| /* | 
 |  *  Copyright 2016 The WebRTC Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "rtc_base/timestamp_aligner.h" | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <limits> | 
 |  | 
 | #include "rtc_base/random.h" | 
 | #include "rtc_base/time_utils.h" | 
 | #include "test/gtest.h" | 
 |  | 
 | namespace rtc { | 
 |  | 
 | namespace { | 
 | // Computes the difference x_k - mean(x), when x_k is the linear sequence x_k = | 
 | // k, and the "mean" is plain mean for the first `window_size` samples, followed | 
 | // by exponential averaging with weight 1 / `window_size` for each new sample. | 
 | // This is needed to predict the effect of camera clock drift on the timestamp | 
 | // translation. See the comment on TimestampAligner::UpdateOffset for more | 
 | // context. | 
 | double MeanTimeDifference(int nsamples, int window_size) { | 
 |   if (nsamples <= window_size) { | 
 |     // Plain averaging. | 
 |     return nsamples / 2.0; | 
 |   } else { | 
 |     // Exponential convergence towards | 
 |     // interval_error * (window_size - 1) | 
 |     double alpha = 1.0 - 1.0 / window_size; | 
 |  | 
 |     return ((window_size - 1) - | 
 |             (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size)); | 
 |   } | 
 | } | 
 |  | 
 | class TimestampAlignerForTest : public TimestampAligner { | 
 |   // Make internal methods accessible to testing. | 
 |  public: | 
 |   using TimestampAligner::ClipTimestamp; | 
 |   using TimestampAligner::UpdateOffset; | 
 | }; | 
 |  | 
 | void TestTimestampFilter(double rel_freq_error) { | 
 |   TimestampAlignerForTest timestamp_aligner_for_test; | 
 |   TimestampAligner timestamp_aligner; | 
 |   const int64_t kEpoch = 10000; | 
 |   const int64_t kJitterUs = 5000; | 
 |   const int64_t kIntervalUs = 33333;  // 30 FPS | 
 |   const int kWindowSize = 100; | 
 |   const int kNumFrames = 3 * kWindowSize; | 
 |  | 
 |   int64_t interval_error_us = kIntervalUs * rel_freq_error; | 
 |   int64_t system_start_us = rtc::TimeMicros(); | 
 |   webrtc::Random random(17); | 
 |  | 
 |   int64_t prev_translated_time_us = system_start_us; | 
 |  | 
 |   for (int i = 0; i < kNumFrames; i++) { | 
 |     // Camera time subject to drift. | 
 |     int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us); | 
 |     int64_t system_time_us = system_start_us + i * kIntervalUs; | 
 |     // And system time readings are subject to jitter. | 
 |     int64_t system_measured_us = system_time_us + random.Rand(kJitterUs); | 
 |  | 
 |     int64_t offset_us = timestamp_aligner_for_test.UpdateOffset( | 
 |         camera_time_us, system_measured_us); | 
 |  | 
 |     int64_t filtered_time_us = camera_time_us + offset_us; | 
 |     int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp( | 
 |         filtered_time_us, system_measured_us); | 
 |  | 
 |     // Check that we get identical result from the all-in-one helper method. | 
 |     ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp( | 
 |                                       camera_time_us, system_measured_us)); | 
 |  | 
 |     EXPECT_LE(translated_time_us, system_measured_us); | 
 |     EXPECT_GE(translated_time_us, | 
 |               prev_translated_time_us + rtc::kNumMicrosecsPerMillisec); | 
 |  | 
 |     // The relative frequency error contributes to the expected error | 
 |     // by a factor which is the difference between the current time | 
 |     // and the average of earlier sample times. | 
 |     int64_t expected_error_us = | 
 |         kJitterUs / 2 + | 
 |         rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize); | 
 |  | 
 |     int64_t bias_us = filtered_time_us - translated_time_us; | 
 |     EXPECT_GE(bias_us, 0); | 
 |  | 
 |     if (i == 0) { | 
 |       EXPECT_EQ(translated_time_us, system_measured_us); | 
 |     } else { | 
 |       EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us, | 
 |                   2.0 * kJitterUs / sqrt(std::max(i, kWindowSize))); | 
 |     } | 
 |     // If the camera clock runs too fast (rel_freq_error > 0.0), The | 
 |     // bias is expected to roughly cancel the expected error from the | 
 |     // clock drift, as this grows. Otherwise, it reflects the | 
 |     // measurement noise. The tolerances here were selected after some | 
 |     // trial and error. | 
 |     if (i < 10 || rel_freq_error <= 0.0) { | 
 |       EXPECT_LE(bias_us, 3000); | 
 |     } else { | 
 |       EXPECT_NEAR(bias_us, expected_error_us, 1500); | 
 |     } | 
 |     prev_translated_time_us = translated_time_us; | 
 |   } | 
 | } | 
 |  | 
 | }  // Anonymous namespace | 
 |  | 
 | TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) { | 
 |   TestTimestampFilter(0.0); | 
 | } | 
 |  | 
 | // 100 ppm is a worst case for a reasonable crystal. | 
 | TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) { | 
 |   TestTimestampFilter(0.0001); | 
 | } | 
 |  | 
 | TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) { | 
 |   TestTimestampFilter(-0.0001); | 
 | } | 
 |  | 
 | // 3000 ppm, 3 ms / s, is the worst observed drift, see | 
 | // https://bugs.chromium.org/p/webrtc/issues/detail?id=5456 | 
 | TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) { | 
 |   TestTimestampFilter(0.003); | 
 | } | 
 |  | 
 | TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) { | 
 |   TestTimestampFilter(-0.003); | 
 | } | 
 |  | 
 | // Exhibits a mostly hypothetical problem, where certain inputs to the | 
 | // TimestampAligner.UpdateOffset filter result in non-monotonous | 
 | // translated timestamps. This test verifies that the ClipTimestamp | 
 | // logic handles this case correctly. | 
 | TEST(TimestampAlignerTest, ClipToMonotonous) { | 
 |   TimestampAlignerForTest timestamp_aligner; | 
 |  | 
 |   // For system time stamps { 0, s1, s1 + s2 }, and camera timestamps | 
 |   // {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only | 
 |   // if c1 > s1 + 2 s2 + 4 c2. | 
 |   const int kNumSamples = 3; | 
 |   const int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001}; | 
 |   const int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000}; | 
 |   const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667}; | 
 |  | 
 |   // Non-monotonic translated timestamps can happen when only for | 
 |   // translated timestamps in the future. Which is tolerated if | 
 |   // `timestamp_aligner.clip_bias_us` is large enough. Instead of | 
 |   // changing that private member for this test, just add the bias to | 
 |   // `kSystemTimeUs` when calling ClipTimestamp. | 
 |   const int64_t kClipBiasUs = 100000; | 
 |  | 
 |   bool did_clip = false; | 
 |   int64_t prev_timestamp_us = std::numeric_limits<int64_t>::min(); | 
 |   for (int i = 0; i < kNumSamples; i++) { | 
 |     int64_t offset_us = | 
 |         timestamp_aligner.UpdateOffset(kCaptureTimeUs[i], kSystemTimeUs[i]); | 
 |     EXPECT_EQ(offset_us, expected_offset_us[i]); | 
 |  | 
 |     int64_t translated_timestamp_us = kCaptureTimeUs[i] + offset_us; | 
 |     int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp( | 
 |         translated_timestamp_us, kSystemTimeUs[i] + kClipBiasUs); | 
 |     if (translated_timestamp_us <= prev_timestamp_us) { | 
 |       did_clip = true; | 
 |       EXPECT_EQ(clip_timestamp_us, | 
 |                 prev_timestamp_us + rtc::kNumMicrosecsPerMillisec); | 
 |     } else { | 
 |       // No change from clipping. | 
 |       EXPECT_EQ(clip_timestamp_us, translated_timestamp_us); | 
 |     } | 
 |     prev_timestamp_us = clip_timestamp_us; | 
 |   } | 
 |   EXPECT_TRUE(did_clip); | 
 | } | 
 |  | 
 | TEST(TimestampAlignerTest, TranslateTimestampWithoutStateUpdate) { | 
 |   TimestampAligner timestamp_aligner; | 
 |  | 
 |   constexpr int kNumSamples = 4; | 
 |   constexpr int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001, 100000}; | 
 |   constexpr int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000, 30000}; | 
 |   constexpr int64_t kQueryCaptureTimeOffsetUs[kNumSamples] = {0, 123, -321, | 
 |                                                               345}; | 
 |  | 
 |   for (int i = 0; i < kNumSamples; i++) { | 
 |     int64_t reference_timestamp = timestamp_aligner.TranslateTimestamp( | 
 |         kCaptureTimeUs[i], kSystemTimeUs[i]); | 
 |     EXPECT_EQ(reference_timestamp - kQueryCaptureTimeOffsetUs[i], | 
 |               timestamp_aligner.TranslateTimestamp( | 
 |                   kCaptureTimeUs[i] - kQueryCaptureTimeOffsetUs[i])); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace rtc |