blob: e56674e4c929b6ef7813d64994517a14d36c302b [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/fullband_erle_estimator.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
constexpr float kEpsilon = 1e-3f;
constexpr float kX2BandEnergyThreshold = 44015068.0f;
constexpr int kBlocksToHoldErle = 100;
constexpr int kPointsToAccumulate = 6;
} // namespace
FullBandErleEstimator::FullBandErleEstimator(
const EchoCanceller3Config::Erle& config,
size_t num_capture_channels)
: min_erle_log2_(FastApproxLog2f(config.min + kEpsilon)),
max_erle_lf_log2_(FastApproxLog2f(config.max_l + kEpsilon)),
hold_counters_instantaneous_erle_(num_capture_channels, 0),
erle_time_domain_log2_(num_capture_channels, min_erle_log2_),
instantaneous_erle_(num_capture_channels, ErleInstantaneous(config)),
linear_filters_qualities_(num_capture_channels) {
Reset();
}
FullBandErleEstimator::~FullBandErleEstimator() = default;
void FullBandErleEstimator::Reset() {
for (auto& instantaneous_erle_ch : instantaneous_erle_) {
instantaneous_erle_ch.Reset();
}
UpdateQualityEstimates();
std::fill(erle_time_domain_log2_.begin(), erle_time_domain_log2_.end(),
min_erle_log2_);
std::fill(hold_counters_instantaneous_erle_.begin(),
hold_counters_instantaneous_erle_.end(), 0);
}
void FullBandErleEstimator::Update(
rtc::ArrayView<const float> X2,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> Y2,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> E2,
const std::vector<bool>& converged_filters) {
for (size_t ch = 0; ch < Y2.size(); ++ch) {
if (converged_filters[ch]) {
// Computes the fullband ERLE.
const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f);
if (X2_sum > kX2BandEnergyThreshold * X2.size()) {
const float Y2_sum =
std::accumulate(Y2[ch].begin(), Y2[ch].end(), 0.0f);
const float E2_sum =
std::accumulate(E2[ch].begin(), E2[ch].end(), 0.0f);
if (instantaneous_erle_[ch].Update(Y2_sum, E2_sum)) {
hold_counters_instantaneous_erle_[ch] = kBlocksToHoldErle;
erle_time_domain_log2_[ch] +=
0.05f * ((instantaneous_erle_[ch].GetInstErleLog2().value()) -
erle_time_domain_log2_[ch]);
erle_time_domain_log2_[ch] =
std::max(erle_time_domain_log2_[ch], min_erle_log2_);
}
}
}
--hold_counters_instantaneous_erle_[ch];
if (hold_counters_instantaneous_erle_[ch] == 0) {
instantaneous_erle_[ch].ResetAccumulators();
}
}
UpdateQualityEstimates();
}
void FullBandErleEstimator::Dump(
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
data_dumper->DumpRaw("aec3_fullband_erle_log2", FullbandErleLog2());
instantaneous_erle_[0].Dump(data_dumper);
}
void FullBandErleEstimator::UpdateQualityEstimates() {
for (size_t ch = 0; ch < instantaneous_erle_.size(); ++ch) {
linear_filters_qualities_[ch] =
instantaneous_erle_[ch].GetQualityEstimate();
}
}
FullBandErleEstimator::ErleInstantaneous::ErleInstantaneous(
const EchoCanceller3Config::Erle& config)
: clamp_inst_quality_to_zero_(config.clamp_quality_estimate_to_zero),
clamp_inst_quality_to_one_(config.clamp_quality_estimate_to_one) {
Reset();
}
FullBandErleEstimator::ErleInstantaneous::~ErleInstantaneous() = default;
bool FullBandErleEstimator::ErleInstantaneous::Update(const float Y2_sum,
const float E2_sum) {
bool update_estimates = false;
E2_acum_ += E2_sum;
Y2_acum_ += Y2_sum;
num_points_++;
if (num_points_ == kPointsToAccumulate) {
if (E2_acum_ > 0.f) {
update_estimates = true;
erle_log2_ = FastApproxLog2f(Y2_acum_ / E2_acum_ + kEpsilon);
}
num_points_ = 0;
E2_acum_ = 0.f;
Y2_acum_ = 0.f;
}
if (update_estimates) {
UpdateMaxMin();
UpdateQualityEstimate();
}
return update_estimates;
}
void FullBandErleEstimator::ErleInstantaneous::Reset() {
ResetAccumulators();
max_erle_log2_ = -10.f; // -30 dB.
min_erle_log2_ = 33.f; // 100 dB.
inst_quality_estimate_ = 0.f;
}
void FullBandErleEstimator::ErleInstantaneous::ResetAccumulators() {
erle_log2_ = absl::nullopt;
inst_quality_estimate_ = 0.f;
num_points_ = 0;
E2_acum_ = 0.f;
Y2_acum_ = 0.f;
}
void FullBandErleEstimator::ErleInstantaneous::Dump(
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
data_dumper->DumpRaw("aec3_fullband_erle_inst_log2",
erle_log2_ ? *erle_log2_ : -10.f);
data_dumper->DumpRaw(
"aec3_erle_instantaneous_quality",
GetQualityEstimate() ? GetQualityEstimate().value() : 0.f);
data_dumper->DumpRaw("aec3_fullband_erle_max_log2", max_erle_log2_);
data_dumper->DumpRaw("aec3_fullband_erle_min_log2", min_erle_log2_);
}
void FullBandErleEstimator::ErleInstantaneous::UpdateMaxMin() {
RTC_DCHECK(erle_log2_);
// Adding the forgetting factors for the maximum and minimum and capping the
// result to the incoming value.
max_erle_log2_ -= 0.0004f; // Forget factor, approx 1dB every 3 sec.
max_erle_log2_ = std::max(max_erle_log2_, erle_log2_.value());
min_erle_log2_ += 0.0004f; // Forget factor, approx 1dB every 3 sec.
min_erle_log2_ = std::min(min_erle_log2_, erle_log2_.value());
}
void FullBandErleEstimator::ErleInstantaneous::UpdateQualityEstimate() {
const float alpha = 0.07f;
float quality_estimate = 0.f;
RTC_DCHECK(erle_log2_);
// TODO(peah): Currently, the estimate can become be less than 0; this should
// be corrected.
if (max_erle_log2_ > min_erle_log2_) {
quality_estimate = (erle_log2_.value() - min_erle_log2_) /
(max_erle_log2_ - min_erle_log2_);
}
if (quality_estimate > inst_quality_estimate_) {
inst_quality_estimate_ = quality_estimate;
} else {
inst_quality_estimate_ +=
alpha * (quality_estimate - inst_quality_estimate_);
}
}
} // namespace webrtc