| /* | 
 |  *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "modules/audio_processing/vad/voice_activity_detector.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <vector> | 
 |  | 
 | #include "test/gtest.h" | 
 | #include "test/testsupport/file_utils.h" | 
 |  | 
 | namespace webrtc { | 
 | namespace { | 
 |  | 
 | const int kStartTimeSec = 16; | 
 | const float kMeanSpeechProbability = 0.3f; | 
 | const float kMaxNoiseProbability = 0.1f; | 
 | const size_t kNumChunks = 300u; | 
 | const size_t kNumChunksPerIsacBlock = 3; | 
 |  | 
 | void GenerateNoise(std::vector<int16_t>* data) { | 
 |   for (size_t i = 0; i < data->size(); ++i) { | 
 |     // std::rand returns between 0 and RAND_MAX, but this will work because it | 
 |     // wraps into some random place. | 
 |     (*data)[i] = std::rand(); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) { | 
 |   const float kDefaultVoiceValue = 1.f; | 
 |  | 
 |   VoiceActivityDetector vad; | 
 |  | 
 |   std::vector<double> p = vad.chunkwise_voice_probabilities(); | 
 |   std::vector<double> rms = vad.chunkwise_rms(); | 
 |  | 
 |   EXPECT_EQ(p.size(), 0u); | 
 |   EXPECT_EQ(rms.size(), 0u); | 
 |  | 
 |   EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue); | 
 | } | 
 |  | 
 | TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) { | 
 |   const int kSampleRateHz = 16000; | 
 |   const int kLength10Ms = kSampleRateHz / 100; | 
 |  | 
 |   VoiceActivityDetector vad; | 
 |  | 
 |   std::vector<int16_t> data(kLength10Ms); | 
 |   float mean_probability = 0.f; | 
 |  | 
 |   FILE* pcm_file = | 
 |       fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm") | 
 |                 .c_str(), | 
 |             "rb"); | 
 |   ASSERT_TRUE(pcm_file != nullptr); | 
 |   // The silences in the file are skipped to get a more robust voice probability | 
 |   // for speech. | 
 |   ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), | 
 |                   SEEK_SET), | 
 |             0); | 
 |  | 
 |   size_t num_chunks = 0; | 
 |   while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == | 
 |          data.size()) { | 
 |     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); | 
 |  | 
 |     mean_probability += vad.last_voice_probability(); | 
 |  | 
 |     ++num_chunks; | 
 |   } | 
 |  | 
 |   mean_probability /= num_chunks; | 
 |  | 
 |   EXPECT_GT(mean_probability, kMeanSpeechProbability); | 
 | } | 
 |  | 
 | TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) { | 
 |   const int kSampleRateHz = 32000; | 
 |   const int kLength10Ms = kSampleRateHz / 100; | 
 |  | 
 |   VoiceActivityDetector vad; | 
 |  | 
 |   std::vector<int16_t> data(kLength10Ms); | 
 |   float mean_probability = 0.f; | 
 |  | 
 |   FILE* pcm_file = | 
 |       fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm") | 
 |                 .c_str(), | 
 |             "rb"); | 
 |   ASSERT_TRUE(pcm_file != nullptr); | 
 |   // The silences in the file are skipped to get a more robust voice probability | 
 |   // for speech. | 
 |   ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]), | 
 |                   SEEK_SET), | 
 |             0); | 
 |  | 
 |   size_t num_chunks = 0; | 
 |   while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) == | 
 |          data.size()) { | 
 |     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); | 
 |  | 
 |     mean_probability += vad.last_voice_probability(); | 
 |  | 
 |     ++num_chunks; | 
 |   } | 
 |  | 
 |   mean_probability /= num_chunks; | 
 |  | 
 |   EXPECT_GT(mean_probability, kMeanSpeechProbability); | 
 | } | 
 |  | 
 | TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) { | 
 |   VoiceActivityDetector vad; | 
 |  | 
 |   std::vector<int16_t> data(kLength10Ms); | 
 |   float max_probability = 0.f; | 
 |  | 
 |   std::srand(42); | 
 |  | 
 |   for (size_t i = 0; i < kNumChunks; ++i) { | 
 |     GenerateNoise(&data); | 
 |  | 
 |     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz); | 
 |  | 
 |     // Before the |vad has enough data to process an ISAC block it will return | 
 |     // the default value, 1.f, which would ruin the `max_probability` value. | 
 |     if (i > kNumChunksPerIsacBlock) { | 
 |       max_probability = std::max(max_probability, vad.last_voice_probability()); | 
 |     } | 
 |   } | 
 |  | 
 |   EXPECT_LT(max_probability, kMaxNoiseProbability); | 
 | } | 
 |  | 
 | TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) { | 
 |   VoiceActivityDetector vad; | 
 |  | 
 |   std::vector<int16_t> data(2 * kLength10Ms); | 
 |   float max_probability = 0.f; | 
 |  | 
 |   std::srand(42); | 
 |  | 
 |   for (size_t i = 0; i < kNumChunks; ++i) { | 
 |     GenerateNoise(&data); | 
 |  | 
 |     vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz); | 
 |  | 
 |     // Before the |vad has enough data to process an ISAC block it will return | 
 |     // the default value, 1.f, which would ruin the `max_probability` value. | 
 |     if (i > kNumChunksPerIsacBlock) { | 
 |       max_probability = std::max(max_probability, vad.last_voice_probability()); | 
 |     } | 
 |   } | 
 |  | 
 |   EXPECT_LT(max_probability, kMaxNoiseProbability); | 
 | } | 
 |  | 
 | }  // namespace webrtc |