| /* |
| * Copyright (c) 2020 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc2/rnn_vad/rnn_gru.h" |
| |
| #include <array> |
| #include <memory> |
| #include <vector> |
| |
| #include "api/array_view.h" |
| #include "modules/audio_processing/agc2/rnn_vad/test_utils.h" |
| #include "modules/audio_processing/test/performance_timer.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "test/gtest.h" |
| #include "third_party/rnnoise/src/rnn_vad_weights.h" |
| |
| namespace webrtc { |
| namespace rnn_vad { |
| namespace { |
| |
| void TestGatedRecurrentLayer( |
| GatedRecurrentLayer& gru, |
| rtc::ArrayView<const float> input_sequence, |
| rtc::ArrayView<const float> expected_output_sequence) { |
| const int input_sequence_length = rtc::CheckedDivExact( |
| rtc::dchecked_cast<int>(input_sequence.size()), gru.input_size()); |
| const int output_sequence_length = rtc::CheckedDivExact( |
| rtc::dchecked_cast<int>(expected_output_sequence.size()), gru.size()); |
| ASSERT_EQ(input_sequence_length, output_sequence_length) |
| << "The test data length is invalid."; |
| // Feed the GRU layer and check the output at every step. |
| gru.Reset(); |
| for (int i = 0; i < input_sequence_length; ++i) { |
| SCOPED_TRACE(i); |
| gru.ComputeOutput( |
| input_sequence.subview(i * gru.input_size(), gru.input_size())); |
| const auto expected_output = |
| expected_output_sequence.subview(i * gru.size(), gru.size()); |
| ExpectNearAbsolute(expected_output, gru, 3e-6f); |
| } |
| } |
| |
| // Gated recurrent units layer test data. |
| constexpr int kGruInputSize = 5; |
| constexpr int kGruOutputSize = 4; |
| constexpr std::array<int8_t, 12> kGruBias = {96, -99, -81, -114, 49, 119, |
| -118, 68, -76, 91, 121, 125}; |
| constexpr std::array<int8_t, 60> kGruWeights = { |
| // Input 0. |
| 124, 9, 1, 116, // Update. |
| -66, -21, -118, -110, // Reset. |
| 104, 75, -23, -51, // Output. |
| // Input 1. |
| -72, -111, 47, 93, // Update. |
| 77, -98, 41, -8, // Reset. |
| 40, -23, -43, -107, // Output. |
| // Input 2. |
| 9, -73, 30, -32, // Update. |
| -2, 64, -26, 91, // Reset. |
| -48, -24, -28, -104, // Output. |
| // Input 3. |
| 74, -46, 116, 15, // Update. |
| 32, 52, -126, -38, // Reset. |
| -121, 12, -16, 110, // Output. |
| // Input 4. |
| -95, 66, -103, -35, // Update. |
| -38, 3, -126, -61, // Reset. |
| 28, 98, -117, -43 // Output. |
| }; |
| constexpr std::array<int8_t, 48> kGruRecurrentWeights = { |
| // Output 0. |
| -3, 87, 50, 51, // Update. |
| -22, 27, -39, 62, // Reset. |
| 31, -83, -52, -48, // Output. |
| // Output 1. |
| -6, 83, -19, 104, // Update. |
| 105, 48, 23, 68, // Reset. |
| 23, 40, 7, -120, // Output. |
| // Output 2. |
| 64, -62, 117, 85, // Update. |
| 51, -43, 54, -105, // Reset. |
| 120, 56, -128, -107, // Output. |
| // Output 3. |
| 39, 50, -17, -47, // Update. |
| -117, 14, 108, 12, // Reset. |
| -7, -72, 103, -87, // Output. |
| }; |
| constexpr std::array<float, 20> kGruInputSequence = { |
| 0.89395463f, 0.93224651f, 0.55788344f, 0.32341808f, 0.93355054f, |
| 0.13475326f, 0.97370994f, 0.14253306f, 0.93710381f, 0.76093364f, |
| 0.65780413f, 0.41657975f, 0.49403164f, 0.46843281f, 0.75138855f, |
| 0.24517593f, 0.47657707f, 0.57064998f, 0.435184f, 0.19319285f}; |
| constexpr std::array<float, 16> kGruExpectedOutputSequence = { |
| 0.0239123f, 0.5773077f, 0.f, 0.f, |
| 0.01282811f, 0.64330572f, 0.f, 0.04863098f, |
| 0.00781069f, 0.75267816f, 0.f, 0.02579715f, |
| 0.00471378f, 0.59162533f, 0.11087593f, 0.01334511f}; |
| |
| class RnnGruParametrization |
| : public ::testing::TestWithParam<AvailableCpuFeatures> {}; |
| |
| // Checks that the output of a GRU layer is within tolerance given test input |
| // data. |
| TEST_P(RnnGruParametrization, CheckGatedRecurrentLayer) { |
| GatedRecurrentLayer gru(kGruInputSize, kGruOutputSize, kGruBias, kGruWeights, |
| kGruRecurrentWeights, |
| /*cpu_features=*/GetParam(), |
| /*layer_name=*/"GRU"); |
| TestGatedRecurrentLayer(gru, kGruInputSequence, kGruExpectedOutputSequence); |
| } |
| |
| TEST_P(RnnGruParametrization, DISABLED_BenchmarkGatedRecurrentLayer) { |
| // Prefetch test data. |
| std::unique_ptr<FileReader> reader = CreateGruInputReader(); |
| std::vector<float> gru_input_sequence(reader->size()); |
| reader->ReadChunk(gru_input_sequence); |
| |
| using ::rnnoise::kHiddenGruBias; |
| using ::rnnoise::kHiddenGruRecurrentWeights; |
| using ::rnnoise::kHiddenGruWeights; |
| using ::rnnoise::kHiddenLayerOutputSize; |
| using ::rnnoise::kInputLayerOutputSize; |
| |
| GatedRecurrentLayer gru(kInputLayerOutputSize, kHiddenLayerOutputSize, |
| kHiddenGruBias, kHiddenGruWeights, |
| kHiddenGruRecurrentWeights, |
| /*cpu_features=*/GetParam(), |
| /*layer_name=*/"GRU"); |
| |
| rtc::ArrayView<const float> input_sequence(gru_input_sequence); |
| ASSERT_EQ(input_sequence.size() % kInputLayerOutputSize, |
| static_cast<size_t>(0)); |
| const int input_sequence_length = |
| input_sequence.size() / kInputLayerOutputSize; |
| |
| constexpr int kNumTests = 100; |
| ::webrtc::test::PerformanceTimer perf_timer(kNumTests); |
| for (int k = 0; k < kNumTests; ++k) { |
| perf_timer.StartTimer(); |
| for (int i = 0; i < input_sequence_length; ++i) { |
| gru.ComputeOutput( |
| input_sequence.subview(i * gru.input_size(), gru.input_size())); |
| } |
| perf_timer.StopTimer(); |
| } |
| RTC_LOG(LS_INFO) << (perf_timer.GetDurationAverage() / 1000) << " +/- " |
| << (perf_timer.GetDurationStandardDeviation() / 1000) |
| << " ms"; |
| } |
| |
| // Finds the relevant CPU features combinations to test. |
| std::vector<AvailableCpuFeatures> GetCpuFeaturesToTest() { |
| std::vector<AvailableCpuFeatures> v; |
| v.push_back(NoAvailableCpuFeatures()); |
| AvailableCpuFeatures available = GetAvailableCpuFeatures(); |
| if (available.sse2) { |
| v.push_back({/*sse2=*/true, /*avx2=*/false, /*neon=*/false}); |
| } |
| if (available.avx2) { |
| v.push_back({/*sse2=*/false, /*avx2=*/true, /*neon=*/false}); |
| } |
| if (available.neon) { |
| v.push_back({/*sse2=*/false, /*avx2=*/false, /*neon=*/true}); |
| } |
| return v; |
| } |
| |
| INSTANTIATE_TEST_SUITE_P( |
| RnnVadTest, |
| RnnGruParametrization, |
| ::testing::ValuesIn(GetCpuFeaturesToTest()), |
| [](const ::testing::TestParamInfo<AvailableCpuFeatures>& info) { |
| return info.param.ToString(); |
| }); |
| |
| } // namespace |
| } // namespace rnn_vad |
| } // namespace webrtc |