| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| #include "modules/audio_processing/aec3/alignment_mixer.h" |
| |
| #include <algorithm> |
| |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| AlignmentMixer::MixingVariant ChooseMixingVariant(bool downmix, |
| bool adaptive_selection, |
| int num_channels) { |
| RTC_DCHECK(!(adaptive_selection && downmix)); |
| RTC_DCHECK_LT(0, num_channels); |
| |
| if (num_channels == 1) { |
| return AlignmentMixer::MixingVariant::kFixed; |
| } |
| if (downmix) { |
| return AlignmentMixer::MixingVariant::kDownmix; |
| } |
| if (adaptive_selection) { |
| return AlignmentMixer::MixingVariant::kAdaptive; |
| } |
| return AlignmentMixer::MixingVariant::kFixed; |
| } |
| |
| } // namespace |
| |
| AlignmentMixer::AlignmentMixer( |
| size_t num_channels, |
| const EchoCanceller3Config::Delay::AlignmentMixing& config) |
| : AlignmentMixer(num_channels, |
| config.downmix, |
| config.adaptive_selection, |
| config.activity_power_threshold, |
| config.prefer_first_two_channels) {} |
| |
| AlignmentMixer::AlignmentMixer(size_t num_channels, |
| bool downmix, |
| bool adaptive_selection, |
| float activity_power_threshold, |
| bool prefer_first_two_channels) |
| : num_channels_(num_channels), |
| one_by_num_channels_(1.f / num_channels_), |
| excitation_energy_threshold_(kBlockSize * activity_power_threshold), |
| prefer_first_two_channels_(prefer_first_two_channels), |
| selection_variant_( |
| ChooseMixingVariant(downmix, adaptive_selection, num_channels_)) { |
| if (selection_variant_ == MixingVariant::kAdaptive) { |
| std::fill(strong_block_counters_.begin(), strong_block_counters_.end(), 0); |
| cumulative_energies_.resize(num_channels_); |
| std::fill(cumulative_energies_.begin(), cumulative_energies_.end(), 0.f); |
| } |
| } |
| |
| void AlignmentMixer::ProduceOutput(const Block& x, |
| rtc::ArrayView<float, kBlockSize> y) { |
| RTC_DCHECK_EQ(x.NumChannels(), num_channels_); |
| |
| if (selection_variant_ == MixingVariant::kDownmix) { |
| Downmix(x, y); |
| return; |
| } |
| |
| int ch = selection_variant_ == MixingVariant::kFixed ? 0 : SelectChannel(x); |
| |
| RTC_DCHECK_GT(x.NumChannels(), ch); |
| std::copy(x.begin(/*band=*/0, ch), x.end(/*band=*/0, ch), y.begin()); |
| } |
| |
| void AlignmentMixer::Downmix(const Block& x, |
| rtc::ArrayView<float, kBlockSize> y) const { |
| RTC_DCHECK_EQ(x.NumChannels(), num_channels_); |
| RTC_DCHECK_GE(num_channels_, 2); |
| std::memcpy(&y[0], x.View(/*band=*/0, /*channel=*/0).data(), |
| kBlockSize * sizeof(y[0])); |
| for (size_t ch = 1; ch < num_channels_; ++ch) { |
| const auto x_ch = x.View(/*band=*/0, ch); |
| for (size_t i = 0; i < kBlockSize; ++i) { |
| y[i] += x_ch[i]; |
| } |
| } |
| |
| for (size_t i = 0; i < kBlockSize; ++i) { |
| y[i] *= one_by_num_channels_; |
| } |
| } |
| |
| int AlignmentMixer::SelectChannel(const Block& x) { |
| RTC_DCHECK_EQ(x.NumChannels(), num_channels_); |
| RTC_DCHECK_GE(num_channels_, 2); |
| RTC_DCHECK_EQ(cumulative_energies_.size(), num_channels_); |
| |
| constexpr size_t kBlocksToChooseLeftOrRight = |
| static_cast<size_t>(0.5f * kNumBlocksPerSecond); |
| const bool good_signal_in_left_or_right = |
| prefer_first_two_channels_ && |
| (strong_block_counters_[0] > kBlocksToChooseLeftOrRight || |
| strong_block_counters_[1] > kBlocksToChooseLeftOrRight); |
| |
| const int num_ch_to_analyze = |
| good_signal_in_left_or_right ? 2 : num_channels_; |
| |
| constexpr int kNumBlocksBeforeEnergySmoothing = 60 * kNumBlocksPerSecond; |
| ++block_counter_; |
| |
| for (int ch = 0; ch < num_ch_to_analyze; ++ch) { |
| float x2_sum = 0.f; |
| rtc::ArrayView<const float, kBlockSize> x_ch = x.View(/*band=*/0, ch); |
| for (size_t i = 0; i < kBlockSize; ++i) { |
| x2_sum += x_ch[i] * x_ch[i]; |
| } |
| |
| if (ch < 2 && x2_sum > excitation_energy_threshold_) { |
| ++strong_block_counters_[ch]; |
| } |
| |
| if (block_counter_ <= kNumBlocksBeforeEnergySmoothing) { |
| cumulative_energies_[ch] += x2_sum; |
| } else { |
| constexpr float kSmoothing = 1.f / (10 * kNumBlocksPerSecond); |
| cumulative_energies_[ch] += |
| kSmoothing * (x2_sum - cumulative_energies_[ch]); |
| } |
| } |
| |
| // Normalize the energies to allow the energy computations to from now be |
| // based on smoothing. |
| if (block_counter_ == kNumBlocksBeforeEnergySmoothing) { |
| constexpr float kOneByNumBlocksBeforeEnergySmoothing = |
| 1.f / kNumBlocksBeforeEnergySmoothing; |
| for (int ch = 0; ch < num_ch_to_analyze; ++ch) { |
| cumulative_energies_[ch] *= kOneByNumBlocksBeforeEnergySmoothing; |
| } |
| } |
| |
| int strongest_ch = 0; |
| for (int ch = 0; ch < num_ch_to_analyze; ++ch) { |
| if (cumulative_energies_[ch] > cumulative_energies_[strongest_ch]) { |
| strongest_ch = ch; |
| } |
| } |
| |
| if ((good_signal_in_left_or_right && selected_channel_ > 1) || |
| cumulative_energies_[strongest_ch] > |
| 2.f * cumulative_energies_[selected_channel_]) { |
| selected_channel_ = strongest_ch; |
| } |
| |
| return selected_channel_; |
| } |
| |
| } // namespace webrtc |