| /* |
| * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // This implementation is borrowed from Chromium. |
| |
| #ifndef RTC_BASE_CONTAINERS_FLAT_TREE_H_ |
| #define RTC_BASE_CONTAINERS_FLAT_TREE_H_ |
| |
| #include <algorithm> |
| #include <iterator> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/algorithm/container.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/system/no_unique_address.h" |
| |
| namespace webrtc { |
| // Tag type that allows skipping the sort_and_unique step when constructing a |
| // flat_tree in case the underlying container is already sorted and has no |
| // duplicate elements. |
| struct sorted_unique_t { |
| constexpr sorted_unique_t() = default; |
| }; |
| extern sorted_unique_t sorted_unique; |
| |
| namespace flat_containers_internal { |
| |
| // Helper functions used in RTC_DCHECKs below to make sure that inputs tagged |
| // with sorted_unique are indeed sorted and unique. |
| template <typename Range, typename Comp> |
| constexpr bool is_sorted_and_unique(const Range& range, Comp comp) { |
| // Being unique implies that there are no adjacent elements that |
| // compare equal. So this checks that each element is strictly less |
| // than the element after it. |
| return absl::c_adjacent_find(range, std::not_fn(comp)) == std::end(range); |
| } |
| |
| // This is a convenience trait inheriting from std::true_type if Iterator is at |
| // least a ForwardIterator and thus supports multiple passes over a range. |
| template <class Iterator> |
| using is_multipass = |
| std::is_base_of<std::forward_iterator_tag, |
| typename std::iterator_traits<Iterator>::iterator_category>; |
| |
| // Uses SFINAE to detect whether type has is_transparent member. |
| template <typename T, typename = void> |
| struct IsTransparentCompare : std::false_type {}; |
| template <typename T> |
| struct IsTransparentCompare<T, std::void_t<typename T::is_transparent>> |
| : std::true_type {}; |
| |
| // Helper inspired by C++20's std::to_array to convert a C-style array to a |
| // std::array. As opposed to the C++20 version this implementation does not |
| // provide an overload for rvalues and does not strip cv qualifers from the |
| // returned std::array::value_type. The returned value_type needs to be |
| // specified explicitly, allowing the construction of std::arrays with const |
| // elements. |
| // |
| // Reference: https://en.cppreference.com/w/cpp/container/array/to_array |
| template <typename U, typename T, size_t N, size_t... I> |
| constexpr std::array<U, N> ToArrayImpl(const T (&data)[N], |
| std::index_sequence<I...>) { |
| return {{data[I]...}}; |
| } |
| |
| template <typename U, typename T, size_t N> |
| constexpr std::array<U, N> ToArray(const T (&data)[N]) { |
| return ToArrayImpl<U>(data, std::make_index_sequence<N>()); |
| } |
| |
| // std::pair's operator= is not constexpr prior to C++20. Thus we need this |
| // small helper to invoke operator= on the .first and .second member explicitly. |
| template <typename T> |
| constexpr void Assign(T& lhs, T&& rhs) { |
| lhs = std::move(rhs); |
| } |
| |
| template <typename T, typename U> |
| constexpr void Assign(std::pair<T, U>& lhs, std::pair<T, U>&& rhs) { |
| Assign(lhs.first, std::move(rhs.first)); |
| Assign(lhs.second, std::move(rhs.second)); |
| } |
| |
| // constexpr swap implementation. std::swap is not constexpr prior to C++20. |
| template <typename T> |
| constexpr void Swap(T& lhs, T& rhs) { |
| T tmp = std::move(lhs); |
| Assign(lhs, std::move(rhs)); |
| Assign(rhs, std::move(tmp)); |
| } |
| |
| // constexpr prev implementation. std::prev is not constexpr prior to C++17. |
| template <typename BidirIt> |
| constexpr BidirIt Prev(BidirIt it) { |
| return --it; |
| } |
| |
| // constexpr next implementation. std::next is not constexpr prior to C++17. |
| template <typename InputIt> |
| constexpr InputIt Next(InputIt it) { |
| return ++it; |
| } |
| |
| // constexpr sort implementation. std::sort is not constexpr prior to C++20. |
| // While insertion sort has a quadratic worst case complexity, it was chosen |
| // because it has linear complexity for nearly sorted data, is stable, and |
| // simple to implement. |
| template <typename BidirIt, typename Compare> |
| constexpr void InsertionSort(BidirIt first, BidirIt last, const Compare& comp) { |
| if (first == last) |
| return; |
| |
| for (auto it = Next(first); it != last; ++it) { |
| for (auto curr = it; curr != first && comp(*curr, *Prev(curr)); --curr) |
| Swap(*curr, *Prev(curr)); |
| } |
| } |
| |
| // Implementation ------------------------------------------------------------- |
| |
| // Implementation for the sorted associative flat_set and flat_map using a |
| // sorted vector as the backing store. Do not use directly. |
| // |
| // The use of "value" in this is like std::map uses, meaning it's the thing |
| // contained (in the case of map it's a <Kay, Mapped> pair). The Key is how |
| // things are looked up. In the case of a set, Key == Value. In the case of |
| // a map, the Key is a component of a Value. |
| // |
| // The helper class GetKeyFromValue provides the means to extract a key from a |
| // value for comparison purposes. It should implement: |
| // const Key& operator()(const Value&). |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| class flat_tree { |
| public: |
| // -------------------------------------------------------------------------- |
| // Types. |
| // |
| using key_type = Key; |
| using key_compare = KeyCompare; |
| using value_type = typename Container::value_type; |
| |
| // Wraps the templated key comparison to compare values. |
| struct value_compare { |
| constexpr bool operator()(const value_type& left, |
| const value_type& right) const { |
| GetKeyFromValue extractor; |
| return comp(extractor(left), extractor(right)); |
| } |
| |
| RTC_NO_UNIQUE_ADDRESS key_compare comp; |
| }; |
| |
| using pointer = typename Container::pointer; |
| using const_pointer = typename Container::const_pointer; |
| using reference = typename Container::reference; |
| using const_reference = typename Container::const_reference; |
| using size_type = typename Container::size_type; |
| using difference_type = typename Container::difference_type; |
| using iterator = typename Container::iterator; |
| using const_iterator = typename Container::const_iterator; |
| using reverse_iterator = typename Container::reverse_iterator; |
| using const_reverse_iterator = typename Container::const_reverse_iterator; |
| using container_type = Container; |
| |
| // -------------------------------------------------------------------------- |
| // Lifetime. |
| // |
| // Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity |
| // and take O(N * log(N)) + O(N) if extra memory is available (N is a range |
| // length). |
| // |
| // Assume that move constructors invalidate iterators and references. |
| // |
| // The constructors that take ranges, lists, and vectors do not require that |
| // the input be sorted. |
| // |
| // When passing the webrtc::sorted_unique tag as the first argument no sort |
| // and unique step takes places. This is useful if the underlying container |
| // already has the required properties. |
| |
| flat_tree() = default; |
| flat_tree(const flat_tree&) = default; |
| flat_tree(flat_tree&&) = default; |
| |
| explicit flat_tree(const key_compare& comp); |
| |
| template <class InputIterator> |
| flat_tree(InputIterator first, |
| InputIterator last, |
| const key_compare& comp = key_compare()); |
| |
| flat_tree(const container_type& items, |
| const key_compare& comp = key_compare()); |
| |
| explicit flat_tree(container_type&& items, |
| const key_compare& comp = key_compare()); |
| |
| flat_tree(std::initializer_list<value_type> ilist, |
| const key_compare& comp = key_compare()); |
| |
| template <class InputIterator> |
| flat_tree(sorted_unique_t, |
| InputIterator first, |
| InputIterator last, |
| const key_compare& comp = key_compare()); |
| |
| flat_tree(sorted_unique_t, |
| const container_type& items, |
| const key_compare& comp = key_compare()); |
| |
| constexpr flat_tree(sorted_unique_t, |
| container_type&& items, |
| const key_compare& comp = key_compare()); |
| |
| flat_tree(sorted_unique_t, |
| std::initializer_list<value_type> ilist, |
| const key_compare& comp = key_compare()); |
| |
| ~flat_tree() = default; |
| |
| // -------------------------------------------------------------------------- |
| // Assignments. |
| // |
| // Assume that move assignment invalidates iterators and references. |
| |
| flat_tree& operator=(const flat_tree&) = default; |
| flat_tree& operator=(flat_tree&&) = default; |
| // Takes the first if there are duplicates in the initializer list. |
| flat_tree& operator=(std::initializer_list<value_type> ilist); |
| |
| // -------------------------------------------------------------------------- |
| // Memory management. |
| // |
| // Beware that shrink_to_fit() simply forwards the request to the |
| // container_type and its implementation is free to optimize otherwise and |
| // leave capacity() to be greater that its size. |
| // |
| // reserve() and shrink_to_fit() invalidate iterators and references. |
| |
| void reserve(size_type new_capacity); |
| size_type capacity() const; |
| void shrink_to_fit(); |
| |
| // -------------------------------------------------------------------------- |
| // Size management. |
| // |
| // clear() leaves the capacity() of the flat_tree unchanged. |
| |
| void clear(); |
| |
| constexpr size_type size() const; |
| constexpr size_type max_size() const; |
| constexpr bool empty() const; |
| |
| // -------------------------------------------------------------------------- |
| // Iterators. |
| // |
| // Iterators follow the ordering defined by the key comparator used in |
| // construction of the flat_tree. |
| |
| iterator begin(); |
| constexpr const_iterator begin() const; |
| const_iterator cbegin() const; |
| |
| iterator end(); |
| constexpr const_iterator end() const; |
| const_iterator cend() const; |
| |
| reverse_iterator rbegin(); |
| const_reverse_iterator rbegin() const; |
| const_reverse_iterator crbegin() const; |
| |
| reverse_iterator rend(); |
| const_reverse_iterator rend() const; |
| const_reverse_iterator crend() const; |
| |
| // -------------------------------------------------------------------------- |
| // Insert operations. |
| // |
| // Assume that every operation invalidates iterators and references. |
| // Insertion of one element can take O(size). Capacity of flat_tree grows in |
| // an implementation-defined manner. |
| // |
| // NOTE: Prefer to build a new flat_tree from a std::vector (or similar) |
| // instead of calling insert() repeatedly. |
| |
| std::pair<iterator, bool> insert(const value_type& val); |
| std::pair<iterator, bool> insert(value_type&& val); |
| |
| iterator insert(const_iterator position_hint, const value_type& x); |
| iterator insert(const_iterator position_hint, value_type&& x); |
| |
| // This method inserts the values from the range [first, last) into the |
| // current tree. |
| template <class InputIterator> |
| void insert(InputIterator first, InputIterator last); |
| |
| template <class... Args> |
| std::pair<iterator, bool> emplace(Args&&... args); |
| |
| template <class... Args> |
| iterator emplace_hint(const_iterator position_hint, Args&&... args); |
| |
| // -------------------------------------------------------------------------- |
| // Underlying type operations. |
| // |
| // Assume that either operation invalidates iterators and references. |
| |
| // Extracts the container_type and returns it to the caller. Ensures that |
| // `this` is `empty()` afterwards. |
| container_type extract() &&; |
| |
| // Replaces the container_type with `body`. Expects that `body` is sorted |
| // and has no repeated elements with regard to value_comp(). |
| void replace(container_type&& body); |
| |
| // -------------------------------------------------------------------------- |
| // Erase operations. |
| // |
| // Assume that every operation invalidates iterators and references. |
| // |
| // erase(position), erase(first, last) can take O(size). |
| // erase(key) may take O(size) + O(log(size)). |
| // |
| // Prefer webrtc::EraseIf() or some other variation on erase(remove(), end()) |
| // idiom when deleting multiple non-consecutive elements. |
| |
| iterator erase(iterator position); |
| // Artificially templatized to break ambiguity if `iterator` and |
| // `const_iterator` are the same type. |
| template <typename DummyT = void> |
| iterator erase(const_iterator position); |
| iterator erase(const_iterator first, const_iterator last); |
| template <typename K> |
| size_type erase(const K& key); |
| |
| // -------------------------------------------------------------------------- |
| // Comparators. |
| |
| constexpr key_compare key_comp() const; |
| constexpr value_compare value_comp() const; |
| |
| // -------------------------------------------------------------------------- |
| // Search operations. |
| // |
| // Search operations have O(log(size)) complexity. |
| |
| template <typename K> |
| size_type count(const K& key) const; |
| |
| template <typename K> |
| iterator find(const K& key); |
| |
| template <typename K> |
| const_iterator find(const K& key) const; |
| |
| template <typename K> |
| bool contains(const K& key) const; |
| |
| template <typename K> |
| std::pair<iterator, iterator> equal_range(const K& key); |
| |
| template <typename K> |
| std::pair<const_iterator, const_iterator> equal_range(const K& key) const; |
| |
| template <typename K> |
| iterator lower_bound(const K& key); |
| |
| template <typename K> |
| const_iterator lower_bound(const K& key) const; |
| |
| template <typename K> |
| iterator upper_bound(const K& key); |
| |
| template <typename K> |
| const_iterator upper_bound(const K& key) const; |
| |
| // -------------------------------------------------------------------------- |
| // General operations. |
| // |
| // Assume that swap invalidates iterators and references. |
| // |
| // Implementation note: currently we use operator==() and operator<() on |
| // std::vector, because they have the same contract we need, so we use them |
| // directly for brevity and in case it is more optimal than calling equal() |
| // and lexicograhpical_compare(). If the underlying container type is changed, |
| // this code may need to be modified. |
| |
| void swap(flat_tree& other) noexcept; |
| |
| friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) { |
| return lhs.body_ == rhs.body_; |
| } |
| |
| friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) { |
| return !(lhs == rhs); |
| } |
| |
| friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) { |
| return lhs.body_ < rhs.body_; |
| } |
| |
| friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) { |
| return rhs < lhs; |
| } |
| |
| friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) { |
| return !(lhs < rhs); |
| } |
| |
| friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) { |
| return !(lhs > rhs); |
| } |
| |
| friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); } |
| |
| protected: |
| // Emplaces a new item into the tree that is known not to be in it. This |
| // is for implementing map operator[]. |
| template <class... Args> |
| iterator unsafe_emplace(const_iterator position, Args&&... args); |
| |
| // Attempts to emplace a new element with key `key`. Only if `key` is not yet |
| // present, construct value_type from `args` and insert it. Returns an |
| // iterator to the element with key `key` and a bool indicating whether an |
| // insertion happened. |
| template <class K, class... Args> |
| std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args); |
| |
| // Similar to `emplace_key_args`, but checks `hint` first as a possible |
| // insertion position. |
| template <class K, class... Args> |
| std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint, |
| const K& key, |
| Args&&... args); |
| |
| private: |
| // Helper class for e.g. lower_bound that can compare a value on the left |
| // to a key on the right. |
| struct KeyValueCompare { |
| // The key comparison object must outlive this class. |
| explicit KeyValueCompare(const key_compare& comp) : comp_(comp) {} |
| |
| template <typename T, typename U> |
| bool operator()(const T& lhs, const U& rhs) const { |
| return comp_(extract_if_value_type(lhs), extract_if_value_type(rhs)); |
| } |
| |
| private: |
| const key_type& extract_if_value_type(const value_type& v) const { |
| GetKeyFromValue extractor; |
| return extractor(v); |
| } |
| |
| template <typename K> |
| const K& extract_if_value_type(const K& k) const { |
| return k; |
| } |
| |
| const key_compare& comp_; |
| }; |
| |
| iterator const_cast_it(const_iterator c_it) { |
| auto distance = std::distance(cbegin(), c_it); |
| return std::next(begin(), distance); |
| } |
| |
| // This method is inspired by both std::map::insert(P&&) and |
| // std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent |
| // element is not present yet, otherwise it overwrites. It returns an iterator |
| // to the modified element and a flag indicating whether insertion or |
| // assignment happened. |
| template <class V> |
| std::pair<iterator, bool> insert_or_assign(V&& val) { |
| auto position = lower_bound(GetKeyFromValue()(val)); |
| |
| if (position == end() || value_comp()(val, *position)) |
| return {body_.emplace(position, std::forward<V>(val)), true}; |
| |
| *position = std::forward<V>(val); |
| return {position, false}; |
| } |
| |
| // This method is similar to insert_or_assign, with the following differences: |
| // - Instead of searching [begin(), end()) it only searches [first, last). |
| // - In case no equivalent element is found, val is appended to the end of the |
| // underlying body and an iterator to the next bigger element in [first, |
| // last) is returned. |
| template <class V> |
| std::pair<iterator, bool> append_or_assign(iterator first, |
| iterator last, |
| V&& val) { |
| auto position = std::lower_bound(first, last, val, value_comp()); |
| |
| if (position == last || value_comp()(val, *position)) { |
| // emplace_back might invalidate position, which is why distance needs to |
| // be cached. |
| const difference_type distance = std::distance(begin(), position); |
| body_.emplace_back(std::forward<V>(val)); |
| return {std::next(begin(), distance), true}; |
| } |
| |
| *position = std::forward<V>(val); |
| return {position, false}; |
| } |
| |
| // This method is similar to insert, with the following differences: |
| // - Instead of searching [begin(), end()) it only searches [first, last). |
| // - In case no equivalent element is found, val is appended to the end of the |
| // underlying body and an iterator to the next bigger element in [first, |
| // last) is returned. |
| template <class V> |
| std::pair<iterator, bool> append_unique(iterator first, |
| iterator last, |
| V&& val) { |
| auto position = std::lower_bound(first, last, val, value_comp()); |
| |
| if (position == last || value_comp()(val, *position)) { |
| // emplace_back might invalidate position, which is why distance needs to |
| // be cached. |
| const difference_type distance = std::distance(begin(), position); |
| body_.emplace_back(std::forward<V>(val)); |
| return {std::next(begin(), distance), true}; |
| } |
| |
| return {position, false}; |
| } |
| |
| void sort_and_unique(iterator first, iterator last) { |
| // Preserve stability for the unique code below. |
| std::stable_sort(first, last, value_comp()); |
| |
| // lhs is already <= rhs due to sort, therefore !(lhs < rhs) <=> lhs == rhs. |
| auto equal_comp = std::not_fn(value_comp()); |
| erase(std::unique(first, last, equal_comp), last); |
| } |
| |
| void sort_and_unique() { sort_and_unique(begin(), end()); } |
| |
| // To support comparators that may not be possible to default-construct, we |
| // have to store an instance of Compare. Since Compare commonly is stateless, |
| // we use the RTC_NO_UNIQUE_ADDRESS attribute to save space. |
| RTC_NO_UNIQUE_ADDRESS key_compare comp_; |
| // Declare after `key_compare_comp_` to workaround GCC ICE. For details |
| // see https://crbug.com/1156268 |
| container_type body_; |
| |
| // If the compare is not transparent we want to construct key_type once. |
| template <typename K> |
| using KeyTypeOrK = typename std:: |
| conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type; |
| }; |
| |
| // ---------------------------------------------------------------------------- |
| // Lifetime. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| const KeyCompare& comp) |
| : comp_(comp) {} |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class InputIterator> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| InputIterator first, |
| InputIterator last, |
| const KeyCompare& comp) |
| : comp_(comp), body_(first, last) { |
| sort_and_unique(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| const container_type& items, |
| const KeyCompare& comp) |
| : comp_(comp), body_(items) { |
| sort_and_unique(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| container_type&& items, |
| const KeyCompare& comp) |
| : comp_(comp), body_(std::move(items)) { |
| sort_and_unique(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| std::initializer_list<value_type> ilist, |
| const KeyCompare& comp) |
| : flat_tree(std::begin(ilist), std::end(ilist), comp) {} |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class InputIterator> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| sorted_unique_t, |
| InputIterator first, |
| InputIterator last, |
| const KeyCompare& comp) |
| : comp_(comp), body_(first, last) { |
| RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| sorted_unique_t, |
| const container_type& items, |
| const KeyCompare& comp) |
| : comp_(comp), body_(items) { |
| RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| sorted_unique_t, |
| container_type&& items, |
| const KeyCompare& comp) |
| : comp_(comp), body_(std::move(items)) { |
| RTC_DCHECK(is_sorted_and_unique(*this, value_comp())); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::flat_tree( |
| sorted_unique_t, |
| std::initializer_list<value_type> ilist, |
| const KeyCompare& comp) |
| : flat_tree(sorted_unique, std::begin(ilist), std::end(ilist), comp) {} |
| |
| // ---------------------------------------------------------------------------- |
| // Assignments. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::operator=( |
| std::initializer_list<value_type> ilist) -> flat_tree& { |
| body_ = ilist; |
| sort_and_unique(); |
| return *this; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Memory management. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::reserve( |
| size_type new_capacity) { |
| body_.reserve(new_capacity); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::capacity() const |
| -> size_type { |
| return body_.capacity(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::shrink_to_fit() { |
| body_.shrink_to_fit(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Size management. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::clear() { |
| body_.clear(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::size() |
| const -> size_type { |
| return body_.size(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr auto |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::max_size() const |
| -> size_type { |
| return body_.max_size(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::empty() |
| const { |
| return body_.empty(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Iterators. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin() |
| -> iterator { |
| return body_.begin(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::begin() |
| const -> const_iterator { |
| return std::begin(body_); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cbegin() const |
| -> const_iterator { |
| return body_.cbegin(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() -> iterator { |
| return body_.end(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::end() |
| const -> const_iterator { |
| return std::end(body_); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::cend() const |
| -> const_iterator { |
| return body_.cend(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() |
| -> reverse_iterator { |
| return body_.rbegin(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rbegin() const |
| -> const_reverse_iterator { |
| return body_.rbegin(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crbegin() const |
| -> const_reverse_iterator { |
| return body_.crbegin(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() |
| -> reverse_iterator { |
| return body_.rend(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::rend() const |
| -> const_reverse_iterator { |
| return body_.rend(); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::crend() const |
| -> const_reverse_iterator { |
| return body_.crend(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Insert operations. |
| // |
| // Currently we use position_hint the same way as eastl or boost: |
| // https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493 |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( |
| const value_type& val) -> std::pair<iterator, bool> { |
| return emplace_key_args(GetKeyFromValue()(val), val); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( |
| value_type&& val) -> std::pair<iterator, bool> { |
| return emplace_key_args(GetKeyFromValue()(val), std::move(val)); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( |
| const_iterator position_hint, |
| const value_type& val) -> iterator { |
| return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val) |
| .first; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( |
| const_iterator position_hint, |
| value_type&& val) -> iterator { |
| return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), |
| std::move(val)) |
| .first; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class InputIterator> |
| void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::insert( |
| InputIterator first, |
| InputIterator last) { |
| if (first == last) |
| return; |
| |
| // Dispatch to single element insert if the input range contains a single |
| // element. |
| if (is_multipass<InputIterator>() && std::next(first) == last) { |
| insert(end(), *first); |
| return; |
| } |
| |
| // Provide a convenience lambda to obtain an iterator pointing past the last |
| // old element. This needs to be dymanic due to possible re-allocations. |
| auto middle = [this, size = size()] { return std::next(begin(), size); }; |
| |
| // For batch updates initialize the first insertion point. |
| difference_type pos_first_new = size(); |
| |
| // Loop over the input range while appending new values and overwriting |
| // existing ones, if applicable. Keep track of the first insertion point. |
| for (; first != last; ++first) { |
| std::pair<iterator, bool> result = append_unique(begin(), middle(), *first); |
| if (result.second) { |
| pos_first_new = |
| std::min(pos_first_new, std::distance(begin(), result.first)); |
| } |
| } |
| |
| // The new elements might be unordered and contain duplicates, so post-process |
| // the just inserted elements and merge them with the rest, inserting them at |
| // the previously found spot. |
| sort_and_unique(middle(), end()); |
| std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(), |
| value_comp()); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class... Args> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace( |
| Args&&... args) -> std::pair<iterator, bool> { |
| return insert(value_type(std::forward<Args>(args)...)); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class... Args> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_hint( |
| const_iterator position_hint, |
| Args&&... args) -> iterator { |
| return insert(position_hint, value_type(std::forward<Args>(args)...)); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Underlying type operations. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>:: |
| extract() && -> container_type { |
| return std::exchange(body_, container_type()); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::replace( |
| container_type&& body) { |
| // Ensure that `body` is sorted and has no repeated elements according to |
| // `value_comp()`. |
| RTC_DCHECK(is_sorted_and_unique(body, value_comp())); |
| body_ = std::move(body); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Erase operations. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( |
| iterator position) -> iterator { |
| RTC_CHECK(position != body_.end()); |
| return body_.erase(position); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename DummyT> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( |
| const_iterator position) -> iterator { |
| RTC_CHECK(position != body_.end()); |
| return body_.erase(position); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase(const K& val) |
| -> size_type { |
| auto eq_range = equal_range(val); |
| auto res = std::distance(eq_range.first, eq_range.second); |
| erase(eq_range.first, eq_range.second); |
| return res; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::erase( |
| const_iterator first, |
| const_iterator last) -> iterator { |
| return body_.erase(first, last); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Comparators. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr auto |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::key_comp() const |
| -> key_compare { |
| return comp_; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| constexpr auto |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::value_comp() const |
| -> value_compare { |
| return value_compare{comp_}; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Search operations. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::count( |
| const K& key) const -> size_type { |
| auto eq_range = equal_range(key); |
| return std::distance(eq_range.first, eq_range.second); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find(const K& key) |
| -> iterator { |
| return const_cast_it(std::as_const(*this).find(key)); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::find( |
| const K& key) const -> const_iterator { |
| auto eq_range = equal_range(key); |
| return (eq_range.first == eq_range.second) ? end() : eq_range.first; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| bool flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::contains( |
| const K& key) const { |
| auto lower = lower_bound(key); |
| return lower != end() && !comp_(key, GetKeyFromValue()(*lower)); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range( |
| const K& key) -> std::pair<iterator, iterator> { |
| auto res = std::as_const(*this).equal_range(key); |
| return {const_cast_it(res.first), const_cast_it(res.second)}; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::equal_range( |
| const K& key) const -> std::pair<const_iterator, const_iterator> { |
| auto lower = lower_bound(key); |
| |
| KeyValueCompare comp(comp_); |
| if (lower == end() || comp(key, *lower)) |
| return {lower, lower}; |
| |
| return {lower, std::next(lower)}; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound( |
| const K& key) -> iterator { |
| return const_cast_it(std::as_const(*this).lower_bound(key)); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::lower_bound( |
| const K& key) const -> const_iterator { |
| static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, |
| "Requested type cannot be bound to the container's key_type " |
| "which is required for a non-transparent compare."); |
| |
| const KeyTypeOrK<K>& key_ref = key; |
| |
| KeyValueCompare comp(comp_); |
| return absl::c_lower_bound(*this, key_ref, comp); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound( |
| const K& key) -> iterator { |
| return const_cast_it(std::as_const(*this).upper_bound(key)); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <typename K> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::upper_bound( |
| const K& key) const -> const_iterator { |
| static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, |
| "Requested type cannot be bound to the container's key_type " |
| "which is required for a non-transparent compare."); |
| |
| const KeyTypeOrK<K>& key_ref = key; |
| |
| KeyValueCompare comp(comp_); |
| return absl::c_upper_bound(*this, key_ref, comp); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // General operations. |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| void flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::swap( |
| flat_tree& other) noexcept { |
| std::swap(*this, other); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class... Args> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::unsafe_emplace( |
| const_iterator position, |
| Args&&... args) -> iterator { |
| return body_.emplace(position, std::forward<Args>(args)...); |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class K, class... Args> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>::emplace_key_args( |
| const K& key, |
| Args&&... args) -> std::pair<iterator, bool> { |
| auto lower = lower_bound(key); |
| if (lower == end() || comp_(key, GetKeyFromValue()(*lower))) |
| return {unsafe_emplace(lower, std::forward<Args>(args)...), true}; |
| return {lower, false}; |
| } |
| |
| template <class Key, class GetKeyFromValue, class KeyCompare, class Container> |
| template <class K, class... Args> |
| auto flat_tree<Key, GetKeyFromValue, KeyCompare, Container>:: |
| emplace_hint_key_args(const_iterator hint, const K& key, Args&&... args) |
| -> std::pair<iterator, bool> { |
| KeyValueCompare comp(comp_); |
| if ((hint == begin() || comp(*std::prev(hint), key))) { |
| if (hint == end() || comp(key, *hint)) { |
| // *(hint - 1) < key < *hint => key did not exist and hint is correct. |
| return {unsafe_emplace(hint, std::forward<Args>(args)...), true}; |
| } |
| if (!comp(*hint, key)) { |
| // key == *hint => no-op, return correct hint. |
| return {const_cast_it(hint), false}; |
| } |
| } |
| // hint was not helpful, dispatch to hintless version. |
| return emplace_key_args(key, std::forward<Args>(args)...); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // Free functions. |
| |
| // Erases all elements that match predicate. It has O(size) complexity. |
| template <class Key, |
| class GetKeyFromValue, |
| class KeyCompare, |
| class Container, |
| typename Predicate> |
| size_t EraseIf( |
| webrtc::flat_containers_internal:: |
| flat_tree<Key, GetKeyFromValue, KeyCompare, Container>& container, |
| Predicate pred) { |
| auto it = std::remove_if(container.begin(), container.end(), |
| std::forward<Predicate>(pred)); |
| size_t removed = std::distance(it, container.end()); |
| container.erase(it, container.end()); |
| return removed; |
| } |
| |
| } // namespace flat_containers_internal |
| } // namespace webrtc |
| |
| #endif // RTC_BASE_CONTAINERS_FLAT_TREE_H_ |