| /* | 
 |  *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 | #include "rtc_base/physical_socket_server.h" | 
 |  | 
 | #include <cstdint> | 
 | #include <utility> | 
 |  | 
 | #if defined(_MSC_VER) && _MSC_VER < 1300 | 
 | #pragma warning(disable : 4786) | 
 | #endif | 
 |  | 
 | #ifdef MEMORY_SANITIZER | 
 | #include <sanitizer/msan_interface.h> | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | #include <fcntl.h> | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 | // "poll" will be used to wait for the signal dispatcher. | 
 | #include <poll.h> | 
 | #elif defined(WEBRTC_USE_POLL) | 
 | #include <poll.h> | 
 | #endif | 
 | #include <sys/ioctl.h> | 
 | #include <sys/select.h> | 
 | #include <unistd.h> | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | #include <windows.h> | 
 | #include <winsock2.h> | 
 | #include <ws2tcpip.h> | 
 |  | 
 | #undef SetPort | 
 | #endif | 
 |  | 
 | #include <errno.h> | 
 |  | 
 | #include "rtc_base/async_dns_resolver.h" | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/event.h" | 
 | #include "rtc_base/ip_address.h" | 
 | #include "rtc_base/logging.h" | 
 | #include "rtc_base/network_monitor.h" | 
 | #include "rtc_base/synchronization/mutex.h" | 
 | #include "rtc_base/time_utils.h" | 
 | #include "system_wrappers/include/field_trial.h" | 
 |  | 
 | #if defined(WEBRTC_LINUX) | 
 | #include <linux/sockios.h> | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | #define LAST_SYSTEM_ERROR (::GetLastError()) | 
 | #elif defined(__native_client__) && __native_client__ | 
 | #define LAST_SYSTEM_ERROR (0) | 
 | #elif defined(WEBRTC_POSIX) | 
 | #define LAST_SYSTEM_ERROR (errno) | 
 | #endif  // WEBRTC_WIN | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | #include <netinet/tcp.h>  // for TCP_NODELAY | 
 |  | 
 | #define IP_MTU 14  // Until this is integrated from linux/in.h to netinet/in.h | 
 | typedef void* SockOptArg; | 
 |  | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(__native_client__) | 
 |  | 
 | int64_t GetSocketRecvTimestamp(int socket) { | 
 |   struct timeval tv_ioctl; | 
 |   int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl); | 
 |   if (ret != 0) | 
 |     return -1; | 
 |   int64_t timestamp = | 
 |       rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) + | 
 |       static_cast<int64_t>(tv_ioctl.tv_usec); | 
 |   return timestamp; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | int64_t GetSocketRecvTimestamp(int socket) { | 
 |   return -1; | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | typedef char* SockOptArg; | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 | // POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17. | 
 | #if !defined(POLLRDHUP) | 
 | #define POLLRDHUP 0x2000 | 
 | #endif | 
 | #if !defined(EPOLLRDHUP) | 
 | #define EPOLLRDHUP 0x2000 | 
 | #endif | 
 | #endif | 
 |  | 
 | namespace { | 
 | class ScopedSetTrue { | 
 |  public: | 
 |   ScopedSetTrue(bool* value) : value_(value) { | 
 |     RTC_DCHECK(!*value_); | 
 |     *value_ = true; | 
 |   } | 
 |   ~ScopedSetTrue() { *value_ = false; } | 
 |  | 
 |  private: | 
 |   bool* value_; | 
 | }; | 
 |  | 
 | // Returns true if the experiement "WebRTC-SCM-Timestamp" is explicitly | 
 | // disabled. | 
 | bool IsScmTimeStampExperimentDisabled() { | 
 |   return webrtc::field_trial::IsDisabled("WebRTC-SCM-Timestamp"); | 
 | } | 
 | }  // namespace | 
 |  | 
 | namespace rtc { | 
 |  | 
 | PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s) | 
 |     : ss_(ss), | 
 |       s_(s), | 
 |       error_(0), | 
 |       state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED), | 
 |       resolver_(nullptr), | 
 |       read_scm_timestamp_experiment_(!IsScmTimeStampExperimentDisabled()) { | 
 |   if (s_ != INVALID_SOCKET) { | 
 |     SetEnabledEvents(DE_READ | DE_WRITE); | 
 |  | 
 |     int type = SOCK_STREAM; | 
 |     socklen_t len = sizeof(type); | 
 |     const int res = | 
 |         getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len); | 
 |     RTC_DCHECK_EQ(0, res); | 
 |     udp_ = (SOCK_DGRAM == type); | 
 |   } | 
 | } | 
 |  | 
 | PhysicalSocket::~PhysicalSocket() { | 
 |   Close(); | 
 | } | 
 |  | 
 | bool PhysicalSocket::Create(int family, int type) { | 
 |   Close(); | 
 |   s_ = ::socket(family, type, 0); | 
 |   udp_ = (SOCK_DGRAM == type); | 
 |   family_ = family; | 
 |   UpdateLastError(); | 
 |   if (udp_) { | 
 |     SetEnabledEvents(DE_READ | DE_WRITE); | 
 |   } | 
 |   return s_ != INVALID_SOCKET; | 
 | } | 
 |  | 
 | SocketAddress PhysicalSocket::GetLocalAddress() const { | 
 |   sockaddr_storage addr_storage = {}; | 
 |   socklen_t addrlen = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int result = ::getsockname(s_, addr, &addrlen); | 
 |   SocketAddress address; | 
 |   if (result >= 0) { | 
 |     SocketAddressFromSockAddrStorage(addr_storage, &address); | 
 |   } else { | 
 |     RTC_LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket=" | 
 |                         << s_; | 
 |   } | 
 |   return address; | 
 | } | 
 |  | 
 | SocketAddress PhysicalSocket::GetRemoteAddress() const { | 
 |   sockaddr_storage addr_storage = {}; | 
 |   socklen_t addrlen = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int result = ::getpeername(s_, addr, &addrlen); | 
 |   SocketAddress address; | 
 |   if (result >= 0) { | 
 |     SocketAddressFromSockAddrStorage(addr_storage, &address); | 
 |   } else { | 
 |     RTC_LOG(LS_WARNING) | 
 |         << "GetRemoteAddress: unable to get remote addr, socket=" << s_; | 
 |   } | 
 |   return address; | 
 | } | 
 |  | 
 | int PhysicalSocket::Bind(const SocketAddress& bind_addr) { | 
 |   SocketAddress copied_bind_addr = bind_addr; | 
 |   // If a network binder is available, use it to bind a socket to an interface | 
 |   // instead of bind(), since this is more reliable on an OS with a weak host | 
 |   // model. | 
 |   if (ss_->network_binder() && !bind_addr.IsAnyIP()) { | 
 |     NetworkBindingResult result = | 
 |         ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr()); | 
 |     if (result == NetworkBindingResult::SUCCESS) { | 
 |       // Since the network binder handled binding the socket to the desired | 
 |       // network interface, we don't need to (and shouldn't) include an IP in | 
 |       // the bind() call; bind() just needs to assign a port. | 
 |       copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family())); | 
 |     } else if (result == NetworkBindingResult::NOT_IMPLEMENTED) { | 
 |       RTC_LOG(LS_INFO) << "Can't bind socket to network because " | 
 |                           "network binding is not implemented for this OS."; | 
 |     } else { | 
 |       if (bind_addr.IsLoopbackIP()) { | 
 |         // If we couldn't bind to a loopback IP (which should only happen in | 
 |         // test scenarios), continue on. This may be expected behavior. | 
 |         RTC_LOG(LS_VERBOSE) << "Binding socket to loopback address" | 
 |                             << " failed; result: " << static_cast<int>(result); | 
 |       } else { | 
 |         RTC_LOG(LS_WARNING) << "Binding socket to network address" | 
 |                             << " failed; result: " << static_cast<int>(result); | 
 |         // If a network binding was attempted and failed, we should stop here | 
 |         // and not try to use the socket. Otherwise, we may end up sending | 
 |         // packets with an invalid source address. | 
 |         // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026 | 
 |         return -1; | 
 |       } | 
 |     } | 
 |   } | 
 |   sockaddr_storage addr_storage; | 
 |   size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int err = ::bind(s_, addr, static_cast<int>(len)); | 
 |   UpdateLastError(); | 
 | #if !defined(NDEBUG) | 
 |   if (0 == err) { | 
 |     dbg_addr_ = "Bound @ "; | 
 |     dbg_addr_.append(GetLocalAddress().ToString()); | 
 |   } | 
 | #endif | 
 |   return err; | 
 | } | 
 |  | 
 | int PhysicalSocket::Connect(const SocketAddress& addr) { | 
 |   // TODO(pthatcher): Implicit creation is required to reconnect... | 
 |   // ...but should we make it more explicit? | 
 |   if (state_ != CS_CLOSED) { | 
 |     SetError(EALREADY); | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |   if (addr.IsUnresolvedIP()) { | 
 |     RTC_LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect"; | 
 |     resolver_ = std::make_unique<webrtc::AsyncDnsResolver>(); | 
 |     resolver_->Start(addr, [this] { OnResolveResult(resolver_->result()); }); | 
 |     state_ = CS_CONNECTING; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return DoConnect(addr); | 
 | } | 
 |  | 
 | int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) { | 
 |   if ((s_ == INVALID_SOCKET) && !Create(connect_addr.family(), SOCK_STREAM)) { | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |   sockaddr_storage addr_storage; | 
 |   size_t len = connect_addr.ToSockAddrStorage(&addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int err = ::connect(s_, addr, static_cast<int>(len)); | 
 |   UpdateLastError(); | 
 |   uint8_t events = DE_READ | DE_WRITE; | 
 |   if (err == 0) { | 
 |     state_ = CS_CONNECTED; | 
 |   } else if (IsBlockingError(GetError())) { | 
 |     state_ = CS_CONNECTING; | 
 |     events |= DE_CONNECT; | 
 |   } else { | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |  | 
 |   EnableEvents(events); | 
 |   return 0; | 
 | } | 
 |  | 
 | int PhysicalSocket::GetError() const { | 
 |   webrtc::MutexLock lock(&mutex_); | 
 |   return error_; | 
 | } | 
 |  | 
 | void PhysicalSocket::SetError(int error) { | 
 |   webrtc::MutexLock lock(&mutex_); | 
 |   error_ = error; | 
 | } | 
 |  | 
 | Socket::ConnState PhysicalSocket::GetState() const { | 
 |   return state_; | 
 | } | 
 |  | 
 | int PhysicalSocket::GetOption(Option opt, int* value) { | 
 |   int slevel; | 
 |   int sopt; | 
 |   if (TranslateOption(opt, &slevel, &sopt) == -1) | 
 |     return -1; | 
 |   socklen_t optlen = sizeof(*value); | 
 |   int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen); | 
 |   if (ret == -1) { | 
 |     return -1; | 
 |   } | 
 |   if (opt == OPT_DONTFRAGMENT) { | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |     *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0; | 
 | #endif | 
 |   } else if (opt == OPT_DSCP) { | 
 | #if defined(WEBRTC_POSIX) | 
 |     // unshift DSCP value to get six most significant bits of IP DiffServ field | 
 |     *value >>= 2; | 
 | #endif | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | int PhysicalSocket::SetOption(Option opt, int value) { | 
 |   int slevel; | 
 |   int sopt; | 
 |   if (TranslateOption(opt, &slevel, &sopt) == -1) | 
 |     return -1; | 
 |   if (opt == OPT_DONTFRAGMENT) { | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |     value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT; | 
 | #endif | 
 |   } else if (opt == OPT_DSCP) { | 
 | #if defined(WEBRTC_POSIX) | 
 |     // shift DSCP value to fit six most significant bits of IP DiffServ field | 
 |     value <<= 2; | 
 | #endif | 
 |   } | 
 | #if defined(WEBRTC_POSIX) | 
 |   if (sopt == IPV6_TCLASS) { | 
 |     // Set the IPv4 option in all cases to support dual-stack sockets. | 
 |     // Don't bother checking the return code, as this is expected to fail if | 
 |     // it's not actually dual-stack. | 
 |     ::setsockopt(s_, IPPROTO_IP, IP_TOS, (SockOptArg)&value, sizeof(value)); | 
 |   } | 
 | #endif | 
 |   int result = | 
 |       ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value)); | 
 |   if (result != 0) { | 
 |     UpdateLastError(); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | int PhysicalSocket::Send(const void* pv, size_t cb) { | 
 |   int sent = DoSend( | 
 |       s_, reinterpret_cast<const char*>(pv), static_cast<int>(cb), | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |       // Suppress SIGPIPE. Without this, attempting to send on a socket whose | 
 |       // other end is closed will result in a SIGPIPE signal being raised to | 
 |       // our process, which by default will terminate the process, which we | 
 |       // don't want. By specifying this flag, we'll just get the error EPIPE | 
 |       // instead and can handle the error gracefully. | 
 |       MSG_NOSIGNAL | 
 | #else | 
 |       0 | 
 | #endif | 
 |   ); | 
 |   UpdateLastError(); | 
 |   MaybeRemapSendError(); | 
 |   // We have seen minidumps where this may be false. | 
 |   RTC_DCHECK(sent <= static_cast<int>(cb)); | 
 |   if ((sent > 0 && sent < static_cast<int>(cb)) || | 
 |       (sent < 0 && IsBlockingError(GetError()))) { | 
 |     EnableEvents(DE_WRITE); | 
 |   } | 
 |   return sent; | 
 | } | 
 |  | 
 | int PhysicalSocket::SendTo(const void* buffer, | 
 |                            size_t length, | 
 |                            const SocketAddress& addr) { | 
 |   sockaddr_storage saddr; | 
 |   size_t len = addr.ToSockAddrStorage(&saddr); | 
 |   int sent = | 
 |       DoSendTo(s_, static_cast<const char*>(buffer), static_cast<int>(length), | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |                // Suppress SIGPIPE. See above for explanation. | 
 |                MSG_NOSIGNAL, | 
 | #else | 
 |                0, | 
 | #endif | 
 |                reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len)); | 
 |   UpdateLastError(); | 
 |   MaybeRemapSendError(); | 
 |   // We have seen minidumps where this may be false. | 
 |   RTC_DCHECK(sent <= static_cast<int>(length)); | 
 |   if ((sent > 0 && sent < static_cast<int>(length)) || | 
 |       (sent < 0 && IsBlockingError(GetError()))) { | 
 |     EnableEvents(DE_WRITE); | 
 |   } | 
 |   return sent; | 
 | } | 
 |  | 
 | int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) { | 
 |   int received = | 
 |       DoReadFromSocket(buffer, length, /*out_addr*/ nullptr, timestamp); | 
 |   if ((received == 0) && (length != 0)) { | 
 |     // Note: on graceful shutdown, recv can return 0.  In this case, we | 
 |     // pretend it is blocking, and then signal close, so that simplifying | 
 |     // assumptions can be made about Recv. | 
 |     RTC_LOG(LS_WARNING) << "EOF from socket; deferring close event"; | 
 |     // Must turn this back on so that the select() loop will notice the close | 
 |     // event. | 
 |     EnableEvents(DE_READ); | 
 |     SetError(EWOULDBLOCK); | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |  | 
 |   UpdateLastError(); | 
 |   int error = GetError(); | 
 |   bool success = (received >= 0) || IsBlockingError(error); | 
 |   if (udp_ || success) { | 
 |     EnableEvents(DE_READ); | 
 |   } | 
 |   if (!success) { | 
 |     RTC_LOG_F(LS_VERBOSE) << "Error = " << error; | 
 |   } | 
 |   return received; | 
 | } | 
 |  | 
 | int PhysicalSocket::RecvFrom(void* buffer, | 
 |                              size_t length, | 
 |                              SocketAddress* out_addr, | 
 |                              int64_t* timestamp) { | 
 |   int received = DoReadFromSocket(buffer, length, out_addr, timestamp); | 
 |   UpdateLastError(); | 
 |   int error = GetError(); | 
 |   bool success = (received >= 0) || IsBlockingError(error); | 
 |   if (udp_ || success) { | 
 |     EnableEvents(DE_READ); | 
 |   } | 
 |   if (!success) { | 
 |     RTC_LOG_F(LS_VERBOSE) << "Error = " << error; | 
 |   } | 
 |   return received; | 
 | } | 
 |  | 
 | int PhysicalSocket::DoReadFromSocket(void* buffer, | 
 |                                      size_t length, | 
 |                                      SocketAddress* out_addr, | 
 |                                      int64_t* timestamp) { | 
 |   sockaddr_storage addr_storage; | 
 |   socklen_t addr_len = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 |   int received = 0; | 
 |   if (read_scm_timestamp_experiment_) { | 
 |     iovec iov = {.iov_base = buffer, .iov_len = length}; | 
 |     msghdr msg = {.msg_iov = &iov, .msg_iovlen = 1}; | 
 |     if (out_addr) { | 
 |       out_addr->Clear(); | 
 |       msg.msg_name = addr; | 
 |       msg.msg_namelen = addr_len; | 
 |     } | 
 |     char control[CMSG_SPACE(sizeof(struct timeval))] = {}; | 
 |     if (timestamp) { | 
 |       *timestamp = -1; | 
 |       msg.msg_control = &control; | 
 |       msg.msg_controllen = sizeof(control); | 
 |     } | 
 |     received = ::recvmsg(s_, &msg, 0); | 
 |     if (received <= 0) { | 
 |       // An error occured or shut down. | 
 |       return received; | 
 |     } | 
 |     if (timestamp) { | 
 |       struct cmsghdr* cmsg; | 
 |       for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { | 
 |         if (cmsg->cmsg_level != SOL_SOCKET) | 
 |           continue; | 
 |         if (cmsg->cmsg_type == SCM_TIMESTAMP) { | 
 |           timeval* ts = reinterpret_cast<timeval*>(CMSG_DATA(cmsg)); | 
 |           *timestamp = | 
 |               rtc::kNumMicrosecsPerSec * static_cast<int64_t>(ts->tv_sec) + | 
 |               static_cast<int64_t>(ts->tv_usec); | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |     if (out_addr) { | 
 |       SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |     } | 
 |   } else {  // !read_scm_timestamp_experiment_ | 
 |     if (out_addr) { | 
 |       received = ::recvfrom(s_, static_cast<char*>(buffer), | 
 |                             static_cast<int>(length), 0, addr, &addr_len); | 
 |       SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |     } else { | 
 |       received = | 
 |           ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0); | 
 |     } | 
 |     if (timestamp) { | 
 |       *timestamp = GetSocketRecvTimestamp(s_); | 
 |     } | 
 |   } | 
 |   return received; | 
 |  | 
 | #else | 
 |   int received = 0; | 
 |   if (out_addr) { | 
 |     received = ::recvfrom(s_, static_cast<char*>(buffer), | 
 |                           static_cast<int>(length), 0, addr, &addr_len); | 
 |     SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |   } else { | 
 |     received = | 
 |         ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0); | 
 |   } | 
 |   if (timestamp) { | 
 |     *timestamp = -1; | 
 |   } | 
 |   return received; | 
 | #endif | 
 | } | 
 |  | 
 | int PhysicalSocket::Listen(int backlog) { | 
 |   int err = ::listen(s_, backlog); | 
 |   UpdateLastError(); | 
 |   if (err == 0) { | 
 |     state_ = CS_CONNECTING; | 
 |     EnableEvents(DE_ACCEPT); | 
 | #if !defined(NDEBUG) | 
 |     dbg_addr_ = "Listening @ "; | 
 |     dbg_addr_.append(GetLocalAddress().ToString()); | 
 | #endif | 
 |   } | 
 |   return err; | 
 | } | 
 |  | 
 | Socket* PhysicalSocket::Accept(SocketAddress* out_addr) { | 
 |   // Always re-subscribe DE_ACCEPT to make sure new incoming connections will | 
 |   // trigger an event even if DoAccept returns an error here. | 
 |   EnableEvents(DE_ACCEPT); | 
 |   sockaddr_storage addr_storage; | 
 |   socklen_t addr_len = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   SOCKET s = DoAccept(s_, addr, &addr_len); | 
 |   UpdateLastError(); | 
 |   if (s == INVALID_SOCKET) | 
 |     return nullptr; | 
 |   if (out_addr != nullptr) | 
 |     SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |   return ss_->WrapSocket(s); | 
 | } | 
 |  | 
 | int PhysicalSocket::Close() { | 
 |   if (s_ == INVALID_SOCKET) | 
 |     return 0; | 
 |   int err = ::closesocket(s_); | 
 |   UpdateLastError(); | 
 |   s_ = INVALID_SOCKET; | 
 |   state_ = CS_CLOSED; | 
 |   SetEnabledEvents(0); | 
 |   if (resolver_) { | 
 |     resolver_.reset(); | 
 |   } | 
 |   return err; | 
 | } | 
 |  | 
 | SOCKET PhysicalSocket::DoAccept(SOCKET socket, | 
 |                                 sockaddr* addr, | 
 |                                 socklen_t* addrlen) { | 
 |   return ::accept(socket, addr, addrlen); | 
 | } | 
 |  | 
 | int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) { | 
 |   return ::send(socket, buf, len, flags); | 
 | } | 
 |  | 
 | int PhysicalSocket::DoSendTo(SOCKET socket, | 
 |                              const char* buf, | 
 |                              int len, | 
 |                              int flags, | 
 |                              const struct sockaddr* dest_addr, | 
 |                              socklen_t addrlen) { | 
 |   return ::sendto(socket, buf, len, flags, dest_addr, addrlen); | 
 | } | 
 |  | 
 | void PhysicalSocket::OnResolveResult( | 
 |     const webrtc::AsyncDnsResolverResult& result) { | 
 |   int error = result.GetError(); | 
 |   if (error == 0) { | 
 |     SocketAddress address; | 
 |     if (result.GetResolvedAddress(AF_INET, &address)) { | 
 |       error = DoConnect(address); | 
 |     } else { | 
 |       Close(); | 
 |     } | 
 |   } else { | 
 |     Close(); | 
 |   } | 
 |  | 
 |   if (error) { | 
 |     SetError(error); | 
 |     SignalCloseEvent(this, error); | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocket::UpdateLastError() { | 
 |   SetError(LAST_SYSTEM_ERROR); | 
 | } | 
 |  | 
 | void PhysicalSocket::MaybeRemapSendError() { | 
 | #if defined(WEBRTC_MAC) | 
 |   // https://developer.apple.com/library/mac/documentation/Darwin/ | 
 |   // Reference/ManPages/man2/sendto.2.html | 
 |   // ENOBUFS - The output queue for a network interface is full. | 
 |   // This generally indicates that the interface has stopped sending, | 
 |   // but may be caused by transient congestion. | 
 |   if (GetError() == ENOBUFS) { | 
 |     SetError(EWOULDBLOCK); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void PhysicalSocket::SetEnabledEvents(uint8_t events) { | 
 |   enabled_events_ = events; | 
 | } | 
 |  | 
 | void PhysicalSocket::EnableEvents(uint8_t events) { | 
 |   enabled_events_ |= events; | 
 | } | 
 |  | 
 | void PhysicalSocket::DisableEvents(uint8_t events) { | 
 |   enabled_events_ &= ~events; | 
 | } | 
 |  | 
 | int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) { | 
 |   switch (opt) { | 
 |     case OPT_DONTFRAGMENT: | 
 | #if defined(WEBRTC_WIN) | 
 |       *slevel = IPPROTO_IP; | 
 |       *sopt = IP_DONTFRAGMENT; | 
 |       break; | 
 | #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__) | 
 |       RTC_LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported."; | 
 |       return -1; | 
 | #elif defined(WEBRTC_POSIX) | 
 |       *slevel = IPPROTO_IP; | 
 |       *sopt = IP_MTU_DISCOVER; | 
 |       break; | 
 | #endif | 
 |     case OPT_RCVBUF: | 
 |       *slevel = SOL_SOCKET; | 
 |       *sopt = SO_RCVBUF; | 
 |       break; | 
 |     case OPT_SNDBUF: | 
 |       *slevel = SOL_SOCKET; | 
 |       *sopt = SO_SNDBUF; | 
 |       break; | 
 |     case OPT_NODELAY: | 
 |       *slevel = IPPROTO_TCP; | 
 |       *sopt = TCP_NODELAY; | 
 |       break; | 
 |     case OPT_DSCP: | 
 | #if defined(WEBRTC_POSIX) | 
 |       if (family_ == AF_INET6) { | 
 |         *slevel = IPPROTO_IPV6; | 
 |         *sopt = IPV6_TCLASS; | 
 |       } else { | 
 |         *slevel = IPPROTO_IP; | 
 |         *sopt = IP_TOS; | 
 |       } | 
 |       break; | 
 | #else | 
 |       RTC_LOG(LS_WARNING) << "Socket::OPT_DSCP not supported."; | 
 |       return -1; | 
 | #endif | 
 |     case OPT_RTP_SENDTIME_EXTN_ID: | 
 |       return -1;  // No logging is necessary as this not a OS socket option. | 
 |     default: | 
 |       RTC_DCHECK_NOTREACHED(); | 
 |       return -1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | SocketDispatcher::SocketDispatcher(PhysicalSocketServer* ss) | 
 | #if defined(WEBRTC_WIN) | 
 |     : PhysicalSocket(ss), | 
 |       id_(0), | 
 |       signal_close_(false) | 
 | #else | 
 |     : PhysicalSocket(ss) | 
 | #endif | 
 | { | 
 | } | 
 |  | 
 | SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) | 
 | #if defined(WEBRTC_WIN) | 
 |     : PhysicalSocket(ss, s), | 
 |       id_(0), | 
 |       signal_close_(false) | 
 | #else | 
 |     : PhysicalSocket(ss, s) | 
 | #endif | 
 | { | 
 | } | 
 |  | 
 | SocketDispatcher::~SocketDispatcher() { | 
 |   Close(); | 
 | } | 
 |  | 
 | bool SocketDispatcher::Initialize() { | 
 |   RTC_DCHECK(s_ != INVALID_SOCKET); | 
 | // Must be a non-blocking | 
 | #if defined(WEBRTC_WIN) | 
 |   u_long argp = 1; | 
 |   ioctlsocket(s_, FIONBIO, &argp); | 
 | #elif defined(WEBRTC_POSIX) | 
 |   fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK); | 
 |   if (!IsScmTimeStampExperimentDisabled()) { | 
 |     int value = 1; | 
 |     // Attempt to get receive packet timestamp from the socket. | 
 |     if (::setsockopt(s_, SOL_SOCKET, SO_TIMESTAMP, &value, sizeof(value)) != | 
 |         0) { | 
 |       RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR; | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_IOS) | 
 |   // iOS may kill sockets when the app is moved to the background | 
 |   // (specifically, if the app doesn't use the "voip" UIBackgroundMode). When | 
 |   // we attempt to write to such a socket, SIGPIPE will be raised, which by | 
 |   // default will terminate the process, which we don't want. By specifying | 
 |   // this socket option, SIGPIPE will be disabled for the socket. | 
 |   int value = 1; | 
 |   if (::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value)) != 0) { | 
 |     RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR; | 
 |   } | 
 | #endif | 
 |   ss_->Add(this); | 
 |   return true; | 
 | } | 
 |  | 
 | bool SocketDispatcher::Create(int type) { | 
 |   return Create(AF_INET, type); | 
 | } | 
 |  | 
 | bool SocketDispatcher::Create(int family, int type) { | 
 |   // Change the socket to be non-blocking. | 
 |   if (!PhysicalSocket::Create(family, type)) | 
 |     return false; | 
 |  | 
 |   if (!Initialize()) | 
 |     return false; | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |   do { | 
 |     id_ = ++next_id_; | 
 |   } while (id_ == 0); | 
 | #endif | 
 |   return true; | 
 | } | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |  | 
 | WSAEVENT SocketDispatcher::GetWSAEvent() { | 
 |   return WSA_INVALID_EVENT; | 
 | } | 
 |  | 
 | SOCKET SocketDispatcher::GetSocket() { | 
 |   return s_; | 
 | } | 
 |  | 
 | bool SocketDispatcher::CheckSignalClose() { | 
 |   if (!signal_close_) | 
 |     return false; | 
 |  | 
 |   char ch; | 
 |   if (recv(s_, &ch, 1, MSG_PEEK) > 0) | 
 |     return false; | 
 |  | 
 |   state_ = CS_CLOSED; | 
 |   signal_close_ = false; | 
 |   SignalCloseEvent(this, signal_err_); | 
 |   return true; | 
 | } | 
 |  | 
 | int SocketDispatcher::next_id_ = 0; | 
 |  | 
 | #elif defined(WEBRTC_POSIX) | 
 |  | 
 | int SocketDispatcher::GetDescriptor() { | 
 |   return s_; | 
 | } | 
 |  | 
 | bool SocketDispatcher::IsDescriptorClosed() { | 
 |   if (udp_) { | 
 |     // The MSG_PEEK trick doesn't work for UDP, since (at least in some | 
 |     // circumstances) it requires reading an entire UDP packet, which would be | 
 |     // bad for performance here. So, just check whether `s_` has been closed, | 
 |     // which should be sufficient. | 
 |     return s_ == INVALID_SOCKET; | 
 |   } | 
 |   // We don't have a reliable way of distinguishing end-of-stream | 
 |   // from readability.  So test on each readable call.  Is this | 
 |   // inefficient?  Probably. | 
 |   char ch; | 
 |   ssize_t res; | 
 |   // Retry if the system call was interrupted. | 
 |   do { | 
 |     res = ::recv(s_, &ch, 1, MSG_PEEK); | 
 |   } while (res < 0 && errno == EINTR); | 
 |   if (res > 0) { | 
 |     // Data available, so not closed. | 
 |     return false; | 
 |   } else if (res == 0) { | 
 |     // EOF, so closed. | 
 |     return true; | 
 |   } else {  // error | 
 |     switch (errno) { | 
 |       // Returned if we've already closed s_. | 
 |       case EBADF: | 
 |         // This is dangerous: if we keep attempting to access a FD after close, | 
 |         // it could be reopened by something else making us think it's still | 
 |         // open. Note that this is only a DCHECK. | 
 |         RTC_DCHECK_NOTREACHED(); | 
 |         return true; | 
 |       // Returned during ungraceful peer shutdown. | 
 |       case ECONNRESET: | 
 |         return true; | 
 |       case ECONNABORTED: | 
 |         return true; | 
 |       case EPIPE: | 
 |         return true; | 
 |       // The normal blocking error; don't log anything. | 
 |       case EWOULDBLOCK: | 
 |         return false; | 
 |       default: | 
 |         // Assume that all other errors are just blocking errors, meaning the | 
 |         // connection is still good but we just can't read from it right now. | 
 |         // This should only happen when connecting (and at most once), because | 
 |         // in all other cases this function is only called if the file | 
 |         // descriptor is already known to be in the readable state. However, | 
 |         // it's not necessary a problem if we spuriously interpret a | 
 |         // "connection lost"-type error as a blocking error, because typically | 
 |         // the next recv() will get EOF, so we'll still eventually notice that | 
 |         // the socket is closed. | 
 |         RTC_LOG_ERR(LS_WARNING) << "Assuming benign blocking error"; | 
 |         return false; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | uint32_t SocketDispatcher::GetRequestedEvents() { | 
 |   return enabled_events(); | 
 | } | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |  | 
 | void SocketDispatcher::OnEvent(uint32_t ff, int err) { | 
 |   if ((ff & DE_CONNECT) != 0) | 
 |     state_ = CS_CONNECTED; | 
 |  | 
 |   // We set CS_CLOSED from CheckSignalClose. | 
 |  | 
 |   int cache_id = id_; | 
 |   // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
 |   // something like a READ followed by a CONNECT, which would be odd. | 
 |   if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) { | 
 |     if (ff != DE_CONNECT) | 
 |       RTC_LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff; | 
 |     DisableEvents(DE_CONNECT); | 
 | #if !defined(NDEBUG) | 
 |     dbg_addr_ = "Connected @ "; | 
 |     dbg_addr_.append(GetRemoteAddress().ToString()); | 
 | #endif | 
 |     SignalConnectEvent(this); | 
 |   } | 
 |   if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) { | 
 |     DisableEvents(DE_ACCEPT); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if ((ff & DE_READ) != 0) { | 
 |     DisableEvents(DE_READ); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) { | 
 |     DisableEvents(DE_WRITE); | 
 |     SignalWriteEvent(this); | 
 |   } | 
 |   if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) { | 
 |     signal_close_ = true; | 
 |     signal_err_ = err; | 
 |   } | 
 | } | 
 |  | 
 | #elif defined(WEBRTC_POSIX) | 
 |  | 
 | void SocketDispatcher::OnEvent(uint32_t ff, int err) { | 
 |   if ((ff & DE_CONNECT) != 0) | 
 |     state_ = CS_CONNECTED; | 
 |  | 
 |   if ((ff & DE_CLOSE) != 0) | 
 |     state_ = CS_CLOSED; | 
 |  | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   // Remember currently enabled events so we can combine multiple changes | 
 |   // into one update call later. | 
 |   // The signal handlers might re-enable events disabled here, so we can't | 
 |   // keep a list of events to disable at the end of the method. This list | 
 |   // would not be updated with the events enabled by the signal handlers. | 
 |   StartBatchedEventUpdates(); | 
 | #endif | 
 |   // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
 |   // something like a READ followed by a CONNECT, which would be odd. | 
 |   if ((ff & DE_CONNECT) != 0) { | 
 |     DisableEvents(DE_CONNECT); | 
 |     SignalConnectEvent(this); | 
 |   } | 
 |   if ((ff & DE_ACCEPT) != 0) { | 
 |     DisableEvents(DE_ACCEPT); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if ((ff & DE_READ) != 0) { | 
 |     DisableEvents(DE_READ); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if ((ff & DE_WRITE) != 0) { | 
 |     DisableEvents(DE_WRITE); | 
 |     SignalWriteEvent(this); | 
 |   } | 
 |   if ((ff & DE_CLOSE) != 0) { | 
 |     // The socket is now dead to us, so stop checking it. | 
 |     SetEnabledEvents(0); | 
 |     SignalCloseEvent(this, err); | 
 |   } | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   FinishBatchedEventUpdates(); | 
 | #endif | 
 | } | 
 |  | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |  | 
 | inline static int GetEpollEvents(uint32_t ff) { | 
 |   int events = 0; | 
 |   if (ff & (DE_READ | DE_ACCEPT)) { | 
 |     events |= EPOLLIN; | 
 |   } | 
 |   if (ff & (DE_WRITE | DE_CONNECT)) { | 
 |     events |= EPOLLOUT; | 
 |   } | 
 |   return events; | 
 | } | 
 |  | 
 | void SocketDispatcher::StartBatchedEventUpdates() { | 
 |   RTC_DCHECK_EQ(saved_enabled_events_, -1); | 
 |   saved_enabled_events_ = enabled_events(); | 
 | } | 
 |  | 
 | void SocketDispatcher::FinishBatchedEventUpdates() { | 
 |   RTC_DCHECK_NE(saved_enabled_events_, -1); | 
 |   uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_); | 
 |   saved_enabled_events_ = -1; | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) { | 
 |   if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) && | 
 |       saved_enabled_events_ == -1) { | 
 |     ss_->Update(this); | 
 |   } | 
 | } | 
 |  | 
 | void SocketDispatcher::SetEnabledEvents(uint8_t events) { | 
 |   uint8_t old_events = enabled_events(); | 
 |   PhysicalSocket::SetEnabledEvents(events); | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | void SocketDispatcher::EnableEvents(uint8_t events) { | 
 |   uint8_t old_events = enabled_events(); | 
 |   PhysicalSocket::EnableEvents(events); | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | void SocketDispatcher::DisableEvents(uint8_t events) { | 
 |   uint8_t old_events = enabled_events(); | 
 |   PhysicalSocket::DisableEvents(events); | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | #endif  // WEBRTC_USE_EPOLL | 
 |  | 
 | int SocketDispatcher::Close() { | 
 |   if (s_ == INVALID_SOCKET) | 
 |     return 0; | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |   id_ = 0; | 
 |   signal_close_ = false; | 
 | #endif | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   // If we're batching events, the socket can be closed and reopened | 
 |   // during the batch. Set saved_enabled_events_ to 0 here so the new | 
 |   // socket, if any, has the correct old events bitfield | 
 |   if (saved_enabled_events_ != -1) { | 
 |     saved_enabled_events_ = 0; | 
 |   } | 
 | #endif | 
 |   ss_->Remove(this); | 
 |   return PhysicalSocket::Close(); | 
 | } | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | // Sets the value of a boolean value to false when signaled. | 
 | class Signaler : public Dispatcher { | 
 |  public: | 
 |   Signaler(PhysicalSocketServer* ss, bool& flag_to_clear) | 
 |       : ss_(ss), | 
 |         afd_([] { | 
 |           std::array<int, 2> afd = {-1, -1}; | 
 |  | 
 |           if (pipe(afd.data()) < 0) { | 
 |             RTC_LOG(LS_ERROR) << "pipe failed"; | 
 |           } | 
 |           return afd; | 
 |         }()), | 
 |         fSignaled_(false), | 
 |         flag_to_clear_(flag_to_clear) { | 
 |     ss_->Add(this); | 
 |   } | 
 |  | 
 |   ~Signaler() override { | 
 |     ss_->Remove(this); | 
 |     close(afd_[0]); | 
 |     close(afd_[1]); | 
 |   } | 
 |  | 
 |   virtual void Signal() { | 
 |     webrtc::MutexLock lock(&mutex_); | 
 |     if (!fSignaled_) { | 
 |       const uint8_t b[1] = {0}; | 
 |       const ssize_t res = write(afd_[1], b, sizeof(b)); | 
 |       RTC_DCHECK_EQ(1, res); | 
 |       fSignaled_ = true; | 
 |     } | 
 |   } | 
 |  | 
 |   uint32_t GetRequestedEvents() override { return DE_READ; } | 
 |  | 
 |   void OnEvent(uint32_t ff, int err) override { | 
 |     // It is not possible to perfectly emulate an auto-resetting event with | 
 |     // pipes.  This simulates it by resetting before the event is handled. | 
 |  | 
 |     webrtc::MutexLock lock(&mutex_); | 
 |     if (fSignaled_) { | 
 |       uint8_t b[4];  // Allow for reading more than 1 byte, but expect 1. | 
 |       const ssize_t res = read(afd_[0], b, sizeof(b)); | 
 |       RTC_DCHECK_EQ(1, res); | 
 |       fSignaled_ = false; | 
 |     } | 
 |     flag_to_clear_ = false; | 
 |   } | 
 |  | 
 |   int GetDescriptor() override { return afd_[0]; } | 
 |  | 
 |   bool IsDescriptorClosed() override { return false; } | 
 |  | 
 |  private: | 
 |   PhysicalSocketServer* const ss_; | 
 |   const std::array<int, 2> afd_; | 
 |   bool fSignaled_ RTC_GUARDED_BY(mutex_); | 
 |   webrtc::Mutex mutex_; | 
 |   bool& flag_to_clear_; | 
 | }; | 
 |  | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | static uint32_t FlagsToEvents(uint32_t events) { | 
 |   uint32_t ffFD = FD_CLOSE; | 
 |   if (events & DE_READ) | 
 |     ffFD |= FD_READ; | 
 |   if (events & DE_WRITE) | 
 |     ffFD |= FD_WRITE; | 
 |   if (events & DE_CONNECT) | 
 |     ffFD |= FD_CONNECT; | 
 |   if (events & DE_ACCEPT) | 
 |     ffFD |= FD_ACCEPT; | 
 |   return ffFD; | 
 | } | 
 |  | 
 | // Sets the value of a boolean value to false when signaled. | 
 | class Signaler : public Dispatcher { | 
 |  public: | 
 |   Signaler(PhysicalSocketServer* ss, bool& flag_to_clear) | 
 |       : ss_(ss), flag_to_clear_(flag_to_clear) { | 
 |     hev_ = WSACreateEvent(); | 
 |     if (hev_) { | 
 |       ss_->Add(this); | 
 |     } | 
 |   } | 
 |  | 
 |   ~Signaler() override { | 
 |     if (hev_ != nullptr) { | 
 |       ss_->Remove(this); | 
 |       WSACloseEvent(hev_); | 
 |       hev_ = nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   virtual void Signal() { | 
 |     if (hev_ != nullptr) | 
 |       WSASetEvent(hev_); | 
 |   } | 
 |  | 
 |   uint32_t GetRequestedEvents() override { return 0; } | 
 |  | 
 |   void OnEvent(uint32_t ff, int err) override { | 
 |     WSAResetEvent(hev_); | 
 |     flag_to_clear_ = false; | 
 |   } | 
 |  | 
 |   WSAEVENT GetWSAEvent() override { return hev_; } | 
 |  | 
 |   SOCKET GetSocket() override { return INVALID_SOCKET; } | 
 |  | 
 |   bool CheckSignalClose() override { return false; } | 
 |  | 
 |  private: | 
 |   PhysicalSocketServer* ss_; | 
 |   WSAEVENT hev_; | 
 |   bool& flag_to_clear_; | 
 | }; | 
 | #endif  // WEBRTC_WIN | 
 |  | 
 | PhysicalSocketServer::PhysicalSocketServer() | 
 |     : | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |       // Since Linux 2.6.8, the size argument is ignored, but must be greater | 
 |       // than zero. Before that the size served as hint to the kernel for the | 
 |       // amount of space to initially allocate in internal data structures. | 
 |       epoll_fd_(epoll_create(FD_SETSIZE)), | 
 | #endif | 
 | #if defined(WEBRTC_WIN) | 
 |       socket_ev_(WSACreateEvent()), | 
 | #endif | 
 |       fWait_(false) { | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ == -1) { | 
 |     // Not an error, will fall back to "select" below. | 
 |     RTC_LOG_E(LS_WARNING, EN, errno) << "epoll_create"; | 
 |     // Note that -1 == INVALID_SOCKET, the alias used by later checks. | 
 |   } | 
 | #endif | 
 |   // The `fWait_` flag to be cleared by the Signaler. | 
 |   signal_wakeup_ = new Signaler(this, fWait_); | 
 | } | 
 |  | 
 | PhysicalSocketServer::~PhysicalSocketServer() { | 
 | #if defined(WEBRTC_WIN) | 
 |   WSACloseEvent(socket_ev_); | 
 | #endif | 
 |   delete signal_wakeup_; | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ != INVALID_SOCKET) { | 
 |     close(epoll_fd_); | 
 |   } | 
 | #endif | 
 |   RTC_DCHECK(dispatcher_by_key_.empty()); | 
 |   RTC_DCHECK(key_by_dispatcher_.empty()); | 
 | } | 
 |  | 
 | void PhysicalSocketServer::WakeUp() { | 
 |   signal_wakeup_->Signal(); | 
 | } | 
 |  | 
 | Socket* PhysicalSocketServer::CreateSocket(int family, int type) { | 
 |   SocketDispatcher* dispatcher = new SocketDispatcher(this); | 
 |   if (dispatcher->Create(family, type)) { | 
 |     return dispatcher; | 
 |   } else { | 
 |     delete dispatcher; | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | Socket* PhysicalSocketServer::WrapSocket(SOCKET s) { | 
 |   SocketDispatcher* dispatcher = new SocketDispatcher(s, this); | 
 |   if (dispatcher->Initialize()) { | 
 |     return dispatcher; | 
 |   } else { | 
 |     delete dispatcher; | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Add(Dispatcher* pdispatcher) { | 
 |   CritScope cs(&crit_); | 
 |   if (key_by_dispatcher_.count(pdispatcher)) { | 
 |     RTC_LOG(LS_WARNING) | 
 |         << "PhysicalSocketServer asked to add a duplicate dispatcher."; | 
 |     return; | 
 |   } | 
 |   uint64_t key = next_dispatcher_key_++; | 
 |   dispatcher_by_key_.emplace(key, pdispatcher); | 
 |   key_by_dispatcher_.emplace(pdispatcher, key); | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ != INVALID_SOCKET) { | 
 |     AddEpoll(pdispatcher, key); | 
 |   } | 
 | #endif  // WEBRTC_USE_EPOLL | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Remove(Dispatcher* pdispatcher) { | 
 |   CritScope cs(&crit_); | 
 |   if (!key_by_dispatcher_.count(pdispatcher)) { | 
 |     RTC_LOG(LS_WARNING) | 
 |         << "PhysicalSocketServer asked to remove a unknown " | 
 |            "dispatcher, potentially from a duplicate call to Add."; | 
 |     return; | 
 |   } | 
 |   uint64_t key = key_by_dispatcher_.at(pdispatcher); | 
 |   key_by_dispatcher_.erase(pdispatcher); | 
 |   dispatcher_by_key_.erase(key); | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ != INVALID_SOCKET) { | 
 |     RemoveEpoll(pdispatcher); | 
 |   } | 
 | #endif  // WEBRTC_USE_EPOLL | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Update(Dispatcher* pdispatcher) { | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Don't update dispatchers that haven't yet been added. | 
 |   CritScope cs(&crit_); | 
 |   if (!key_by_dispatcher_.count(pdispatcher)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   UpdateEpoll(pdispatcher, key_by_dispatcher_.at(pdispatcher)); | 
 | #endif | 
 | } | 
 |  | 
 | int PhysicalSocketServer::ToCmsWait(webrtc::TimeDelta max_wait_duration) { | 
 |   return max_wait_duration == Event::kForever | 
 |              ? kForeverMs | 
 |              : max_wait_duration.RoundUpTo(webrtc::TimeDelta::Millis(1)).ms(); | 
 | } | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 |  | 
 | bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration, | 
 |                                 bool process_io) { | 
 |   // We don't support reentrant waiting. | 
 |   RTC_DCHECK(!waiting_); | 
 |   ScopedSetTrue s(&waiting_); | 
 |   const int cmsWait = ToCmsWait(max_wait_duration); | 
 |  | 
 | #if defined(WEBRTC_USE_POLL) | 
 |   return WaitPoll(cmsWait, process_io); | 
 | #else | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   // We don't keep a dedicated "epoll" descriptor containing only the non-IO | 
 |   // (i.e. signaling) dispatcher, so "poll" will be used instead of the default | 
 |   // "select" to support sockets larger than FD_SETSIZE. | 
 |   if (!process_io) { | 
 |     return WaitPollOneDispatcher(cmsWait, signal_wakeup_); | 
 |   } else if (epoll_fd_ != INVALID_SOCKET) { | 
 |     return WaitEpoll(cmsWait); | 
 |   } | 
 | #endif | 
 |   return WaitSelect(cmsWait, process_io); | 
 | #endif | 
 | } | 
 |  | 
 | // `error_event` is true if we are responding to an event where we know an | 
 | // error has occurred, which is possible with the poll/epoll implementations | 
 | // but not the select implementation. | 
 | // | 
 | // `check_error` is true if there is the possibility of an error. | 
 | static void ProcessEvents(Dispatcher* dispatcher, | 
 |                           bool readable, | 
 |                           bool writable, | 
 |                           bool error_event, | 
 |                           bool check_error) { | 
 |   RTC_DCHECK(!(error_event && !check_error)); | 
 |   int errcode = 0; | 
 |   if (check_error) { | 
 |     socklen_t len = sizeof(errcode); | 
 |     int res = ::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR, | 
 |                            &errcode, &len); | 
 |     if (res < 0) { | 
 |       // If we are sure an error has occurred, or if getsockopt failed for a | 
 |       // socket descriptor, make sure we set the error code to a nonzero value. | 
 |       if (error_event || errno != ENOTSOCK) { | 
 |         errcode = EBADF; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Most often the socket is writable or readable or both, so make a single | 
 |   // virtual call to get requested events | 
 |   const uint32_t requested_events = dispatcher->GetRequestedEvents(); | 
 |   uint32_t ff = 0; | 
 |  | 
 |   // Check readable descriptors. If we're waiting on an accept, signal | 
 |   // that. Otherwise we're waiting for data, check to see if we're | 
 |   // readable or really closed. | 
 |   // TODO(pthatcher): Only peek at TCP descriptors. | 
 |   if (readable) { | 
 |     if (errcode || dispatcher->IsDescriptorClosed()) { | 
 |       ff |= DE_CLOSE; | 
 |     } else if (requested_events & DE_ACCEPT) { | 
 |       ff |= DE_ACCEPT; | 
 |     } else { | 
 |       ff |= DE_READ; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check writable descriptors. If we're waiting on a connect, detect | 
 |   // success versus failure by the reaped error code. | 
 |   if (writable) { | 
 |     if (requested_events & DE_CONNECT) { | 
 |       if (!errcode) { | 
 |         ff |= DE_CONNECT; | 
 |       } | 
 |     } else { | 
 |       ff |= DE_WRITE; | 
 |     } | 
 |   } | 
 |  | 
 |   // Make sure we report any errors regardless of whether readable or writable. | 
 |   if (errcode) { | 
 |     ff |= DE_CLOSE; | 
 |   } | 
 |  | 
 |   // Tell the descriptor about the event. | 
 |   if (ff != 0) { | 
 |     dispatcher->OnEvent(ff, errcode); | 
 |   } | 
 | } | 
 |  | 
 | #if defined(WEBRTC_USE_POLL) || defined(WEBRTC_USE_EPOLL) | 
 | static void ProcessPollEvents(Dispatcher* dispatcher, const pollfd& pfd) { | 
 |   bool readable = (pfd.revents & (POLLIN | POLLPRI)); | 
 |   bool writable = (pfd.revents & POLLOUT); | 
 |   bool error = (pfd.revents & (POLLRDHUP | POLLERR | POLLHUP)); | 
 |  | 
 |   ProcessEvents(dispatcher, readable, writable, error, error); | 
 | } | 
 |  | 
 | static pollfd DispatcherToPollfd(Dispatcher* dispatcher) { | 
 |   pollfd fd{ | 
 |       .fd = dispatcher->GetDescriptor(), | 
 |       .events = 0, | 
 |       .revents = 0, | 
 |   }; | 
 |  | 
 |   uint32_t ff = dispatcher->GetRequestedEvents(); | 
 |   if (ff & (DE_READ | DE_ACCEPT)) { | 
 |     fd.events |= POLLIN; | 
 |   } | 
 |   if (ff & (DE_WRITE | DE_CONNECT)) { | 
 |     fd.events |= POLLOUT; | 
 |   } | 
 |  | 
 |   return fd; | 
 | } | 
 | #endif  // WEBRTC_USE_POLL || WEBRTC_USE_EPOLL | 
 |  | 
 | bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) { | 
 |   // Calculate timing information | 
 |  | 
 |   struct timeval* ptvWait = nullptr; | 
 |   struct timeval tvWait; | 
 |   int64_t stop_us; | 
 |   if (cmsWait != kForeverMs) { | 
 |     // Calculate wait timeval | 
 |     tvWait.tv_sec = cmsWait / 1000; | 
 |     tvWait.tv_usec = (cmsWait % 1000) * 1000; | 
 |     ptvWait = &tvWait; | 
 |  | 
 |     // Calculate when to return | 
 |     stop_us = rtc::TimeMicros() + cmsWait * 1000; | 
 |   } | 
 |  | 
 |   fd_set fdsRead; | 
 |   fd_set fdsWrite; | 
 | // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the | 
 | // inline assembly in FD_ZERO. | 
 | // http://crbug.com/344505 | 
 | #ifdef MEMORY_SANITIZER | 
 |   __msan_unpoison(&fdsRead, sizeof(fdsRead)); | 
 |   __msan_unpoison(&fdsWrite, sizeof(fdsWrite)); | 
 | #endif | 
 |  | 
 |   fWait_ = true; | 
 |  | 
 |   while (fWait_) { | 
 |     // Zero all fd_sets. Although select() zeros the descriptors not signaled, | 
 |     // we may need to do this for dispatchers that were deleted while | 
 |     // iterating. | 
 |     FD_ZERO(&fdsRead); | 
 |     FD_ZERO(&fdsWrite); | 
 |     int fdmax = -1; | 
 |     { | 
 |       CritScope cr(&crit_); | 
 |       current_dispatcher_keys_.clear(); | 
 |       for (auto const& kv : dispatcher_by_key_) { | 
 |         uint64_t key = kv.first; | 
 |         Dispatcher* pdispatcher = kv.second; | 
 |         if (!process_io && (pdispatcher != signal_wakeup_)) | 
 |           continue; | 
 |         current_dispatcher_keys_.push_back(key); | 
 |         int fd = pdispatcher->GetDescriptor(); | 
 |         // "select"ing a file descriptor that is equal to or larger than | 
 |         // FD_SETSIZE will result in undefined behavior. | 
 |         RTC_DCHECK_LT(fd, FD_SETSIZE); | 
 |         if (fd > fdmax) | 
 |           fdmax = fd; | 
 |  | 
 |         uint32_t ff = pdispatcher->GetRequestedEvents(); | 
 |         if (ff & (DE_READ | DE_ACCEPT)) | 
 |           FD_SET(fd, &fdsRead); | 
 |         if (ff & (DE_WRITE | DE_CONNECT)) | 
 |           FD_SET(fd, &fdsWrite); | 
 |       } | 
 |     } | 
 |  | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait); | 
 |  | 
 |     // If error, return error. | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "select"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors | 
 |       CritScope cr(&crit_); | 
 |       // Iterate only on the dispatchers whose file descriptors were passed into | 
 |       // select; this avoids the ABA problem (a socket being destroyed and a new | 
 |       // one created with the same file descriptor). | 
 |       for (uint64_t key : current_dispatcher_keys_) { | 
 |         if (!dispatcher_by_key_.count(key)) | 
 |           continue; | 
 |         Dispatcher* pdispatcher = dispatcher_by_key_.at(key); | 
 |  | 
 |         int fd = pdispatcher->GetDescriptor(); | 
 |  | 
 |         bool readable = FD_ISSET(fd, &fdsRead); | 
 |         if (readable) { | 
 |           FD_CLR(fd, &fdsRead); | 
 |         } | 
 |  | 
 |         bool writable = FD_ISSET(fd, &fdsWrite); | 
 |         if (writable) { | 
 |           FD_CLR(fd, &fdsWrite); | 
 |         } | 
 |  | 
 |         // The error code can be signaled through reads or writes. | 
 |         ProcessEvents(pdispatcher, readable, writable, /*error_event=*/false, | 
 |                       readable || writable); | 
 |       } | 
 |     } | 
 |  | 
 |     // Recalc the time remaining to wait. Doing it here means it doesn't get | 
 |     // calced twice the first time through the loop | 
 |     if (ptvWait) { | 
 |       ptvWait->tv_sec = 0; | 
 |       ptvWait->tv_usec = 0; | 
 |       int64_t time_left_us = stop_us - rtc::TimeMicros(); | 
 |       if (time_left_us > 0) { | 
 |         ptvWait->tv_sec = time_left_us / rtc::kNumMicrosecsPerSec; | 
 |         ptvWait->tv_usec = time_left_us % rtc::kNumMicrosecsPerSec; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |  | 
 | void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher, uint64_t key) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int fd = pdispatcher->GetDescriptor(); | 
 |   RTC_DCHECK(fd != INVALID_SOCKET); | 
 |   if (fd == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   struct epoll_event event = {0}; | 
 |   event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); | 
 |   if (event.events == 0u) { | 
 |     // Don't add at all if we don't have any requested events. Could indicate a | 
 |     // closed socket. | 
 |     return; | 
 |   } | 
 |   event.data.u64 = key; | 
 |   int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event); | 
 |   RTC_DCHECK_EQ(err, 0); | 
 |   if (err == -1) { | 
 |     RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD"; | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int fd = pdispatcher->GetDescriptor(); | 
 |   RTC_DCHECK(fd != INVALID_SOCKET); | 
 |   if (fd == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   struct epoll_event event = {0}; | 
 |   int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event); | 
 |   RTC_DCHECK(err == 0 || errno == ENOENT); | 
 |   // Ignore ENOENT, which could occur if this descriptor wasn't added due to | 
 |   // having no requested events. | 
 |   if (err == -1 && errno != ENOENT) { | 
 |     RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL"; | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher, uint64_t key) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int fd = pdispatcher->GetDescriptor(); | 
 |   RTC_DCHECK(fd != INVALID_SOCKET); | 
 |   if (fd == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   struct epoll_event event = {0}; | 
 |   event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); | 
 |   event.data.u64 = key; | 
 |   // Remove if we don't have any requested events. Could indicate a closed | 
 |   // socket. | 
 |   if (event.events == 0u) { | 
 |     epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event); | 
 |   } else { | 
 |     int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event); | 
 |     RTC_DCHECK(err == 0 || errno == ENOENT); | 
 |     if (err == -1) { | 
 |       // Could have been removed earlier due to no requested events. | 
 |       if (errno == ENOENT) { | 
 |         err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event); | 
 |         if (err == -1) { | 
 |           RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD"; | 
 |         } | 
 |       } else { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD"; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::WaitEpoll(int cmsWait) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int64_t msWait = -1; | 
 |   int64_t msStop = -1; | 
 |   if (cmsWait != kForeverMs) { | 
 |     msWait = cmsWait; | 
 |     msStop = TimeAfter(cmsWait); | 
 |   } | 
 |  | 
 |   fWait_ = true; | 
 |   while (fWait_) { | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = epoll_wait(epoll_fd_, epoll_events_.data(), epoll_events_.size(), | 
 |                        static_cast<int>(msWait)); | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "epoll"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors | 
 |       CritScope cr(&crit_); | 
 |       for (int i = 0; i < n; ++i) { | 
 |         const epoll_event& event = epoll_events_[i]; | 
 |         uint64_t key = event.data.u64; | 
 |         if (!dispatcher_by_key_.count(key)) { | 
 |           // The dispatcher for this socket no longer exists. | 
 |           continue; | 
 |         } | 
 |         Dispatcher* pdispatcher = dispatcher_by_key_.at(key); | 
 |  | 
 |         bool readable = (event.events & (EPOLLIN | EPOLLPRI)); | 
 |         bool writable = (event.events & EPOLLOUT); | 
 |         bool error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)); | 
 |  | 
 |         ProcessEvents(pdispatcher, readable, writable, error, error); | 
 |       } | 
 |     } | 
 |  | 
 |     if (cmsWait != kForeverMs) { | 
 |       msWait = TimeDiff(msStop, TimeMillis()); | 
 |       if (msWait <= 0) { | 
 |         // Return success on timeout. | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::WaitPollOneDispatcher(int cmsWait, | 
 |                                                  Dispatcher* dispatcher) { | 
 |   RTC_DCHECK(dispatcher); | 
 |   int64_t msWait = -1; | 
 |   int64_t msStop = -1; | 
 |   if (cmsWait != kForeverMs) { | 
 |     msWait = cmsWait; | 
 |     msStop = TimeAfter(cmsWait); | 
 |   } | 
 |  | 
 |   fWait_ = true; | 
 |   const int fd = dispatcher->GetDescriptor(); | 
 |  | 
 |   while (fWait_) { | 
 |     auto fds = DispatcherToPollfd(dispatcher); | 
 |  | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = poll(&fds, 1, static_cast<int>(msWait)); | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "poll"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors (should only be the passed dispatcher). | 
 |       RTC_DCHECK_EQ(n, 1); | 
 |       RTC_DCHECK_EQ(fds.fd, fd); | 
 |       ProcessPollEvents(dispatcher, fds); | 
 |     } | 
 |  | 
 |     if (cmsWait != kForeverMs) { | 
 |       msWait = TimeDiff(msStop, TimeMillis()); | 
 |       if (msWait < 0) { | 
 |         // Return success on timeout. | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | #elif defined(WEBRTC_USE_POLL) | 
 |  | 
 | bool PhysicalSocketServer::WaitPoll(int cmsWait, bool process_io) { | 
 |   int64_t msWait = -1; | 
 |   int64_t msStop = -1; | 
 |   if (cmsWait != kForeverMs) { | 
 |     msWait = cmsWait; | 
 |     msStop = TimeAfter(cmsWait); | 
 |   } | 
 |  | 
 |   std::vector<pollfd> pollfds; | 
 |   fWait_ = true; | 
 |  | 
 |   while (fWait_) { | 
 |     { | 
 |       CritScope cr(&crit_); | 
 |       current_dispatcher_keys_.clear(); | 
 |       pollfds.clear(); | 
 |       pollfds.reserve(dispatcher_by_key_.size()); | 
 |  | 
 |       for (auto const& kv : dispatcher_by_key_) { | 
 |         uint64_t key = kv.first; | 
 |         Dispatcher* pdispatcher = kv.second; | 
 |         if (!process_io && (pdispatcher != signal_wakeup_)) | 
 |           continue; | 
 |         current_dispatcher_keys_.push_back(key); | 
 |         pollfds.push_back(DispatcherToPollfd(pdispatcher)); | 
 |       } | 
 |     } | 
 |  | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = poll(pollfds.data(), pollfds.size(), static_cast<int>(msWait)); | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "poll"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors | 
 |       CritScope cr(&crit_); | 
 |       // Iterate only on the dispatchers whose file descriptors were passed into | 
 |       // poll; this avoids the ABA problem (a socket being destroyed and a new | 
 |       // one created with the same file descriptor). | 
 |       for (size_t i = 0; i < current_dispatcher_keys_.size(); ++i) { | 
 |         uint64_t key = current_dispatcher_keys_[i]; | 
 |         if (!dispatcher_by_key_.count(key)) | 
 |           continue; | 
 |         ProcessPollEvents(dispatcher_by_key_.at(key), pollfds[i]); | 
 |       } | 
 |     } | 
 |  | 
 |     if (cmsWait != kForeverMs) { | 
 |       msWait = TimeDiff(msStop, TimeMillis()); | 
 |       if (msWait < 0) { | 
 |         // Return success on timeout. | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | #endif  // WEBRTC_USE_EPOLL, WEBRTC_USE_POLL | 
 |  | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration, | 
 |                                 bool process_io) { | 
 |   // We don't support reentrant waiting. | 
 |   RTC_DCHECK(!waiting_); | 
 |   ScopedSetTrue s(&waiting_); | 
 |  | 
 |   int cmsWait = ToCmsWait(max_wait_duration); | 
 |   int64_t cmsTotal = cmsWait; | 
 |   int64_t cmsElapsed = 0; | 
 |   int64_t msStart = Time(); | 
 |  | 
 |   fWait_ = true; | 
 |   while (fWait_) { | 
 |     std::vector<WSAEVENT> events; | 
 |     std::vector<uint64_t> event_owners; | 
 |  | 
 |     events.push_back(socket_ev_); | 
 |  | 
 |     { | 
 |       CritScope cr(&crit_); | 
 |       // Get a snapshot of all current dispatchers; this is used to avoid the | 
 |       // ABA problem (see later comment) and avoids the dispatcher_by_key_ | 
 |       // iterator being invalidated by calling CheckSignalClose, which may | 
 |       // remove the dispatcher from the list. | 
 |       current_dispatcher_keys_.clear(); | 
 |       for (auto const& kv : dispatcher_by_key_) { | 
 |         current_dispatcher_keys_.push_back(kv.first); | 
 |       } | 
 |       for (uint64_t key : current_dispatcher_keys_) { | 
 |         if (!dispatcher_by_key_.count(key)) { | 
 |           continue; | 
 |         } | 
 |         Dispatcher* disp = dispatcher_by_key_.at(key); | 
 |         if (!disp) | 
 |           continue; | 
 |         if (!process_io && (disp != signal_wakeup_)) | 
 |           continue; | 
 |         SOCKET s = disp->GetSocket(); | 
 |         if (disp->CheckSignalClose()) { | 
 |           // We just signalled close, don't poll this socket. | 
 |         } else if (s != INVALID_SOCKET) { | 
 |           WSAEventSelect(s, events[0], | 
 |                          FlagsToEvents(disp->GetRequestedEvents())); | 
 |         } else { | 
 |           events.push_back(disp->GetWSAEvent()); | 
 |           event_owners.push_back(key); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Which is shorter, the delay wait or the asked wait? | 
 |  | 
 |     int64_t cmsNext; | 
 |     if (cmsWait == kForeverMs) { | 
 |       cmsNext = cmsWait; | 
 |     } else { | 
 |       cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed); | 
 |     } | 
 |  | 
 |     // Wait for one of the events to signal | 
 |     DWORD dw = | 
 |         WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0], | 
 |                                  false, static_cast<DWORD>(cmsNext), false); | 
 |  | 
 |     if (dw == WSA_WAIT_FAILED) { | 
 |       // Failed? | 
 |       // TODO(pthatcher): need a better strategy than this! | 
 |       WSAGetLastError(); | 
 |       RTC_DCHECK_NOTREACHED(); | 
 |       return false; | 
 |     } else if (dw == WSA_WAIT_TIMEOUT) { | 
 |       // Timeout? | 
 |       return true; | 
 |     } else { | 
 |       // Figure out which one it is and call it | 
 |       CritScope cr(&crit_); | 
 |       int index = dw - WSA_WAIT_EVENT_0; | 
 |       if (index > 0) { | 
 |         --index;  // The first event is the socket event | 
 |         uint64_t key = event_owners[index]; | 
 |         if (!dispatcher_by_key_.count(key)) { | 
 |           // The dispatcher could have been removed while waiting for events. | 
 |           continue; | 
 |         } | 
 |         Dispatcher* disp = dispatcher_by_key_.at(key); | 
 |         disp->OnEvent(0, 0); | 
 |       } else if (process_io) { | 
 |         // Iterate only on the dispatchers whose sockets were passed into | 
 |         // WSAEventSelect; this avoids the ABA problem (a socket being | 
 |         // destroyed and a new one created with the same SOCKET handle). | 
 |         for (uint64_t key : current_dispatcher_keys_) { | 
 |           if (!dispatcher_by_key_.count(key)) { | 
 |             continue; | 
 |           } | 
 |           Dispatcher* disp = dispatcher_by_key_.at(key); | 
 |           SOCKET s = disp->GetSocket(); | 
 |           if (s == INVALID_SOCKET) | 
 |             continue; | 
 |  | 
 |           WSANETWORKEVENTS wsaEvents; | 
 |           int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents); | 
 |           if (err == 0) { | 
 |             { | 
 |               if ((wsaEvents.lNetworkEvents & FD_READ) && | 
 |                   wsaEvents.iErrorCode[FD_READ_BIT] != 0) { | 
 |                 RTC_LOG(LS_WARNING) | 
 |                     << "PhysicalSocketServer got FD_READ_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_READ_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_WRITE) && | 
 |                   wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) { | 
 |                 RTC_LOG(LS_WARNING) | 
 |                     << "PhysicalSocketServer got FD_WRITE_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_WRITE_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_CONNECT) && | 
 |                   wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) { | 
 |                 RTC_LOG(LS_WARNING) | 
 |                     << "PhysicalSocketServer got FD_CONNECT_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && | 
 |                   wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) { | 
 |                 RTC_LOG(LS_WARNING) | 
 |                     << "PhysicalSocketServer got FD_ACCEPT_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_ACCEPT_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_CLOSE) && | 
 |                   wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) { | 
 |                 RTC_LOG(LS_WARNING) | 
 |                     << "PhysicalSocketServer got FD_CLOSE_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
 |               } | 
 |             } | 
 |             uint32_t ff = 0; | 
 |             int errcode = 0; | 
 |             if (wsaEvents.lNetworkEvents & FD_READ) | 
 |               ff |= DE_READ; | 
 |             if (wsaEvents.lNetworkEvents & FD_WRITE) | 
 |               ff |= DE_WRITE; | 
 |             if (wsaEvents.lNetworkEvents & FD_CONNECT) { | 
 |               if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) { | 
 |                 ff |= DE_CONNECT; | 
 |               } else { | 
 |                 ff |= DE_CLOSE; | 
 |                 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
 |               } | 
 |             } | 
 |             if (wsaEvents.lNetworkEvents & FD_ACCEPT) | 
 |               ff |= DE_ACCEPT; | 
 |             if (wsaEvents.lNetworkEvents & FD_CLOSE) { | 
 |               ff |= DE_CLOSE; | 
 |               errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
 |             } | 
 |             if (ff != 0) { | 
 |               disp->OnEvent(ff, errcode); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Reset the network event until new activity occurs | 
 |       WSAResetEvent(socket_ev_); | 
 |     } | 
 |  | 
 |     // Break? | 
 |     if (!fWait_) | 
 |       break; | 
 |     cmsElapsed = TimeSince(msStart); | 
 |     if ((cmsWait != kForeverMs) && (cmsElapsed >= cmsWait)) { | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Done | 
 |   return true; | 
 | } | 
 | #endif  // WEBRTC_WIN | 
 |  | 
 | }  // namespace rtc |