | reverse_output_rate_(std::get<3>(GetParam())), | 
|  | expected_snr_(std::get<4>(GetParam())), | 
|  | expected_reverse_snr_(std::get<5>(GetParam())) {} | 
|  |  | 
|  | virtual ~AudioProcessingTest() {} | 
|  |  | 
|  | static void SetUpTestSuite() { | 
|  | // Create all needed output reference files. | 
|  | const int kNativeRates[] = {8000, 16000, 32000, 48000}; | 
|  | const size_t kNumChannels[] = {1, 2}; | 
|  | for (size_t i = 0; i < arraysize(kNativeRates); ++i) { | 
|  | for (size_t j = 0; j < arraysize(kNumChannels); ++j) { | 
|  | for (size_t k = 0; k < arraysize(kNumChannels); ++k) { | 
|  | // The reference files always have matching input and output channels. | 
|  | ProcessFormat(kNativeRates[i], kNativeRates[i], kNativeRates[i], | 
|  | kNativeRates[i], kNumChannels[j], kNumChannels[j], | 
|  | kNumChannels[k], kNumChannels[k], "ref"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TearDown() { | 
|  | // Remove "out" files after each test. | 
|  | ClearTempOutFiles(); | 
|  | } | 
|  |  | 
|  | static void TearDownTestSuite() { ClearTempFiles(); } | 
|  |  | 
|  | // Runs a process pass on files with the given parameters and dumps the output | 
|  | // to a file specified with |output_file_prefix|. Both forward and reverse | 
|  | // output streams are dumped. | 
|  | static void ProcessFormat(int input_rate, | 
|  | int output_rate, | 
|  | int reverse_input_rate, | 
|  | int reverse_output_rate, | 
|  | size_t num_input_channels, | 
|  | size_t num_output_channels, | 
|  | size_t num_reverse_input_channels, | 
|  | size_t num_reverse_output_channels, | 
|  | const std::string& output_file_prefix) { | 
|  | std::unique_ptr<AudioProcessing> ap( | 
|  | AudioProcessingBuilderForTesting().Create()); | 
|  | AudioProcessing::Config apm_config = ap->GetConfig(); | 
|  | apm_config.gain_controller1.analog_gain_controller.enabled = false; | 
|  | ap->ApplyConfig(apm_config); | 
|  |  | 
|  | EnableAllAPComponents(ap.get()); | 
|  |  | 
|  | ProcessingConfig processing_config = { | 
|  | {{input_rate, num_input_channels}, | 
|  | {output_rate, num_output_channels}, | 
|  | {reverse_input_rate, num_reverse_input_channels}, | 
|  | {reverse_output_rate, num_reverse_output_channels}}}; | 
|  | ap->Initialize(processing_config); | 
|  |  | 
|  | FILE* far_file = | 
|  | fopen(ResourceFilePath("far", reverse_input_rate).c_str(), "rb"); | 
|  | FILE* near_file = fopen(ResourceFilePath("near", input_rate).c_str(), "rb"); | 
|  | FILE* out_file = fopen( | 
|  | OutputFilePath( | 
|  | output_file_prefix, input_rate, output_rate, reverse_input_rate, | 
|  | reverse_output_rate, num_input_channels, num_output_channels, | 
|  | num_reverse_input_channels, num_reverse_output_channels, kForward) | 
|  | .c_str(), | 
|  | "wb"); | 
|  | FILE* rev_out_file = fopen( | 
|  | OutputFilePath( | 
|  | output_file_prefix, input_rate, output_rate, reverse_input_rate, | 
|  | reverse_output_rate, num_input_channels, num_output_channels, | 
|  | num_reverse_input_channels, num_reverse_output_channels, kReverse) | 
|  | .c_str(), | 
|  | "wb"); | 
|  | ASSERT_TRUE(far_file != NULL); | 
|  | ASSERT_TRUE(near_file != NULL); | 
|  | ASSERT_TRUE(out_file != NULL); | 
|  | ASSERT_TRUE(rev_out_file != NULL); | 
|  |  | 
|  | ChannelBuffer<float> fwd_cb(SamplesFromRate(input_rate), | 
|  | num_input_channels); | 
|  | ChannelBuffer<float> rev_cb(SamplesFromRate(reverse_input_rate), | 
|  | num_reverse_input_channels); | 
|  | ChannelBuffer<float> out_cb(SamplesFromRate(output_rate), | 
|  | num_output_channels); | 
|  | ChannelBuffer<float> rev_out_cb(SamplesFromRate(reverse_output_rate), | 
|  | num_reverse_output_channels); | 
|  |  | 
|  | // Temporary buffers. | 
|  | const int max_length = | 
|  | 2 * std::max(std::max(out_cb.num_frames(), rev_out_cb.num_frames()), | 
|  | std::max(fwd_cb.num_frames(), rev_cb.num_frames())); | 
|  | std::unique_ptr<float[]> float_data(new float[max_length]); | 
|  | std::unique_ptr<int16_t[]> int_data(new int16_t[max_length]); | 
|  |  | 
|  | int analog_level = 127; | 
|  | while (ReadChunk(far_file, int_data.get(), float_data.get(), &rev_cb) && | 
|  | ReadChunk(near_file, int_data.get(), float_data.get(), &fwd_cb)) { | 
|  | EXPECT_NOERR(ap->ProcessReverseStream( | 
|  | rev_cb.channels(), processing_config.reverse_input_stream(), | 
|  | processing_config.reverse_output_stream(), rev_out_cb.channels())); | 
|  |  | 
|  | EXPECT_NOERR(ap->set_stream_delay_ms(0)); | 
|  | ap->set_stream_analog_level(analog_level); | 
|  |  | 
|  | EXPECT_NOERR(ap->ProcessStream( | 
|  | fwd_cb.channels(), StreamConfig(input_rate, num_input_channels), | 
|  | StreamConfig(output_rate, num_output_channels), out_cb.channels())); | 
|  |  | 
|  | // Dump forward output to file. | 
|  | Interleave(out_cb.channels(), out_cb.num_frames(), out_cb.num_channels(), | 
|  | float_data.get()); | 
|  | size_t out_length = out_cb.num_channels() * out_cb.num_frames(); | 
|  |  | 
|  | ASSERT_EQ(out_length, fwrite(float_data.get(), sizeof(float_data[0]), | 
|  | out_length, out_file)); | 
|  |  | 
|  | // Dump reverse output to file. | 
|  | Interleave(rev_out_cb.channels(), rev_out_cb.num_frames(), | 
|  | rev_out_cb.num_channels(), float_data.get()); | 
|  | size_t rev_out_length = | 
|  | rev_out_cb.num_channels() * rev_out_cb.num_frames(); | 
|  |  | 
|  | ASSERT_EQ(rev_out_length, fwrite(float_data.get(), sizeof(float_data[0]), | 
|  | rev_out_length, rev_out_file)); | 
|  |  | 
|  | analog_level = ap->recommended_stream_analog_level(); | 
|  | } | 
|  | fclose(far_file); | 
|  | fclose(near_file); | 
|  | fclose(out_file); | 
|  | fclose(rev_out_file); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | int input_rate_; | 
|  | int output_rate_; | 
|  | int reverse_input_rate_; | 
|  | int reverse_output_rate_; | 
|  | double expected_snr_; | 
|  | double expected_reverse_snr_; | 
|  | }; | 
|  |  | 
|  | TEST_P(AudioProcessingTest, Formats) { | 
|  | struct ChannelFormat { | 
|  | int num_input; | 
|  | int num_output; | 
|  | int num_reverse_input; | 
|  | int num_reverse_output; | 
|  | }; | 
|  | ChannelFormat cf[] = { | 
|  | {1, 1, 1, 1}, {1, 1, 2, 1}, {2, 1, 1, 1}, | 
|  | {2, 1, 2, 1}, {2, 2, 1, 1}, {2, 2, 2, 2}, | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(cf); ++i) { | 
|  | ProcessFormat(input_rate_, output_rate_, reverse_input_rate_, | 
|  | reverse_output_rate_, cf[i].num_input, cf[i].num_output, | 
|  | cf[i].num_reverse_input, cf[i].num_reverse_output, "out"); | 
|  |  | 
|  | // Verify output for both directions. | 
|  | std::vector<StreamDirection> stream_directions; | 
|  | stream_directions.push_back(kForward); | 
|  | stream_directions.push_back(kReverse); | 
|  | for (StreamDirection file_direction : stream_directions) { | 
|  | const int in_rate = file_direction ? reverse_input_rate_ : input_rate_; | 
|  | const int out_rate = file_direction ? reverse_output_rate_ : output_rate_; | 
|  | const int out_num = | 
|  | file_direction ? cf[i].num_reverse_output : cf[i].num_output; | 
|  | const double expected_snr = | 
|  | file_direction ? expected_reverse_snr_ : expected_snr_; | 
|  |  | 
|  | const int min_ref_rate = std::min(in_rate, out_rate); | 
|  | int ref_rate; | 
|  |  | 
|  | if (min_ref_rate > 32000) { | 
|  | ref_rate = 48000; | 
|  | } else if (min_ref_rate > 16000) { | 
|  | ref_rate = 32000; | 
|  | } else if (min_ref_rate > 8000) { | 
|  | ref_rate = 16000; | 
|  | } else { | 
|  | ref_rate = 8000; | 
|  | } | 
|  |  | 
|  | FILE* out_file = fopen( | 
|  | OutputFilePath("out", input_rate_, output_rate_, reverse_input_rate_, | 
|  | reverse_output_rate_, cf[i].num_input, | 
|  | cf[i].num_output, cf[i].num_reverse_input, | 
|  | cf[i].num_reverse_output, file_direction) | 
|  | .c_str(), | 
|  | "rb"); | 
|  | // The reference files always have matching input and output channels. | 
|  | FILE* ref_file = | 
|  | fopen(OutputFilePath("ref", ref_rate, ref_rate, ref_rate, ref_rate, | 
|  | cf[i].num_output, cf[i].num_output, | 
|  | cf[i].num_reverse_output, | 
|  | cf[i].num_reverse_output, file_direction) | 
|  | .c_str(), | 
|  | "rb"); | 
|  | ASSERT_TRUE(out_file != NULL); | 
|  | ASSERT_TRUE(ref_file != NULL); | 
|  |  | 
|  | const size_t ref_length = SamplesFromRate(ref_rate) * out_num; | 
|  | const size_t out_length = SamplesFromRate(out_rate) * out_num; | 
|  | // Data from the reference file. | 
|  | std::unique_ptr<float[]> ref_data(new float[ref_length]); | 
|  | // Data from the output file. | 
|  | std::unique_ptr<float[]> out_data(new float[out_length]); | 
|  | // Data from the resampled output, in case the reference and output rates | 
|  | // don't match. | 
|  | std::unique_ptr<float[]> cmp_data(new float[ref_length]); | 
|  |  | 
|  | PushResampler<float> resampler; | 
|  | resampler.InitializeIfNeeded(out_rate, ref_rate, out_num); | 
|  |  | 
|  | // Compute the resampling delay of the output relative to the reference, | 
|  | // to find the region over which we should search for the best SNR. | 
|  | float expected_delay_sec = 0; | 
|  | if (in_rate != ref_rate) { | 
|  | // Input resampling delay. | 
|  | expected_delay_sec += | 
|  | PushSincResampler::AlgorithmicDelaySeconds(in_rate); | 
|  | } | 
|  | if (out_rate != ref_rate) { | 
|  | // Output resampling delay. | 
|  | expected_delay_sec += | 
|  | PushSincResampler::AlgorithmicDelaySeconds(ref_rate); | 
|  | // Delay of converting the output back to its processing rate for | 
|  | // testing. | 
|  | expected_delay_sec += | 
|  | PushSincResampler::AlgorithmicDelaySeconds(out_rate); | 
|  | } | 
|  | int expected_delay = | 
|  | std::floor(expected_delay_sec * ref_rate + 0.5f) * out_num; | 
|  |  | 
|  | double variance = 0; | 
|  | double sq_error = 0; | 
|  | while (fread(out_data.get(), sizeof(out_data[0]), out_length, out_file) && | 
|  | fread(ref_data.get(), sizeof(ref_data[0]), ref_length, ref_file)) { | 
|  | float* out_ptr = out_data.get(); | 
|  | if (out_rate != ref_rate) { | 
|  | // Resample the output back to its internal processing rate if | 
|  | // necssary. | 
|  | ASSERT_EQ(ref_length, | 
|  | static_cast<size_t>(resampler.Resample( | 
|  | out_ptr, out_length, cmp_data.get(), ref_length))); | 
|  | out_ptr = cmp_data.get(); | 
|  | } | 
|  |  | 
|  | // Update the |sq_error| and |variance| accumulators with the highest | 
|  | // SNR of reference vs output. | 
|  | UpdateBestSNR(ref_data.get(), out_ptr, ref_length, expected_delay, | 
|  | &variance, &sq_error); | 
|  | } | 
|  |  | 
|  | std::cout << "(" << input_rate_ << ", " << output_rate_ << ", " | 
|  | << reverse_input_rate_ << ", " << reverse_output_rate_ << ", " | 
|  | << cf[i].num_input << ", " << cf[i].num_output << ", " | 
|  | << cf[i].num_reverse_input << ", " << cf[i].num_reverse_output | 
|  | << ", " << file_direction << "): "; | 
|  | if (sq_error > 0) { | 
|  | double snr = 10 * log10(variance / sq_error); | 
|  | EXPECT_GE(snr, expected_snr); | 
|  | EXPECT_NE(0, expected_snr); | 
|  | std::cout << "SNR=" << snr << " dB" << std::endl; | 
|  | } else { | 
|  | std::cout << "SNR=inf dB" << std::endl; | 
|  | } | 
|  |  | 
|  | fclose(out_file); | 
|  | fclose(ref_file); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE) | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | CommonFormats, | 
|  | AudioProcessingTest, | 
|  | ::testing::Values(std::make_tuple(48000, 48000, 48000, 48000, 0, 0), | 
|  | std::make_tuple(48000, 48000, 32000, 48000, 40, 30), | 
|  | std::make_tuple(48000, 48000, 16000, 48000, 40, 20), | 
|  | std::make_tuple(48000, 44100, 48000, 44100, 20, 20), | 
|  | std::make_tuple(48000, 44100, 32000, 44100, 20, 15), | 
|  | std::make_tuple(48000, 44100, 16000, 44100, 20, 15), | 
|  | std::make_tuple(48000, 32000, 48000, 32000, 30, 35), | 
|  | std::make_tuple(48000, 32000, 32000, 32000, 30, 0), | 
|  | std::make_tuple(48000, 32000, 16000, 32000, 30, 20), | 
|  | std::make_tuple(48000, 16000, 48000, 16000, 25, 20), | 
|  | std::make_tuple(48000, 16000, 32000, 16000, 25, 20), | 
|  | std::make_tuple(48000, 16000, 16000, 16000, 25, 0), | 
|  |  | 
|  | std::make_tuple(44100, 48000, 48000, 48000, 30, 0), | 
|  | std::make_tuple(44100, 48000, 32000, 48000, 30, 30), | 
|  | std::make_tuple(44100, 48000, 16000, 48000, 30, 20), | 
|  | std::make_tuple(44100, 44100, 48000, 44100, 20, 20), | 
|  | std::make_tuple(44100, 44100, 32000, 44100, 20, 15), | 
|  | std::make_tuple(44100, 44100, 16000, 44100, 20, 15), | 
|  | std::make_tuple(44100, 32000, 48000, 32000, 30, 35), | 
|  | std::make_tuple(44100, 32000, 32000, 32000, 30, 0), | 
|  | std::make_tuple(44100, 32000, 16000, 32000, 30, 20), | 
|  | std::make_tuple(44100, 16000, 48000, 16000, 25, 20), | 
|  | std::make_tuple(44100, 16000, 32000, 16000, 25, 20), | 
|  | std::make_tuple(44100, 16000, 16000, 16000, 25, 0), | 
|  |  | 
|  | std::make_tuple(32000, 48000, 48000, 48000, 15, 0), | 
|  | std::make_tuple(32000, 48000, 32000, 48000, 15, 30), | 
|  | std::make_tuple(32000, 48000, 16000, 48000, 15, 20), | 
|  | std::make_tuple(32000, 44100, 48000, 44100, 19, 20), | 
|  | std::make_tuple(32000, 44100, 32000, 44100, 19, 15), | 
|  | std::make_tuple(32000, 44100, 16000, 44100, 19, 15), | 
|  | std::make_tuple(32000, 32000, 48000, 32000, 40, 35), | 
|  | std::make_tuple(32000, 32000, 32000, 32000, 0, 0), | 
|  | std::make_tuple(32000, 32000, 16000, 32000, 39, 20), | 
|  | std::make_tuple(32000, 16000, 48000, 16000, 25, 20), | 
|  | std::make_tuple(32000, 16000, 32000, 16000, 25, 20), | 
|  | std::make_tuple(32000, 16000, 16000, 16000, 25, 0), | 
|  |  | 
|  | std::make_tuple(16000, 48000, 48000, 48000, 9, 0), | 
|  | std::make_tuple(16000, 48000, 32000, 48000, 9, 30), | 
|  | std::make_tuple(16000, 48000, 16000, 48000, 9, 20), | 
|  | std::make_tuple(16000, 44100, 48000, 44100, 15, 20), | 
|  | std::make_tuple(16000, 44100, 32000, 44100, 15, 15), | 
|  | std::make_tuple(16000, 44100, 16000, 44100, 15, 15), | 
|  | std::make_tuple(16000, 32000, 48000, 32000, 25, 35), | 
|  | std::make_tuple(16000, 32000, 32000, 32000, 25, 0), | 
|  | std::make_tuple(16000, 32000, 16000, 32000, 25, 20), | 
|  | std::make_tuple(16000, 16000, 48000, 16000, 39, 20), | 
|  | std::make_tuple(16000, 16000, 32000, 16000, 39, 20), | 
|  | std::make_tuple(16000, 16000, 16000, 16000, 0, 0))); | 
|  |  | 
|  | #elif defined(WEBRTC_AUDIOPROC_FIXED_PROFILE) | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | CommonFormats, | 
|  | AudioProcessingTest, | 
|  | ::testing::Values(std::make_tuple(48000, 48000, 48000, 48000, 19, 0), | 
|  | std::make_tuple(48000, 48000, 32000, 48000, 19, 30), | 
|  | std::make_tuple(48000, 48000, 16000, 48000, 19, 20), | 
|  | std::make_tuple(48000, 44100, 48000, 44100, 15, 20), | 
|  | std::make_tuple(48000, 44100, 32000, 44100, 15, 15), | 
|  | std::make_tuple(48000, 44100, 16000, 44100, 15, 15), | 
|  | std::make_tuple(48000, 32000, 48000, 32000, 19, 35), | 
|  | std::make_tuple(48000, 32000, 32000, 32000, 19, 0), | 
|  | std::make_tuple(48000, 32000, 16000, 32000, 19, 20), | 
|  | std::make_tuple(48000, 16000, 48000, 16000, 20, 20), | 
|  | std::make_tuple(48000, 16000, 32000, 16000, 20, 20), | 
|  | std::make_tuple(48000, 16000, 16000, 16000, 20, 0), | 
|  |  | 
|  | std::make_tuple(44100, 48000, 48000, 48000, 15, 0), | 
|  | std::make_tuple(44100, 48000, 32000, 48000, 15, 30), | 
|  | std::make_tuple(44100, 48000, 16000, 48000, 15, 20), | 
|  | std::make_tuple(44100, 44100, 48000, 44100, 15, 20), | 
|  | std::make_tuple(44100, 44100, 32000, 44100, 15, 15), | 
|  | std::make_tuple(44100, 44100, 16000, 44100, 15, 15), | 
|  | std::make_tuple(44100, 32000, 48000, 32000, 18, 35), | 
|  | std::make_tuple(44100, 32000, 32000, 32000, 18, 0), | 
|  | std::make_tuple(44100, 32000, 16000, 32000, 18, 20), | 
|  | std::make_tuple(44100, 16000, 48000, 16000, 19, 20), | 
|  | std::make_tuple(44100, 16000, 32000, 16000, 19, 20), | 
|  | std::make_tuple(44100, 16000, 16000, 16000, 19, 0), | 
|  |  | 
|  | std::make_tuple(32000, 48000, 48000, 48000, 17, 0), | 
|  | std::make_tuple(32000, 48000, 32000, 48000, 17, 30), | 
|  | std::make_tuple(32000, 48000, 16000, 48000, 17, 20), | 
|  | std::make_tuple(32000, 44100, 48000, 44100, 20, 20), | 
|  | std::make_tuple(32000, 44100, 32000, 44100, 20, 15), | 
|  | std::make_tuple(32000, 44100, 16000, 44100, 20, 15), | 
|  | std::make_tuple(32000, 32000, 48000, 32000, 27, 35), | 
|  | std::make_tuple(32000, 32000, 32000, 32000, 0, 0), | 
|  | std::make_tuple(32000, 32000, 16000, 32000, 30, 20), | 
|  | std::make_tuple(32000, 16000, 48000, 16000, 20, 20), | 
|  | std::make_tuple(32000, 16000, 32000, 16000, 20, 20), | 
|  | std::make_tuple(32000, 16000, 16000, 16000, 20, 0), | 
|  |  | 
|  | std::make_tuple(16000, 48000, 48000, 48000, 11, 0), | 
|  | std::make_tuple(16000, 48000, 32000, 48000, 11, 30), | 
|  | std::make_tuple(16000, 48000, 16000, 48000, 11, 20), | 
|  | std::make_tuple(16000, 44100, 48000, 44100, 15, 20), | 
|  | std::make_tuple(16000, 44100, 32000, 44100, 15, 15), | 
|  | std::make_tuple(16000, 44100, 16000, 44100, 15, 15), | 
|  | std::make_tuple(16000, 32000, 48000, 32000, 24, 35), | 
|  | std::make_tuple(16000, 32000, 32000, 32000, 24, 0), | 
|  | std::make_tuple(16000, 32000, 16000, 32000, 25, 20), | 
|  | std::make_tuple(16000, 16000, 48000, 16000, 28, 20), | 
|  | std::make_tuple(16000, 16000, 32000, 16000, 28, 20), | 
|  | std::make_tuple(16000, 16000, 16000, 16000, 0, 0))); | 
|  | #endif | 
|  |  | 
|  | // Produces a scoped trace debug output. | 
|  | std::string ProduceDebugText(int render_input_sample_rate_hz, | 
|  | int render_output_sample_rate_hz, | 
|  | int capture_input_sample_rate_hz, | 
|  | int capture_output_sample_rate_hz, | 
|  | size_t render_input_num_channels, | 
|  | size_t render_output_num_channels, | 
|  | size_t capture_input_num_channels, | 
|  | size_t capture_output_num_channels) { | 
|  | rtc::StringBuilder ss; | 
|  | ss << "Sample rates:" | 
|  | "\n Render input: " | 
|  | << render_input_sample_rate_hz | 
|  | << " Hz" | 
|  | "\n Render output: " | 
|  | << render_output_sample_rate_hz | 
|  | << " Hz" | 
|  | "\n Capture input: " | 
|  | << capture_input_sample_rate_hz | 
|  | << " Hz" | 
|  | "\n Capture output: " | 
|  | << capture_output_sample_rate_hz | 
|  | << " Hz" | 
|  | "\nNumber of channels:" | 
|  | "\n Render input: " | 
|  | << render_input_num_channels | 
|  | << "\n Render output: " << render_output_num_channels | 
|  | << "\n Capture input: " << capture_input_num_channels | 
|  | << "\n Capture output: " << capture_output_num_channels; | 
|  | return ss.Release(); | 
|  | } | 
|  |  | 
|  | // Validates that running the audio processing module using various combinations | 
|  | // of sample rates and number of channels works as intended. | 
|  | void RunApmRateAndChannelTest( | 
|  | rtc::ArrayView<const int> sample_rates_hz, | 
|  | rtc::ArrayView<const int> render_channel_counts, | 
|  | rtc::ArrayView<const int> capture_channel_counts) { | 
|  | std::unique_ptr<AudioProcessing> apm( | 
|  | AudioProcessingBuilderForTesting().Create()); | 
|  | webrtc::AudioProcessing::Config apm_config; | 
|  | apm_config.echo_canceller.enabled = true; | 
|  | apm->ApplyConfig(apm_config); | 
|  |  | 
|  | StreamConfig render_input_stream_config; | 
|  | StreamConfig render_output_stream_config; | 
|  | StreamConfig capture_input_stream_config; | 
|  | StreamConfig capture_output_stream_config; | 
|  |  | 
|  | std::vector<float> render_input_frame_channels; | 
|  | std::vector<float*> render_input_frame; | 
|  | std::vector<float> render_output_frame_channels; | 
|  | std::vector<float*> render_output_frame; | 
|  | std::vector<float> capture_input_frame_channels; | 
|  | std::vector<float*> capture_input_frame; | 
|  | std::vector<float> capture_output_frame_channels; | 
|  | std::vector<float*> capture_output_frame; | 
|  |  | 
|  | for (auto render_input_sample_rate_hz : sample_rates_hz) { | 
|  | for (auto render_output_sample_rate_hz : sample_rates_hz) { | 
|  | for (auto capture_input_sample_rate_hz : sample_rates_hz) { | 
|  | for (auto capture_output_sample_rate_hz : sample_rates_hz) { | 
|  | for (size_t render_input_num_channels : render_channel_counts) { | 
|  | for (size_t capture_input_num_channels : capture_channel_counts) { | 
|  | size_t render_output_num_channels = render_input_num_channels; | 
|  | size_t capture_output_num_channels = capture_input_num_channels; | 
|  | auto populate_audio_frame = [](int sample_rate_hz, | 
|  | size_t num_channels, | 
|  | StreamConfig* cfg, | 
|  | std::vector<float>* channels_data, | 
|  | std::vector<float*>* frame_data) { | 
|  | cfg->set_sample_rate_hz(sample_rate_hz); | 
|  | cfg->set_num_channels(num_channels); | 
|  | cfg->set_has_keyboard(false); | 
|  |  | 
|  | size_t max_frame_size = ceil(sample_rate_hz / 100.f); | 
|  | channels_data->resize(num_channels * max_frame_size); | 
|  | std::fill(channels_data->begin(), channels_data->end(), 0.5f); | 
|  | frame_data->resize(num_channels); | 
|  | for (size_t channel = 0; channel < num_channels; ++channel) { | 
|  | (*frame_data)[channel] = | 
|  | &(*channels_data)[channel * max_frame_size]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | populate_audio_frame( | 
|  | render_input_sample_rate_hz, render_input_num_channels, | 
|  | &render_input_stream_config, &render_input_frame_channels, | 
|  | &render_input_frame); | 
|  | populate_audio_frame( | 
|  | render_output_sample_rate_hz, render_output_num_channels, | 
|  | &render_output_stream_config, &render_output_frame_channels, | 
|  | &render_output_frame); | 
|  | populate_audio_frame( | 
|  | capture_input_sample_rate_hz, capture_input_num_channels, | 
|  | &capture_input_stream_config, &capture_input_frame_channels, | 
|  | &capture_input_frame); | 
|  | populate_audio_frame( | 
|  | capture_output_sample_rate_hz, capture_output_num_channels, | 
|  | &capture_output_stream_config, &capture_output_frame_channels, | 
|  | &capture_output_frame); | 
|  |  | 
|  | for (size_t frame = 0; frame < 2; ++frame) { | 
|  | SCOPED_TRACE(ProduceDebugText( | 
|  | render_input_sample_rate_hz, render_output_sample_rate_hz, | 
|  | capture_input_sample_rate_hz, capture_output_sample_rate_hz, | 
|  | render_input_num_channels, render_output_num_channels, | 
|  | render_input_num_channels, capture_output_num_channels)); | 
|  |  | 
|  | int result = apm->ProcessReverseStream( | 
|  | &render_input_frame[0], render_input_stream_config, | 
|  | render_output_stream_config, &render_output_frame[0]); | 
|  | EXPECT_EQ(result, AudioProcessing::kNoError); | 
|  | result = apm->ProcessStream( | 
|  | &capture_input_frame[0], capture_input_stream_config, | 
|  | capture_output_stream_config, &capture_output_frame[0]); | 
|  | EXPECT_EQ(result, AudioProcessing::kNoError); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | constexpr void Toggle(bool& b) { | 
|  | b ^= true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(RuntimeSettingTest, TestDefaultCtor) { | 
|  | auto s = AudioProcessing::RuntimeSetting(); | 
|  | EXPECT_EQ(AudioProcessing::RuntimeSetting::Type::kNotSpecified, s.type()); | 
|  | } | 
|  |  | 
|  | TEST(RuntimeSettingTest, TestUsageWithSwapQueue) { | 
|  | SwapQueue<AudioProcessing::RuntimeSetting> q(1); | 
|  | auto s = AudioProcessing::RuntimeSetting(); | 
|  | ASSERT_TRUE(q.Insert(&s)); | 
|  | ASSERT_TRUE(q.Remove(&s)); | 
|  | EXPECT_EQ(AudioProcessing::RuntimeSetting::Type::kNotSpecified, s.type()); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, EnablePostProcessing) { | 
|  | // Verify that apm uses a capture post processing module if one is provided. | 
|  | auto mock_post_processor_ptr = | 
|  | new ::testing::NiceMock<test::MockCustomProcessing>(); | 
|  | auto mock_post_processor = | 
|  | std::unique_ptr<CustomProcessing>(mock_post_processor_ptr); | 
|  | rtc::scoped_refptr<AudioProcessing> apm = | 
|  | AudioProcessingBuilderForTesting() | 
|  | .SetCapturePostProcessing(std::move(mock_post_processor)) | 
|  | .Create(); | 
|  |  | 
|  | Int16FrameData audio; | 
|  | audio.num_channels = 1; | 
|  | SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz); | 
|  |  | 
|  | EXPECT_CALL(*mock_post_processor_ptr, Process(::testing::_)).Times(1); | 
|  | apm->ProcessStream(audio.data.data(), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | audio.data.data()); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, EnablePreProcessing) { | 
|  | // Verify that apm uses a capture post processing module if one is provided. | 
|  | auto mock_pre_processor_ptr = | 
|  | new ::testing::NiceMock<test::MockCustomProcessing>(); | 
|  | auto mock_pre_processor = | 
|  | std::unique_ptr<CustomProcessing>(mock_pre_processor_ptr); | 
|  | rtc::scoped_refptr<AudioProcessing> apm = | 
|  | AudioProcessingBuilderForTesting() | 
|  | .SetRenderPreProcessing(std::move(mock_pre_processor)) | 
|  | .Create(); | 
|  |  | 
|  | Int16FrameData audio; | 
|  | audio.num_channels = 1; | 
|  | SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz); | 
|  |  | 
|  | EXPECT_CALL(*mock_pre_processor_ptr, Process(::testing::_)).Times(1); | 
|  | apm->ProcessReverseStream( | 
|  | audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | audio.data.data()); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, EnableCaptureAnalyzer) { | 
|  | // Verify that apm uses a capture analyzer if one is provided. | 
|  | auto mock_capture_analyzer_ptr = | 
|  | new ::testing::NiceMock<test::MockCustomAudioAnalyzer>(); | 
|  | auto mock_capture_analyzer = | 
|  | std::unique_ptr<CustomAudioAnalyzer>(mock_capture_analyzer_ptr); | 
|  | rtc::scoped_refptr<AudioProcessing> apm = | 
|  | AudioProcessingBuilderForTesting() | 
|  | .SetCaptureAnalyzer(std::move(mock_capture_analyzer)) | 
|  | .Create(); | 
|  |  | 
|  | Int16FrameData audio; | 
|  | audio.num_channels = 1; | 
|  | SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz); | 
|  |  | 
|  | EXPECT_CALL(*mock_capture_analyzer_ptr, Analyze(::testing::_)).Times(1); | 
|  | apm->ProcessStream(audio.data.data(), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | audio.data.data()); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, PreProcessingReceivesRuntimeSettings) { | 
|  | auto mock_pre_processor_ptr = | 
|  | new ::testing::NiceMock<test::MockCustomProcessing>(); | 
|  | auto mock_pre_processor = | 
|  | std::unique_ptr<CustomProcessing>(mock_pre_processor_ptr); | 
|  | rtc::scoped_refptr<AudioProcessing> apm = | 
|  | AudioProcessingBuilderForTesting() | 
|  | .SetRenderPreProcessing(std::move(mock_pre_processor)) | 
|  | .Create(); | 
|  | apm->SetRuntimeSetting( | 
|  | AudioProcessing::RuntimeSetting::CreateCustomRenderSetting(0)); | 
|  |  | 
|  | // RuntimeSettings forwarded during 'Process*Stream' calls. | 
|  | // Therefore we have to make one such call. | 
|  | Int16FrameData audio; | 
|  | audio.num_channels = 1; | 
|  | SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz); | 
|  |  | 
|  | EXPECT_CALL(*mock_pre_processor_ptr, SetRuntimeSetting(::testing::_)) | 
|  | .Times(1); | 
|  | apm->ProcessReverseStream( | 
|  | audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | audio.data.data()); | 
|  | } | 
|  |  | 
|  | class MyEchoControlFactory : public EchoControlFactory { | 
|  | public: | 
|  | std::unique_ptr<EchoControl> Create(int sample_rate_hz) { | 
|  | auto ec = new test::MockEchoControl(); | 
|  | EXPECT_CALL(*ec, AnalyzeRender(::testing::_)).Times(1); | 
|  | EXPECT_CALL(*ec, AnalyzeCapture(::testing::_)).Times(2); | 
|  | EXPECT_CALL(*ec, ProcessCapture(::testing::_, ::testing::_, ::testing::_)) | 
|  | .Times(2); | 
|  | return std::unique_ptr<EchoControl>(ec); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<EchoControl> Create(int sample_rate_hz, | 
|  | int num_render_channels, | 
|  | int num_capture_channels) { | 
|  | return Create(sample_rate_hz); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(ApmConfiguration, EchoControlInjection) { | 
|  | // Verify that apm uses an injected echo controller if one is provided. | 
|  | webrtc::Config webrtc_config; | 
|  | std::unique_ptr<EchoControlFactory> echo_control_factory( | 
|  | new MyEchoControlFactory()); | 
|  |  | 
|  | rtc::scoped_refptr<AudioProcessing> apm = | 
|  | AudioProcessingBuilderForTesting() | 
|  | .SetEchoControlFactory(std::move(echo_control_factory)) | 
|  | .Create(webrtc_config); | 
|  |  | 
|  | Int16FrameData audio; | 
|  | audio.num_channels = 1; | 
|  | SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz); | 
|  | apm->ProcessStream(audio.data.data(), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | audio.data.data()); | 
|  | apm->ProcessReverseStream( | 
|  | audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | audio.data.data()); | 
|  | apm->ProcessStream(audio.data.data(), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | StreamConfig(audio.sample_rate_hz, audio.num_channels), | 
|  | audio.data.data()); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<AudioProcessing> CreateApm(bool mobile_aec) { | 
|  | Config old_config; | 
|  | std::unique_ptr<AudioProcessing> apm( | 
|  | AudioProcessingBuilderForTesting().Create(old_config)); | 
|  | if (!apm) { | 
|  | return apm; | 
|  | } | 
|  |  | 
|  | ProcessingConfig processing_config = { | 
|  | {{32000, 1}, {32000, 1}, {32000, 1}, {32000, 1}}}; | 
|  |  | 
|  | if (apm->Initialize(processing_config) != 0) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Disable all components except for an AEC and the residual echo detector. | 
|  | AudioProcessing::Config apm_config; | 
|  | apm_config.residual_echo_detector.enabled = true; | 
|  | apm_config.high_pass_filter.enabled = false; | 
|  | apm_config.gain_controller1.enabled = false; | 
|  | apm_config.gain_controller2.enabled = false; | 
|  | apm_config.echo_canceller.enabled = true; | 
|  | apm_config.echo_canceller.mobile_mode = mobile_aec; | 
|  | apm_config.noise_suppression.enabled = false; | 
|  | apm_config.level_estimation.enabled = false; | 
|  | apm_config.voice_detection.enabled = false; | 
|  | apm->ApplyConfig(apm_config); | 
|  | return apm; | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) || defined(WEBRTC_MAC) | 
|  | #define MAYBE_ApmStatistics DISABLED_ApmStatistics | 
|  | #else | 
|  | #define MAYBE_ApmStatistics ApmStatistics | 
|  | #endif | 
|  |  | 
|  | TEST(MAYBE_ApmStatistics, AECEnabledTest) { | 
|  | // Set up APM with AEC3 and process some audio. | 
|  | std::unique_ptr<AudioProcessing> apm = CreateApm(false); | 
|  | ASSERT_TRUE(apm); | 
|  | AudioProcessing::Config apm_config; | 
|  | apm_config.echo_canceller.enabled = true; | 
|  | apm->ApplyConfig(apm_config); | 
|  |  | 
|  | // Set up an audioframe. | 
|  | Int16FrameData frame; | 
|  | frame.num_channels = 1; | 
|  | SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz); | 
|  |  | 
|  | // Fill the audio frame with a sawtooth pattern. | 
|  | int16_t* ptr = frame.data.data(); | 
|  | for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) { | 
|  | ptr[i] = 10000 * ((i % 3) - 1); | 
|  | } | 
|  |  | 
|  | // Do some processing. | 
|  | for (int i = 0; i < 200; i++) { | 
|  | EXPECT_EQ(apm->ProcessReverseStream( | 
|  | frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | EXPECT_EQ(apm->set_stream_delay_ms(0), 0); | 
|  | EXPECT_EQ(apm->ProcessStream( | 
|  | frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // Test statistics interface. | 
|  | AudioProcessingStats stats = apm->GetStatistics(); | 
|  | // We expect all statistics to be set and have a sensible value. | 
|  | ASSERT_TRUE(stats.residual_echo_likelihood); | 
|  | EXPECT_GE(*stats.residual_echo_likelihood, 0.0); | 
|  | EXPECT_LE(*stats.residual_echo_likelihood, 1.0); | 
|  | ASSERT_TRUE(stats.residual_echo_likelihood_recent_max); | 
|  | EXPECT_GE(*stats.residual_echo_likelihood_recent_max, 0.0); | 
|  | EXPECT_LE(*stats.residual_echo_likelihood_recent_max, 1.0); | 
|  | ASSERT_TRUE(stats.echo_return_loss); | 
|  | EXPECT_NE(*stats.echo_return_loss, -100.0); | 
|  | ASSERT_TRUE(stats.echo_return_loss_enhancement); | 
|  | EXPECT_NE(*stats.echo_return_loss_enhancement, -100.0); | 
|  | } | 
|  |  | 
|  | TEST(MAYBE_ApmStatistics, AECMEnabledTest) { | 
|  | // Set up APM with AECM and process some audio. | 
|  | std::unique_ptr<AudioProcessing> apm = CreateApm(true); | 
|  | ASSERT_TRUE(apm); | 
|  |  | 
|  | // Set up an audioframe. | 
|  | Int16FrameData frame; | 
|  | frame.num_channels = 1; | 
|  | SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz); | 
|  |  | 
|  | // Fill the audio frame with a sawtooth pattern. | 
|  | int16_t* ptr = frame.data.data(); | 
|  | for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) { | 
|  | ptr[i] = 10000 * ((i % 3) - 1); | 
|  | } | 
|  |  | 
|  | // Do some processing. | 
|  | for (int i = 0; i < 200; i++) { | 
|  | EXPECT_EQ(apm->ProcessReverseStream( | 
|  | frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | EXPECT_EQ(apm->set_stream_delay_ms(0), 0); | 
|  | EXPECT_EQ(apm->ProcessStream( | 
|  | frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // Test statistics interface. | 
|  | AudioProcessingStats stats = apm->GetStatistics(); | 
|  | // We expect only the residual echo detector statistics to be set and have a | 
|  | // sensible value. | 
|  | EXPECT_TRUE(stats.residual_echo_likelihood); | 
|  | if (stats.residual_echo_likelihood) { | 
|  | EXPECT_GE(*stats.residual_echo_likelihood, 0.0); | 
|  | EXPECT_LE(*stats.residual_echo_likelihood, 1.0); | 
|  | } | 
|  | EXPECT_TRUE(stats.residual_echo_likelihood_recent_max); | 
|  | if (stats.residual_echo_likelihood_recent_max) { | 
|  | EXPECT_GE(*stats.residual_echo_likelihood_recent_max, 0.0); | 
|  | EXPECT_LE(*stats.residual_echo_likelihood_recent_max, 1.0); | 
|  | } | 
|  | EXPECT_FALSE(stats.echo_return_loss); | 
|  | EXPECT_FALSE(stats.echo_return_loss_enhancement); | 
|  | } | 
|  |  | 
|  | TEST(ApmStatistics, ReportOutputRmsDbfs) { | 
|  | ProcessingConfig processing_config = { | 
|  | {{32000, 1}, {32000, 1}, {32000, 1}, {32000, 1}}}; | 
|  | AudioProcessing::Config config; | 
|  |  | 
|  | // Set up an audioframe. | 
|  | Int16FrameData frame; | 
|  | frame.num_channels = 1; | 
|  | SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz); | 
|  |  | 
|  | // Fill the audio frame with a sawtooth pattern. | 
|  | int16_t* ptr = frame.data.data(); | 
|  | for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) { | 
|  | ptr[i] = 10000 * ((i % 3) - 1); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<AudioProcessing> apm( | 
|  | AudioProcessingBuilderForTesting().Create()); | 
|  | apm->Initialize(processing_config); | 
|  |  | 
|  | // If not enabled, no metric should be reported. | 
|  | EXPECT_EQ( | 
|  | apm->ProcessStream(frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | EXPECT_FALSE(apm->GetStatistics().output_rms_dbfs); | 
|  |  | 
|  | // If enabled, metrics should be reported. | 
|  | config.level_estimation.enabled = true; | 
|  | apm->ApplyConfig(config); | 
|  | EXPECT_EQ( | 
|  | apm->ProcessStream(frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | auto stats = apm->GetStatistics(); | 
|  | EXPECT_TRUE(stats.output_rms_dbfs); | 
|  | EXPECT_GE(*stats.output_rms_dbfs, 0); | 
|  |  | 
|  | // If re-disabled, the value is again not reported. | 
|  | config.level_estimation.enabled = false; | 
|  | apm->ApplyConfig(config); | 
|  | EXPECT_EQ( | 
|  | apm->ProcessStream(frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | EXPECT_FALSE(apm->GetStatistics().output_rms_dbfs); | 
|  | } | 
|  |  | 
|  | TEST(ApmStatistics, ReportHasVoice) { | 
|  | ProcessingConfig processing_config = { | 
|  | {{32000, 1}, {32000, 1}, {32000, 1}, {32000, 1}}}; | 
|  | AudioProcessing::Config config; | 
|  |  | 
|  | // Set up an audioframe. | 
|  | Int16FrameData frame; | 
|  | frame.num_channels = 1; | 
|  | SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz); | 
|  |  | 
|  | // Fill the audio frame with a sawtooth pattern. | 
|  | int16_t* ptr = frame.data.data(); | 
|  | for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) { | 
|  | ptr[i] = 10000 * ((i % 3) - 1); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<AudioProcessing> apm( | 
|  | AudioProcessingBuilderForTesting().Create()); | 
|  | apm->Initialize(processing_config); | 
|  |  | 
|  | // If not enabled, no metric should be reported. | 
|  | EXPECT_EQ( | 
|  | apm->ProcessStream(frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | EXPECT_FALSE(apm->GetStatistics().voice_detected); | 
|  |  | 
|  | // If enabled, metrics should be reported. | 
|  | config.voice_detection.enabled = true; | 
|  | apm->ApplyConfig(config); | 
|  | EXPECT_EQ( | 
|  | apm->ProcessStream(frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | auto stats = apm->GetStatistics(); | 
|  | EXPECT_TRUE(stats.voice_detected); | 
|  |  | 
|  | // If re-disabled, the value is again not reported. | 
|  | config.voice_detection.enabled = false; | 
|  | apm->ApplyConfig(config); | 
|  | EXPECT_EQ( | 
|  | apm->ProcessStream(frame.data.data(), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | StreamConfig(frame.sample_rate_hz, frame.num_channels), | 
|  | frame.data.data()), | 
|  | 0); | 
|  | EXPECT_FALSE(apm->GetStatistics().voice_detected); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, HandlingOfRateAndChannelCombinations) { | 
|  | std::array<int, 3> sample_rates_hz = {16000, 32000, 48000}; | 
|  | std::array<int, 2> render_channel_counts = {1, 7}; | 
|  | std::array<int, 2> capture_channel_counts = {1, 7}; | 
|  | RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts, | 
|  | capture_channel_counts); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, HandlingOfChannelCombinations) { | 
|  | std::array<int, 1> sample_rates_hz = {48000}; | 
|  | std::array<int, 8> render_channel_counts = {1, 2, 3, 4, 5, 6, 7, 8}; | 
|  | std::array<int, 8> capture_channel_counts = {1, 2, 3, 4, 5, 6, 7, 8}; | 
|  | RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts, | 
|  | capture_channel_counts); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, HandlingOfRateCombinations) { | 
|  | std::array<int, 9> sample_rates_hz = {8000,  11025, 16000,  22050, 32000, | 
|  | 48000, 96000, 192000, 384000}; | 
|  | std::array<int, 1> render_channel_counts = {2}; | 
|  | std::array<int, 1> capture_channel_counts = {2}; | 
|  | RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts, | 
|  | capture_channel_counts); | 
|  | } | 
|  |  | 
|  | TEST(ApmConfiguration, SelfAssignment) { | 
|  | // At some point memory sanitizer was complaining about self-assigment. | 
|  | // Make sure we don't regress. | 
|  | AudioProcessing::Config config; | 
|  | AudioProcessing::Config* config2 = &config; | 
|  | *config2 = *config2;  // Workaround -Wself-assign-overloaded | 
|  | SUCCEED();  // Real success is absence of defects from asan/msan/ubsan. | 
|  | } | 
|  |  | 
|  | TEST(AudioProcessing, GainController1ConfigEqual) { | 
|  | AudioProcessing::Config::GainController1 a; | 
|  | AudioProcessing::Config::GainController1 b; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a.enabled); | 
|  | b.enabled = a.enabled; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a.mode = AudioProcessing::Config::GainController1::Mode::kAdaptiveDigital; | 
|  | b.mode = a.mode; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a.target_level_dbfs++; | 
|  | b.target_level_dbfs = a.target_level_dbfs; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a.compression_gain_db++; | 
|  | b.compression_gain_db = a.compression_gain_db; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a.enable_limiter); | 
|  | b.enable_limiter = a.enable_limiter; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a.analog_level_minimum++; | 
|  | b.analog_level_minimum = a.analog_level_minimum; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a.analog_level_maximum--; | 
|  | b.analog_level_maximum = a.analog_level_maximum; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | auto& a_analog = a.analog_gain_controller; | 
|  | auto& b_analog = b.analog_gain_controller; | 
|  |  | 
|  | Toggle(a_analog.enabled); | 
|  | b_analog.enabled = a_analog.enabled; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a_analog.startup_min_volume++; | 
|  | b_analog.startup_min_volume = a_analog.startup_min_volume; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a_analog.clipped_level_min++; | 
|  | b_analog.clipped_level_min = a_analog.clipped_level_min; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a_analog.enable_digital_adaptive); | 
|  | b_analog.enable_digital_adaptive = a_analog.enable_digital_adaptive; | 
|  | EXPECT_EQ(a, b); | 
|  | } | 
|  |  | 
|  | // Checks that one differing parameter is sufficient to make two configs | 
|  | // different. | 
|  | TEST(AudioProcessing, GainController1ConfigNotEqual) { | 
|  | AudioProcessing::Config::GainController1 a; | 
|  | const AudioProcessing::Config::GainController1 b; | 
|  |  | 
|  | Toggle(a.enabled); | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | a.mode = AudioProcessing::Config::GainController1::Mode::kAdaptiveDigital; | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | a.target_level_dbfs++; | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | a.compression_gain_db++; | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | Toggle(a.enable_limiter); | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | a.analog_level_minimum++; | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | a.analog_level_maximum--; | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | auto& a_analog = a.analog_gain_controller; | 
|  | const auto& b_analog = b.analog_gain_controller; | 
|  |  | 
|  | Toggle(a_analog.enabled); | 
|  | EXPECT_NE(a, b); | 
|  | a_analog = b_analog; | 
|  |  | 
|  | a_analog.startup_min_volume++; | 
|  | EXPECT_NE(a, b); | 
|  | a_analog = b_analog; | 
|  |  | 
|  | a_analog.clipped_level_min++; | 
|  | EXPECT_NE(a, b); | 
|  | a_analog = b_analog; | 
|  |  | 
|  | Toggle(a_analog.enable_digital_adaptive); | 
|  | EXPECT_NE(a, b); | 
|  | a_analog = b_analog; | 
|  | } | 
|  |  | 
|  | TEST(AudioProcessing, GainController2ConfigEqual) { | 
|  | AudioProcessing::Config::GainController2 a; | 
|  | AudioProcessing::Config::GainController2 b; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a.enabled); | 
|  | b.enabled = a.enabled; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a.fixed_digital.gain_db += 1.0f; | 
|  | b.fixed_digital.gain_db = a.fixed_digital.gain_db; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | auto& a_adaptive = a.adaptive_digital; | 
|  | auto& b_adaptive = b.adaptive_digital; | 
|  |  | 
|  | Toggle(a_adaptive.enabled); | 
|  | b_adaptive.enabled = a_adaptive.enabled; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a_adaptive.dry_run); | 
|  | b_adaptive.dry_run = a_adaptive.dry_run; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a_adaptive.noise_estimator = AudioProcessing::Config::GainController2:: | 
|  | NoiseEstimator::kStationaryNoise; | 
|  | b_adaptive.noise_estimator = a_adaptive.noise_estimator; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a_adaptive.vad_reset_period_ms++; | 
|  | b_adaptive.vad_reset_period_ms = a_adaptive.vad_reset_period_ms; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a_adaptive.adjacent_speech_frames_threshold++; | 
|  | b_adaptive.adjacent_speech_frames_threshold = | 
|  | a_adaptive.adjacent_speech_frames_threshold; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a_adaptive.max_gain_change_db_per_second += 1.0f; | 
|  | b_adaptive.max_gain_change_db_per_second = | 
|  | a_adaptive.max_gain_change_db_per_second; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | a_adaptive.max_output_noise_level_dbfs += 1.0f; | 
|  | b_adaptive.max_output_noise_level_dbfs = | 
|  | a_adaptive.max_output_noise_level_dbfs; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a_adaptive.sse2_allowed); | 
|  | b_adaptive.sse2_allowed = a_adaptive.sse2_allowed; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a_adaptive.avx2_allowed); | 
|  | b_adaptive.avx2_allowed = a_adaptive.avx2_allowed; | 
|  | EXPECT_EQ(a, b); | 
|  |  | 
|  | Toggle(a_adaptive.neon_allowed); | 
|  | b_adaptive.neon_allowed = a_adaptive.neon_allowed; | 
|  | EXPECT_EQ(a, b); | 
|  | } | 
|  |  | 
|  | // Checks that one differing parameter is sufficient to make two configs | 
|  | // different. | 
|  | TEST(AudioProcessing, GainController2ConfigNotEqual) { | 
|  | AudioProcessing::Config::GainController2 a; | 
|  | const AudioProcessing::Config::GainController2 b; | 
|  |  | 
|  | Toggle(a.enabled); | 
|  | EXPECT_NE(a, b); | 
|  | a = b; | 
|  |  | 
|  | a.fixed_digital.gain_db += 1.0f; | 
|  | EXPECT_NE(a, b); | 
|  | a.fixed_digital = b.fixed_digital; | 
|  |  | 
|  | auto& a_adaptive = a.adaptive_digital; | 
|  | const auto& b_adaptive = b.adaptive_digital; | 
|  |  | 
|  | Toggle(a_adaptive.enabled); | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | Toggle(a_adaptive.dry_run); | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | a_adaptive.noise_estimator = AudioProcessing::Config::GainController2:: | 
|  | NoiseEstimator::kStationaryNoise; | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | a_adaptive.vad_reset_period_ms++; | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | a_adaptive.adjacent_speech_frames_threshold++; | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | a_adaptive.max_gain_change_db_per_second += 1.0f; | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | a_adaptive.max_output_noise_level_dbfs += 1.0f; | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | Toggle(a_adaptive.sse2_allowed); | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | Toggle(a_adaptive.avx2_allowed); | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  |  | 
|  | Toggle(a_adaptive.neon_allowed); | 
|  | EXPECT_NE(a, b); | 
|  | a_adaptive = b_adaptive; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |