| /* | 
 |  *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 | #include "rtc_base/physicalsocketserver.h" | 
 |  | 
 | #if defined(_MSC_VER) && _MSC_VER < 1300 | 
 | #pragma warning(disable:4786) | 
 | #endif | 
 |  | 
 | #ifdef MEMORY_SANITIZER | 
 | #include <sanitizer/msan_interface.h> | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | #include <string.h> | 
 | #include <fcntl.h> | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 | // "poll" will be used to wait for the signal dispatcher. | 
 | #include <poll.h> | 
 | #endif | 
 | #include <sys/ioctl.h> | 
 | #include <sys/time.h> | 
 | #include <sys/select.h> | 
 | #include <unistd.h> | 
 | #include <signal.h> | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | #define WIN32_LEAN_AND_MEAN | 
 | #include <windows.h> | 
 | #include <winsock2.h> | 
 | #include <ws2tcpip.h> | 
 | #undef SetPort | 
 | #endif | 
 |  | 
 | #include <errno.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <map> | 
 |  | 
 | #include "rtc_base/arraysize.h" | 
 | #include "rtc_base/basictypes.h" | 
 | #include "rtc_base/byteorder.h" | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/logging.h" | 
 | #include "rtc_base/networkmonitor.h" | 
 | #include "rtc_base/nullsocketserver.h" | 
 | #include "rtc_base/timeutils.h" | 
 | #include "rtc_base/win32socketinit.h" | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | #define LAST_SYSTEM_ERROR (::GetLastError()) | 
 | #elif defined(__native_client__) && __native_client__ | 
 | #define LAST_SYSTEM_ERROR (0) | 
 | #elif defined(WEBRTC_POSIX) | 
 | #define LAST_SYSTEM_ERROR (errno) | 
 | #endif  // WEBRTC_WIN | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | #include <netinet/tcp.h>  // for TCP_NODELAY | 
 | #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h | 
 | typedef void* SockOptArg; | 
 |  | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(__native_client__) | 
 |  | 
 | int64_t GetSocketRecvTimestamp(int socket) { | 
 |   struct timeval tv_ioctl; | 
 |   int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl); | 
 |   if (ret != 0) | 
 |     return -1; | 
 |   int64_t timestamp = | 
 |       rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) + | 
 |       static_cast<int64_t>(tv_ioctl.tv_usec); | 
 |   return timestamp; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | int64_t GetSocketRecvTimestamp(int socket) { | 
 |   return -1; | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | typedef char* SockOptArg; | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 | // POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17. | 
 | #if !defined(POLLRDHUP) | 
 | #define POLLRDHUP 0x2000 | 
 | #endif | 
 | #if !defined(EPOLLRDHUP) | 
 | #define EPOLLRDHUP 0x2000 | 
 | #endif | 
 | #endif | 
 |  | 
 | namespace rtc { | 
 |  | 
 | std::unique_ptr<SocketServer> SocketServer::CreateDefault() { | 
 | #if defined(__native_client__) | 
 |   return std::unique_ptr<SocketServer>(new rtc::NullSocketServer); | 
 | #else | 
 |   return std::unique_ptr<SocketServer>(new rtc::PhysicalSocketServer); | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | // Standard MTUs, from RFC 1191 | 
 | const uint16_t PACKET_MAXIMUMS[] = { | 
 |     65535,  // Theoretical maximum, Hyperchannel | 
 |     32000,  // Nothing | 
 |     17914,  // 16Mb IBM Token Ring | 
 |     8166,   // IEEE 802.4 | 
 |     // 4464,   // IEEE 802.5 (4Mb max) | 
 |     4352,   // FDDI | 
 |     // 2048,   // Wideband Network | 
 |     2002,   // IEEE 802.5 (4Mb recommended) | 
 |     // 1536,   // Expermental Ethernet Networks | 
 |     // 1500,   // Ethernet, Point-to-Point (default) | 
 |     1492,   // IEEE 802.3 | 
 |     1006,   // SLIP, ARPANET | 
 |     // 576,    // X.25 Networks | 
 |     // 544,    // DEC IP Portal | 
 |     // 512,    // NETBIOS | 
 |     508,    // IEEE 802/Source-Rt Bridge, ARCNET | 
 |     296,    // Point-to-Point (low delay) | 
 |     68,     // Official minimum | 
 |     0,      // End of list marker | 
 | }; | 
 |  | 
 | static const int IP_HEADER_SIZE = 20u; | 
 | static const int IPV6_HEADER_SIZE = 40u; | 
 | static const int ICMP_HEADER_SIZE = 8u; | 
 | static const int ICMP_PING_TIMEOUT_MILLIS = 10000u; | 
 | #endif | 
 |  | 
 | PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s) | 
 |   : ss_(ss), s_(s), error_(0), | 
 |     state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED), | 
 |     resolver_(nullptr) { | 
 | #if defined(WEBRTC_WIN) | 
 |   // EnsureWinsockInit() ensures that winsock is initialized. The default | 
 |   // version of this function doesn't do anything because winsock is | 
 |   // initialized by constructor of a static object. If neccessary libjingle | 
 |   // users can link it with a different version of this function by replacing | 
 |   // win32socketinit.cc. See win32socketinit.cc for more details. | 
 |   EnsureWinsockInit(); | 
 | #endif | 
 |   if (s_ != INVALID_SOCKET) { | 
 |     SetEnabledEvents(DE_READ | DE_WRITE); | 
 |  | 
 |     int type = SOCK_STREAM; | 
 |     socklen_t len = sizeof(type); | 
 |     const int res = | 
 |         getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len); | 
 |     RTC_DCHECK_EQ(0, res); | 
 |     udp_ = (SOCK_DGRAM == type); | 
 |   } | 
 | } | 
 |  | 
 | PhysicalSocket::~PhysicalSocket() { | 
 |   Close(); | 
 | } | 
 |  | 
 | bool PhysicalSocket::Create(int family, int type) { | 
 |   Close(); | 
 |   s_ = ::socket(family, type, 0); | 
 |   udp_ = (SOCK_DGRAM == type); | 
 |   UpdateLastError(); | 
 |   if (udp_) { | 
 |     SetEnabledEvents(DE_READ | DE_WRITE); | 
 |   } | 
 |   return s_ != INVALID_SOCKET; | 
 | } | 
 |  | 
 | SocketAddress PhysicalSocket::GetLocalAddress() const { | 
 |   sockaddr_storage addr_storage = {0}; | 
 |   socklen_t addrlen = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int result = ::getsockname(s_, addr, &addrlen); | 
 |   SocketAddress address; | 
 |   if (result >= 0) { | 
 |     SocketAddressFromSockAddrStorage(addr_storage, &address); | 
 |   } else { | 
 |     RTC_LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket=" | 
 |                         << s_; | 
 |   } | 
 |   return address; | 
 | } | 
 |  | 
 | SocketAddress PhysicalSocket::GetRemoteAddress() const { | 
 |   sockaddr_storage addr_storage = {0}; | 
 |   socklen_t addrlen = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int result = ::getpeername(s_, addr, &addrlen); | 
 |   SocketAddress address; | 
 |   if (result >= 0) { | 
 |     SocketAddressFromSockAddrStorage(addr_storage, &address); | 
 |   } else { | 
 |     RTC_LOG(LS_WARNING) | 
 |         << "GetRemoteAddress: unable to get remote addr, socket=" << s_; | 
 |   } | 
 |   return address; | 
 | } | 
 |  | 
 | int PhysicalSocket::Bind(const SocketAddress& bind_addr) { | 
 |   SocketAddress copied_bind_addr = bind_addr; | 
 |   // If a network binder is available, use it to bind a socket to an interface | 
 |   // instead of bind(), since this is more reliable on an OS with a weak host | 
 |   // model. | 
 |   if (ss_->network_binder() && !bind_addr.IsAnyIP()) { | 
 |     NetworkBindingResult result = | 
 |         ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr()); | 
 |     if (result == NetworkBindingResult::SUCCESS) { | 
 |       // Since the network binder handled binding the socket to the desired | 
 |       // network interface, we don't need to (and shouldn't) include an IP in | 
 |       // the bind() call; bind() just needs to assign a port. | 
 |       copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family())); | 
 |     } else if (result == NetworkBindingResult::NOT_IMPLEMENTED) { | 
 |       RTC_LOG(LS_INFO) << "Can't bind socket to network because " | 
 |                           "network binding is not implemented for this OS."; | 
 |     } else { | 
 |       if (bind_addr.IsLoopbackIP()) { | 
 |         // If we couldn't bind to a loopback IP (which should only happen in | 
 |         // test scenarios), continue on. This may be expected behavior. | 
 |         RTC_LOG(LS_VERBOSE) << "Binding socket to loopback address " | 
 |                             << bind_addr.ipaddr().ToString() | 
 |                             << " failed; result: " << static_cast<int>(result); | 
 |       } else { | 
 |         RTC_LOG(LS_WARNING) << "Binding socket to network address " | 
 |                             << bind_addr.ipaddr().ToString() | 
 |                             << " failed; result: " << static_cast<int>(result); | 
 |         // If a network binding was attempted and failed, we should stop here | 
 |         // and not try to use the socket. Otherwise, we may end up sending | 
 |         // packets with an invalid source address. | 
 |         // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026 | 
 |         return -1; | 
 |       } | 
 |     } | 
 |   } | 
 |   sockaddr_storage addr_storage; | 
 |   size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int err = ::bind(s_, addr, static_cast<int>(len)); | 
 |   UpdateLastError(); | 
 | #if !defined(NDEBUG) | 
 |   if (0 == err) { | 
 |     dbg_addr_ = "Bound @ "; | 
 |     dbg_addr_.append(GetLocalAddress().ToString()); | 
 |   } | 
 | #endif | 
 |   return err; | 
 | } | 
 |  | 
 | int PhysicalSocket::Connect(const SocketAddress& addr) { | 
 |   // TODO(pthatcher): Implicit creation is required to reconnect... | 
 |   // ...but should we make it more explicit? | 
 |   if (state_ != CS_CLOSED) { | 
 |     SetError(EALREADY); | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |   if (addr.IsUnresolvedIP()) { | 
 |     RTC_LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect"; | 
 |     resolver_ = new AsyncResolver(); | 
 |     resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult); | 
 |     resolver_->Start(addr); | 
 |     state_ = CS_CONNECTING; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return DoConnect(addr); | 
 | } | 
 |  | 
 | int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) { | 
 |   if ((s_ == INVALID_SOCKET) && | 
 |       !Create(connect_addr.family(), SOCK_STREAM)) { | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |   sockaddr_storage addr_storage; | 
 |   size_t len = connect_addr.ToSockAddrStorage(&addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int err = ::connect(s_, addr, static_cast<int>(len)); | 
 |   UpdateLastError(); | 
 |   uint8_t events = DE_READ | DE_WRITE; | 
 |   if (err == 0) { | 
 |     state_ = CS_CONNECTED; | 
 |   } else if (IsBlockingError(GetError())) { | 
 |     state_ = CS_CONNECTING; | 
 |     events |= DE_CONNECT; | 
 |   } else { | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |  | 
 |   EnableEvents(events); | 
 |   return 0; | 
 | } | 
 |  | 
 | int PhysicalSocket::GetError() const { | 
 |   CritScope cs(&crit_); | 
 |   return error_; | 
 | } | 
 |  | 
 | void PhysicalSocket::SetError(int error) { | 
 |   CritScope cs(&crit_); | 
 |   error_ = error; | 
 | } | 
 |  | 
 | AsyncSocket::ConnState PhysicalSocket::GetState() const { | 
 |   return state_; | 
 | } | 
 |  | 
 | int PhysicalSocket::GetOption(Option opt, int* value) { | 
 |   int slevel; | 
 |   int sopt; | 
 |   if (TranslateOption(opt, &slevel, &sopt) == -1) | 
 |     return -1; | 
 |   socklen_t optlen = sizeof(*value); | 
 |   int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen); | 
 |   if (ret != -1 && opt == OPT_DONTFRAGMENT) { | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |     *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0; | 
 | #endif | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | int PhysicalSocket::SetOption(Option opt, int value) { | 
 |   int slevel; | 
 |   int sopt; | 
 |   if (TranslateOption(opt, &slevel, &sopt) == -1) | 
 |     return -1; | 
 |   if (opt == OPT_DONTFRAGMENT) { | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |     value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT; | 
 | #endif | 
 |   } | 
 |   return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value)); | 
 | } | 
 |  | 
 | int PhysicalSocket::Send(const void* pv, size_t cb) { | 
 |   int sent = DoSend(s_, reinterpret_cast<const char *>(pv), | 
 |       static_cast<int>(cb), | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |       // Suppress SIGPIPE. Without this, attempting to send on a socket whose | 
 |       // other end is closed will result in a SIGPIPE signal being raised to | 
 |       // our process, which by default will terminate the process, which we | 
 |       // don't want. By specifying this flag, we'll just get the error EPIPE | 
 |       // instead and can handle the error gracefully. | 
 |       MSG_NOSIGNAL | 
 | #else | 
 |       0 | 
 | #endif | 
 |       ); | 
 |   UpdateLastError(); | 
 |   MaybeRemapSendError(); | 
 |   // We have seen minidumps where this may be false. | 
 |   RTC_DCHECK(sent <= static_cast<int>(cb)); | 
 |   if ((sent > 0 && sent < static_cast<int>(cb)) || | 
 |       (sent < 0 && IsBlockingError(GetError()))) { | 
 |     EnableEvents(DE_WRITE); | 
 |   } | 
 |   return sent; | 
 | } | 
 |  | 
 | int PhysicalSocket::SendTo(const void* buffer, | 
 |                            size_t length, | 
 |                            const SocketAddress& addr) { | 
 |   sockaddr_storage saddr; | 
 |   size_t len = addr.ToSockAddrStorage(&saddr); | 
 |   int sent = DoSendTo( | 
 |       s_, static_cast<const char *>(buffer), static_cast<int>(length), | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |       // Suppress SIGPIPE. See above for explanation. | 
 |       MSG_NOSIGNAL, | 
 | #else | 
 |       0, | 
 | #endif | 
 |       reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len)); | 
 |   UpdateLastError(); | 
 |   MaybeRemapSendError(); | 
 |   // We have seen minidumps where this may be false. | 
 |   RTC_DCHECK(sent <= static_cast<int>(length)); | 
 |   if ((sent > 0 && sent < static_cast<int>(length)) || | 
 |       (sent < 0 && IsBlockingError(GetError()))) { | 
 |     EnableEvents(DE_WRITE); | 
 |   } | 
 |   return sent; | 
 | } | 
 |  | 
 | int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) { | 
 |   int received = ::recv(s_, static_cast<char*>(buffer), | 
 |                         static_cast<int>(length), 0); | 
 |   if ((received == 0) && (length != 0)) { | 
 |     // Note: on graceful shutdown, recv can return 0.  In this case, we | 
 |     // pretend it is blocking, and then signal close, so that simplifying | 
 |     // assumptions can be made about Recv. | 
 |     RTC_LOG(LS_WARNING) << "EOF from socket; deferring close event"; | 
 |     // Must turn this back on so that the select() loop will notice the close | 
 |     // event. | 
 |     EnableEvents(DE_READ); | 
 |     SetError(EWOULDBLOCK); | 
 |     return SOCKET_ERROR; | 
 |   } | 
 |   if (timestamp) { | 
 |     *timestamp = GetSocketRecvTimestamp(s_); | 
 |   } | 
 |   UpdateLastError(); | 
 |   int error = GetError(); | 
 |   bool success = (received >= 0) || IsBlockingError(error); | 
 |   if (udp_ || success) { | 
 |     EnableEvents(DE_READ); | 
 |   } | 
 |   if (!success) { | 
 |     RTC_LOG_F(LS_VERBOSE) << "Error = " << error; | 
 |   } | 
 |   return received; | 
 | } | 
 |  | 
 | int PhysicalSocket::RecvFrom(void* buffer, | 
 |                              size_t length, | 
 |                              SocketAddress* out_addr, | 
 |                              int64_t* timestamp) { | 
 |   sockaddr_storage addr_storage; | 
 |   socklen_t addr_len = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   int received = ::recvfrom(s_, static_cast<char*>(buffer), | 
 |                             static_cast<int>(length), 0, addr, &addr_len); | 
 |   if (timestamp) { | 
 |     *timestamp = GetSocketRecvTimestamp(s_); | 
 |   } | 
 |   UpdateLastError(); | 
 |   if ((received >= 0) && (out_addr != nullptr)) | 
 |     SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |   int error = GetError(); | 
 |   bool success = (received >= 0) || IsBlockingError(error); | 
 |   if (udp_ || success) { | 
 |     EnableEvents(DE_READ); | 
 |   } | 
 |   if (!success) { | 
 |     RTC_LOG_F(LS_VERBOSE) << "Error = " << error; | 
 |   } | 
 |   return received; | 
 | } | 
 |  | 
 | int PhysicalSocket::Listen(int backlog) { | 
 |   int err = ::listen(s_, backlog); | 
 |   UpdateLastError(); | 
 |   if (err == 0) { | 
 |     state_ = CS_CONNECTING; | 
 |     EnableEvents(DE_ACCEPT); | 
 | #if !defined(NDEBUG) | 
 |     dbg_addr_ = "Listening @ "; | 
 |     dbg_addr_.append(GetLocalAddress().ToString()); | 
 | #endif | 
 |   } | 
 |   return err; | 
 | } | 
 |  | 
 | AsyncSocket* PhysicalSocket::Accept(SocketAddress* out_addr) { | 
 |   // Always re-subscribe DE_ACCEPT to make sure new incoming connections will | 
 |   // trigger an event even if DoAccept returns an error here. | 
 |   EnableEvents(DE_ACCEPT); | 
 |   sockaddr_storage addr_storage; | 
 |   socklen_t addr_len = sizeof(addr_storage); | 
 |   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |   SOCKET s = DoAccept(s_, addr, &addr_len); | 
 |   UpdateLastError(); | 
 |   if (s == INVALID_SOCKET) | 
 |     return nullptr; | 
 |   if (out_addr != nullptr) | 
 |     SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |   return ss_->WrapSocket(s); | 
 | } | 
 |  | 
 | int PhysicalSocket::Close() { | 
 |   if (s_ == INVALID_SOCKET) | 
 |     return 0; | 
 |   int err = ::closesocket(s_); | 
 |   UpdateLastError(); | 
 |   s_ = INVALID_SOCKET; | 
 |   state_ = CS_CLOSED; | 
 |   SetEnabledEvents(0); | 
 |   if (resolver_) { | 
 |     resolver_->Destroy(false); | 
 |     resolver_ = nullptr; | 
 |   } | 
 |   return err; | 
 | } | 
 |  | 
 | SOCKET PhysicalSocket::DoAccept(SOCKET socket, | 
 |                                 sockaddr* addr, | 
 |                                 socklen_t* addrlen) { | 
 |   return ::accept(socket, addr, addrlen); | 
 | } | 
 |  | 
 | int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) { | 
 |   return ::send(socket, buf, len, flags); | 
 | } | 
 |  | 
 | int PhysicalSocket::DoSendTo(SOCKET socket, | 
 |                              const char* buf, | 
 |                              int len, | 
 |                              int flags, | 
 |                              const struct sockaddr* dest_addr, | 
 |                              socklen_t addrlen) { | 
 |   return ::sendto(socket, buf, len, flags, dest_addr, addrlen); | 
 | } | 
 |  | 
 | void PhysicalSocket::OnResolveResult(AsyncResolverInterface* resolver) { | 
 |   if (resolver != resolver_) { | 
 |     return; | 
 |   } | 
 |  | 
 |   int error = resolver_->GetError(); | 
 |   if (error == 0) { | 
 |     error = DoConnect(resolver_->address()); | 
 |   } else { | 
 |     Close(); | 
 |   } | 
 |  | 
 |   if (error) { | 
 |     SetError(error); | 
 |     SignalCloseEvent(this, error); | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocket::UpdateLastError() { | 
 |   SetError(LAST_SYSTEM_ERROR); | 
 | } | 
 |  | 
 | void PhysicalSocket::MaybeRemapSendError() { | 
 | #if defined(WEBRTC_MAC) | 
 |   // https://developer.apple.com/library/mac/documentation/Darwin/ | 
 |   // Reference/ManPages/man2/sendto.2.html | 
 |   // ENOBUFS - The output queue for a network interface is full. | 
 |   // This generally indicates that the interface has stopped sending, | 
 |   // but may be caused by transient congestion. | 
 |   if (GetError() == ENOBUFS) { | 
 |     SetError(EWOULDBLOCK); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void PhysicalSocket::SetEnabledEvents(uint8_t events) { | 
 |   enabled_events_ = events; | 
 | } | 
 |  | 
 | void PhysicalSocket::EnableEvents(uint8_t events) { | 
 |   enabled_events_ |= events; | 
 | } | 
 |  | 
 | void PhysicalSocket::DisableEvents(uint8_t events) { | 
 |   enabled_events_ &= ~events; | 
 | } | 
 |  | 
 | int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) { | 
 |   switch (opt) { | 
 |     case OPT_DONTFRAGMENT: | 
 | #if defined(WEBRTC_WIN) | 
 |       *slevel = IPPROTO_IP; | 
 |       *sopt = IP_DONTFRAGMENT; | 
 |       break; | 
 | #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__) | 
 |       RTC_LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported."; | 
 |       return -1; | 
 | #elif defined(WEBRTC_POSIX) | 
 |       *slevel = IPPROTO_IP; | 
 |       *sopt = IP_MTU_DISCOVER; | 
 |       break; | 
 | #endif | 
 |     case OPT_RCVBUF: | 
 |       *slevel = SOL_SOCKET; | 
 |       *sopt = SO_RCVBUF; | 
 |       break; | 
 |     case OPT_SNDBUF: | 
 |       *slevel = SOL_SOCKET; | 
 |       *sopt = SO_SNDBUF; | 
 |       break; | 
 |     case OPT_NODELAY: | 
 |       *slevel = IPPROTO_TCP; | 
 |       *sopt = TCP_NODELAY; | 
 |       break; | 
 |     case OPT_DSCP: | 
 |       RTC_LOG(LS_WARNING) << "Socket::OPT_DSCP not supported."; | 
 |       return -1; | 
 |     case OPT_RTP_SENDTIME_EXTN_ID: | 
 |       return -1;  // No logging is necessary as this not a OS socket option. | 
 |     default: | 
 |       RTC_NOTREACHED(); | 
 |       return -1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | SocketDispatcher::SocketDispatcher(PhysicalSocketServer *ss) | 
 | #if defined(WEBRTC_WIN) | 
 |   : PhysicalSocket(ss), id_(0), signal_close_(false) | 
 | #else | 
 |   : PhysicalSocket(ss) | 
 | #endif | 
 | { | 
 | } | 
 |  | 
 | SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) | 
 | #if defined(WEBRTC_WIN) | 
 |   : PhysicalSocket(ss, s), id_(0), signal_close_(false) | 
 | #else | 
 |   : PhysicalSocket(ss, s) | 
 | #endif | 
 | { | 
 | } | 
 |  | 
 | SocketDispatcher::~SocketDispatcher() { | 
 |   Close(); | 
 | } | 
 |  | 
 | bool SocketDispatcher::Initialize() { | 
 |   RTC_DCHECK(s_ != INVALID_SOCKET); | 
 |   // Must be a non-blocking | 
 | #if defined(WEBRTC_WIN) | 
 |   u_long argp = 1; | 
 |   ioctlsocket(s_, FIONBIO, &argp); | 
 | #elif defined(WEBRTC_POSIX) | 
 |   fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK); | 
 | #endif | 
 | #if defined(WEBRTC_IOS) | 
 |   // iOS may kill sockets when the app is moved to the background | 
 |   // (specifically, if the app doesn't use the "voip" UIBackgroundMode). When | 
 |   // we attempt to write to such a socket, SIGPIPE will be raised, which by | 
 |   // default will terminate the process, which we don't want. By specifying | 
 |   // this socket option, SIGPIPE will be disabled for the socket. | 
 |   int value = 1; | 
 |   ::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value)); | 
 | #endif | 
 |   ss_->Add(this); | 
 |   return true; | 
 | } | 
 |  | 
 | bool SocketDispatcher::Create(int type) { | 
 |   return Create(AF_INET, type); | 
 | } | 
 |  | 
 | bool SocketDispatcher::Create(int family, int type) { | 
 |   // Change the socket to be non-blocking. | 
 |   if (!PhysicalSocket::Create(family, type)) | 
 |     return false; | 
 |  | 
 |   if (!Initialize()) | 
 |     return false; | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |   do { id_ = ++next_id_; } while (id_ == 0); | 
 | #endif | 
 |   return true; | 
 | } | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |  | 
 | WSAEVENT SocketDispatcher::GetWSAEvent() { | 
 |   return WSA_INVALID_EVENT; | 
 | } | 
 |  | 
 | SOCKET SocketDispatcher::GetSocket() { | 
 |   return s_; | 
 | } | 
 |  | 
 | bool SocketDispatcher::CheckSignalClose() { | 
 |   if (!signal_close_) | 
 |     return false; | 
 |  | 
 |   char ch; | 
 |   if (recv(s_, &ch, 1, MSG_PEEK) > 0) | 
 |     return false; | 
 |  | 
 |   state_ = CS_CLOSED; | 
 |   signal_close_ = false; | 
 |   SignalCloseEvent(this, signal_err_); | 
 |   return true; | 
 | } | 
 |  | 
 | int SocketDispatcher::next_id_ = 0; | 
 |  | 
 | #elif defined(WEBRTC_POSIX) | 
 |  | 
 | int SocketDispatcher::GetDescriptor() { | 
 |   return s_; | 
 | } | 
 |  | 
 | bool SocketDispatcher::IsDescriptorClosed() { | 
 |   if (udp_) { | 
 |     // The MSG_PEEK trick doesn't work for UDP, since (at least in some | 
 |     // circumstances) it requires reading an entire UDP packet, which would be | 
 |     // bad for performance here. So, just check whether |s_| has been closed, | 
 |     // which should be sufficient. | 
 |     return s_ == INVALID_SOCKET; | 
 |   } | 
 |   // We don't have a reliable way of distinguishing end-of-stream | 
 |   // from readability.  So test on each readable call.  Is this | 
 |   // inefficient?  Probably. | 
 |   char ch; | 
 |   ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK); | 
 |   if (res > 0) { | 
 |     // Data available, so not closed. | 
 |     return false; | 
 |   } else if (res == 0) { | 
 |     // EOF, so closed. | 
 |     return true; | 
 |   } else {  // error | 
 |     switch (errno) { | 
 |       // Returned if we've already closed s_. | 
 |       case EBADF: | 
 |       // Returned during ungraceful peer shutdown. | 
 |       case ECONNRESET: | 
 |         return true; | 
 |       // The normal blocking error; don't log anything. | 
 |       case EWOULDBLOCK: | 
 |       // Interrupted system call. | 
 |       case EINTR: | 
 |         return false; | 
 |       default: | 
 |         // Assume that all other errors are just blocking errors, meaning the | 
 |         // connection is still good but we just can't read from it right now. | 
 |         // This should only happen when connecting (and at most once), because | 
 |         // in all other cases this function is only called if the file | 
 |         // descriptor is already known to be in the readable state. However, | 
 |         // it's not necessary a problem if we spuriously interpret a | 
 |         // "connection lost"-type error as a blocking error, because typically | 
 |         // the next recv() will get EOF, so we'll still eventually notice that | 
 |         // the socket is closed. | 
 |         RTC_LOG_ERR(LS_WARNING) << "Assuming benign blocking error"; | 
 |         return false; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #endif // WEBRTC_POSIX | 
 |  | 
 | uint32_t SocketDispatcher::GetRequestedEvents() { | 
 |   return enabled_events(); | 
 | } | 
 |  | 
 | void SocketDispatcher::OnPreEvent(uint32_t ff) { | 
 |   if ((ff & DE_CONNECT) != 0) | 
 |     state_ = CS_CONNECTED; | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |   // We set CS_CLOSED from CheckSignalClose. | 
 | #elif defined(WEBRTC_POSIX) | 
 |   if ((ff & DE_CLOSE) != 0) | 
 |     state_ = CS_CLOSED; | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |  | 
 | void SocketDispatcher::OnEvent(uint32_t ff, int err) { | 
 |   int cache_id = id_; | 
 |   // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
 |   // something like a READ followed by a CONNECT, which would be odd. | 
 |   if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) { | 
 |     if (ff != DE_CONNECT) | 
 |       RTC_LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff; | 
 |     DisableEvents(DE_CONNECT); | 
 | #if !defined(NDEBUG) | 
 |     dbg_addr_ = "Connected @ "; | 
 |     dbg_addr_.append(GetRemoteAddress().ToString()); | 
 | #endif | 
 |     SignalConnectEvent(this); | 
 |   } | 
 |   if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) { | 
 |     DisableEvents(DE_ACCEPT); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if ((ff & DE_READ) != 0) { | 
 |     DisableEvents(DE_READ); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) { | 
 |     DisableEvents(DE_WRITE); | 
 |     SignalWriteEvent(this); | 
 |   } | 
 |   if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) { | 
 |     signal_close_ = true; | 
 |     signal_err_ = err; | 
 |   } | 
 | } | 
 |  | 
 | #elif defined(WEBRTC_POSIX) | 
 |  | 
 | void SocketDispatcher::OnEvent(uint32_t ff, int err) { | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   // Remember currently enabled events so we can combine multiple changes | 
 |   // into one update call later. | 
 |   // The signal handlers might re-enable events disabled here, so we can't | 
 |   // keep a list of events to disable at the end of the method. This list | 
 |   // would not be updated with the events enabled by the signal handlers. | 
 |   StartBatchedEventUpdates(); | 
 | #endif | 
 |   // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
 |   // something like a READ followed by a CONNECT, which would be odd. | 
 |   if ((ff & DE_CONNECT) != 0) { | 
 |     DisableEvents(DE_CONNECT); | 
 |     SignalConnectEvent(this); | 
 |   } | 
 |   if ((ff & DE_ACCEPT) != 0) { | 
 |     DisableEvents(DE_ACCEPT); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if ((ff & DE_READ) != 0) { | 
 |     DisableEvents(DE_READ); | 
 |     SignalReadEvent(this); | 
 |   } | 
 |   if ((ff & DE_WRITE) != 0) { | 
 |     DisableEvents(DE_WRITE); | 
 |     SignalWriteEvent(this); | 
 |   } | 
 |   if ((ff & DE_CLOSE) != 0) { | 
 |     // The socket is now dead to us, so stop checking it. | 
 |     SetEnabledEvents(0); | 
 |     SignalCloseEvent(this, err); | 
 |   } | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   FinishBatchedEventUpdates(); | 
 | #endif | 
 | } | 
 |  | 
 | #endif // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |  | 
 | static int GetEpollEvents(uint32_t ff) { | 
 |   int events = 0; | 
 |   if (ff & (DE_READ | DE_ACCEPT)) { | 
 |     events |= EPOLLIN; | 
 |   } | 
 |   if (ff & (DE_WRITE | DE_CONNECT)) { | 
 |     events |= EPOLLOUT; | 
 |   } | 
 |   return events; | 
 | } | 
 |  | 
 | void SocketDispatcher::StartBatchedEventUpdates() { | 
 |   RTC_DCHECK_EQ(saved_enabled_events_, -1); | 
 |   saved_enabled_events_ = enabled_events(); | 
 | } | 
 |  | 
 | void SocketDispatcher::FinishBatchedEventUpdates() { | 
 |   RTC_DCHECK_NE(saved_enabled_events_, -1); | 
 |   uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_); | 
 |   saved_enabled_events_ = -1; | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) { | 
 |   if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) && | 
 |       saved_enabled_events_ == -1) { | 
 |     ss_->Update(this); | 
 |   } | 
 | } | 
 |  | 
 | void SocketDispatcher::SetEnabledEvents(uint8_t events) { | 
 |   uint8_t old_events = enabled_events(); | 
 |   PhysicalSocket::SetEnabledEvents(events); | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | void SocketDispatcher::EnableEvents(uint8_t events) { | 
 |   uint8_t old_events = enabled_events(); | 
 |   PhysicalSocket::EnableEvents(events); | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | void SocketDispatcher::DisableEvents(uint8_t events) { | 
 |   uint8_t old_events = enabled_events(); | 
 |   PhysicalSocket::DisableEvents(events); | 
 |   MaybeUpdateDispatcher(old_events); | 
 | } | 
 |  | 
 | #endif  // WEBRTC_USE_EPOLL | 
 |  | 
 | int SocketDispatcher::Close() { | 
 |   if (s_ == INVALID_SOCKET) | 
 |     return 0; | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |   id_ = 0; | 
 |   signal_close_ = false; | 
 | #endif | 
 |   ss_->Remove(this); | 
 |   return PhysicalSocket::Close(); | 
 | } | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | class EventDispatcher : public Dispatcher { | 
 |  public: | 
 |   EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) { | 
 |     if (pipe(afd_) < 0) | 
 |       RTC_LOG(LERROR) << "pipe failed"; | 
 |     ss_->Add(this); | 
 |   } | 
 |  | 
 |   ~EventDispatcher() override { | 
 |     ss_->Remove(this); | 
 |     close(afd_[0]); | 
 |     close(afd_[1]); | 
 |   } | 
 |  | 
 |   virtual void Signal() { | 
 |     CritScope cs(&crit_); | 
 |     if (!fSignaled_) { | 
 |       const uint8_t b[1] = {0}; | 
 |       const ssize_t res = write(afd_[1], b, sizeof(b)); | 
 |       RTC_DCHECK_EQ(1, res); | 
 |       fSignaled_ = true; | 
 |     } | 
 |   } | 
 |  | 
 |   uint32_t GetRequestedEvents() override { return DE_READ; } | 
 |  | 
 |   void OnPreEvent(uint32_t ff) override { | 
 |     // It is not possible to perfectly emulate an auto-resetting event with | 
 |     // pipes.  This simulates it by resetting before the event is handled. | 
 |  | 
 |     CritScope cs(&crit_); | 
 |     if (fSignaled_) { | 
 |       uint8_t b[4];  // Allow for reading more than 1 byte, but expect 1. | 
 |       const ssize_t res = read(afd_[0], b, sizeof(b)); | 
 |       RTC_DCHECK_EQ(1, res); | 
 |       fSignaled_ = false; | 
 |     } | 
 |   } | 
 |  | 
 |   void OnEvent(uint32_t ff, int err) override { RTC_NOTREACHED(); } | 
 |  | 
 |   int GetDescriptor() override { return afd_[0]; } | 
 |  | 
 |   bool IsDescriptorClosed() override { return false; } | 
 |  | 
 |  private: | 
 |   PhysicalSocketServer *ss_; | 
 |   int afd_[2]; | 
 |   bool fSignaled_; | 
 |   CriticalSection crit_; | 
 | }; | 
 |  | 
 | // These two classes use the self-pipe trick to deliver POSIX signals to our | 
 | // select loop. This is the only safe, reliable, cross-platform way to do | 
 | // non-trivial things with a POSIX signal in an event-driven program (until | 
 | // proper pselect() implementations become ubiquitous). | 
 |  | 
 | class PosixSignalHandler { | 
 |  public: | 
 |   // POSIX only specifies 32 signals, but in principle the system might have | 
 |   // more and the programmer might choose to use them, so we size our array | 
 |   // for 128. | 
 |   static const int kNumPosixSignals = 128; | 
 |  | 
 |   // There is just a single global instance. (Signal handlers do not get any | 
 |   // sort of user-defined void * parameter, so they can't access anything that | 
 |   // isn't global.) | 
 |   static PosixSignalHandler* Instance() { | 
 |     RTC_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ()); | 
 |     return &instance; | 
 |   } | 
 |  | 
 |   // Returns true if the given signal number is set. | 
 |   bool IsSignalSet(int signum) const { | 
 |     RTC_DCHECK(signum < static_cast<int>(arraysize(received_signal_))); | 
 |     if (signum < static_cast<int>(arraysize(received_signal_))) { | 
 |       return received_signal_[signum]; | 
 |     } else { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Clears the given signal number. | 
 |   void ClearSignal(int signum) { | 
 |     RTC_DCHECK(signum < static_cast<int>(arraysize(received_signal_))); | 
 |     if (signum < static_cast<int>(arraysize(received_signal_))) { | 
 |       received_signal_[signum] = false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Returns the file descriptor to monitor for signal events. | 
 |   int GetDescriptor() const { | 
 |     return afd_[0]; | 
 |   } | 
 |  | 
 |   // This is called directly from our real signal handler, so it must be | 
 |   // signal-handler-safe. That means it cannot assume anything about the | 
 |   // user-level state of the process, since the handler could be executed at any | 
 |   // time on any thread. | 
 |   void OnPosixSignalReceived(int signum) { | 
 |     if (signum >= static_cast<int>(arraysize(received_signal_))) { | 
 |       // We don't have space in our array for this. | 
 |       return; | 
 |     } | 
 |     // Set a flag saying we've seen this signal. | 
 |     received_signal_[signum] = true; | 
 |     // Notify application code that we got a signal. | 
 |     const uint8_t b[1] = {0}; | 
 |     if (-1 == write(afd_[1], b, sizeof(b))) { | 
 |       // Nothing we can do here. If there's an error somehow then there's | 
 |       // nothing we can safely do from a signal handler. | 
 |       // No, we can't even safely log it. | 
 |       // But, we still have to check the return value here. Otherwise, | 
 |       // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help. | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   PosixSignalHandler() { | 
 |     if (pipe(afd_) < 0) { | 
 |       RTC_LOG_ERR(LS_ERROR) << "pipe failed"; | 
 |       return; | 
 |     } | 
 |     if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) { | 
 |       RTC_LOG_ERR(LS_WARNING) << "fcntl #1 failed"; | 
 |     } | 
 |     if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) { | 
 |       RTC_LOG_ERR(LS_WARNING) << "fcntl #2 failed"; | 
 |     } | 
 |     memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)), | 
 |            0, | 
 |            sizeof(received_signal_)); | 
 |   } | 
 |  | 
 |   ~PosixSignalHandler() { | 
 |     int fd1 = afd_[0]; | 
 |     int fd2 = afd_[1]; | 
 |     // We clobber the stored file descriptor numbers here or else in principle | 
 |     // a signal that happens to be delivered during application termination | 
 |     // could erroneously write a zero byte to an unrelated file handle in | 
 |     // OnPosixSignalReceived() if some other file happens to be opened later | 
 |     // during shutdown and happens to be given the same file descriptor number | 
 |     // as our pipe had. Unfortunately even with this precaution there is still a | 
 |     // race where that could occur if said signal happens to be handled | 
 |     // concurrently with this code and happens to have already read the value of | 
 |     // afd_[1] from memory before we clobber it, but that's unlikely. | 
 |     afd_[0] = -1; | 
 |     afd_[1] = -1; | 
 |     close(fd1); | 
 |     close(fd2); | 
 |   } | 
 |  | 
 |   int afd_[2]; | 
 |   // These are boolean flags that will be set in our signal handler and read | 
 |   // and cleared from Wait(). There is a race involved in this, but it is | 
 |   // benign. The signal handler sets the flag before signaling the pipe, so | 
 |   // we'll never end up blocking in select() while a flag is still true. | 
 |   // However, if two of the same signal arrive close to each other then it's | 
 |   // possible that the second time the handler may set the flag while it's still | 
 |   // true, meaning that signal will be missed. But the first occurrence of it | 
 |   // will still be handled, so this isn't a problem. | 
 |   // Volatile is not necessary here for correctness, but this data _is_ volatile | 
 |   // so I've marked it as such. | 
 |   volatile uint8_t received_signal_[kNumPosixSignals]; | 
 | }; | 
 |  | 
 | class PosixSignalDispatcher : public Dispatcher { | 
 |  public: | 
 |   PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) { | 
 |     owner_->Add(this); | 
 |   } | 
 |  | 
 |   ~PosixSignalDispatcher() override { | 
 |     owner_->Remove(this); | 
 |   } | 
 |  | 
 |   uint32_t GetRequestedEvents() override { return DE_READ; } | 
 |  | 
 |   void OnPreEvent(uint32_t ff) override { | 
 |     // Events might get grouped if signals come very fast, so we read out up to | 
 |     // 16 bytes to make sure we keep the pipe empty. | 
 |     uint8_t b[16]; | 
 |     ssize_t ret = read(GetDescriptor(), b, sizeof(b)); | 
 |     if (ret < 0) { | 
 |       RTC_LOG_ERR(LS_WARNING) << "Error in read()"; | 
 |     } else if (ret == 0) { | 
 |       RTC_LOG(LS_WARNING) << "Should have read at least one byte"; | 
 |     } | 
 |   } | 
 |  | 
 |   void OnEvent(uint32_t ff, int err) override { | 
 |     for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals; | 
 |          ++signum) { | 
 |       if (PosixSignalHandler::Instance()->IsSignalSet(signum)) { | 
 |         PosixSignalHandler::Instance()->ClearSignal(signum); | 
 |         HandlerMap::iterator i = handlers_.find(signum); | 
 |         if (i == handlers_.end()) { | 
 |           // This can happen if a signal is delivered to our process at around | 
 |           // the same time as we unset our handler for it. It is not an error | 
 |           // condition, but it's unusual enough to be worth logging. | 
 |           RTC_LOG(LS_INFO) << "Received signal with no handler: " << signum; | 
 |         } else { | 
 |           // Otherwise, execute our handler. | 
 |           (*i->second)(signum); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   int GetDescriptor() override { | 
 |     return PosixSignalHandler::Instance()->GetDescriptor(); | 
 |   } | 
 |  | 
 |   bool IsDescriptorClosed() override { return false; } | 
 |  | 
 |   void SetHandler(int signum, void (*handler)(int)) { | 
 |     handlers_[signum] = handler; | 
 |   } | 
 |  | 
 |   void ClearHandler(int signum) { | 
 |     handlers_.erase(signum); | 
 |   } | 
 |  | 
 |   bool HasHandlers() { | 
 |     return !handlers_.empty(); | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef std::map<int, void (*)(int)> HandlerMap; | 
 |  | 
 |   HandlerMap handlers_; | 
 |   // Our owner. | 
 |   PhysicalSocketServer *owner_; | 
 | }; | 
 |  | 
 | #endif // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | static uint32_t FlagsToEvents(uint32_t events) { | 
 |   uint32_t ffFD = FD_CLOSE; | 
 |   if (events & DE_READ) | 
 |     ffFD |= FD_READ; | 
 |   if (events & DE_WRITE) | 
 |     ffFD |= FD_WRITE; | 
 |   if (events & DE_CONNECT) | 
 |     ffFD |= FD_CONNECT; | 
 |   if (events & DE_ACCEPT) | 
 |     ffFD |= FD_ACCEPT; | 
 |   return ffFD; | 
 | } | 
 |  | 
 | class EventDispatcher : public Dispatcher { | 
 |  public: | 
 |   EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) { | 
 |     hev_ = WSACreateEvent(); | 
 |     if (hev_) { | 
 |       ss_->Add(this); | 
 |     } | 
 |   } | 
 |  | 
 |   ~EventDispatcher() override { | 
 |     if (hev_ != nullptr) { | 
 |       ss_->Remove(this); | 
 |       WSACloseEvent(hev_); | 
 |       hev_ = nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   virtual void Signal() { | 
 |     if (hev_ != nullptr) | 
 |       WSASetEvent(hev_); | 
 |   } | 
 |  | 
 |   uint32_t GetRequestedEvents() override { return 0; } | 
 |  | 
 |   void OnPreEvent(uint32_t ff) override { WSAResetEvent(hev_); } | 
 |  | 
 |   void OnEvent(uint32_t ff, int err) override {} | 
 |  | 
 |   WSAEVENT GetWSAEvent() override { return hev_; } | 
 |  | 
 |   SOCKET GetSocket() override { return INVALID_SOCKET; } | 
 |  | 
 |   bool CheckSignalClose() override { return false; } | 
 |  | 
 |  private: | 
 |   PhysicalSocketServer* ss_; | 
 |   WSAEVENT hev_; | 
 | }; | 
 | #endif  // WEBRTC_WIN | 
 |  | 
 | // Sets the value of a boolean value to false when signaled. | 
 | class Signaler : public EventDispatcher { | 
 |  public: | 
 |   Signaler(PhysicalSocketServer* ss, bool* pf) | 
 |       : EventDispatcher(ss), pf_(pf) { | 
 |   } | 
 |   ~Signaler() override { } | 
 |  | 
 |   void OnEvent(uint32_t ff, int err) override { | 
 |     if (pf_) | 
 |       *pf_ = false; | 
 |   } | 
 |  | 
 |  private: | 
 |   bool *pf_; | 
 | }; | 
 |  | 
 | PhysicalSocketServer::PhysicalSocketServer() | 
 |     : fWait_(false) { | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   // Since Linux 2.6.8, the size argument is ignored, but must be greater than | 
 |   // zero. Before that the size served as hint to the kernel for the amount of | 
 |   // space to initially allocate in internal data structures. | 
 |   epoll_fd_ = epoll_create(FD_SETSIZE); | 
 |   if (epoll_fd_ == -1) { | 
 |     // Not an error, will fall back to "select" below. | 
 |     RTC_LOG_E(LS_WARNING, EN, errno) << "epoll_create"; | 
 |     epoll_fd_ = INVALID_SOCKET; | 
 |   } | 
 | #endif | 
 |   signal_wakeup_ = new Signaler(this, &fWait_); | 
 | #if defined(WEBRTC_WIN) | 
 |   socket_ev_ = WSACreateEvent(); | 
 | #endif | 
 | } | 
 |  | 
 | PhysicalSocketServer::~PhysicalSocketServer() { | 
 | #if defined(WEBRTC_WIN) | 
 |   WSACloseEvent(socket_ev_); | 
 | #endif | 
 | #if defined(WEBRTC_POSIX) | 
 |   signal_dispatcher_.reset(); | 
 | #endif | 
 |   delete signal_wakeup_; | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ != INVALID_SOCKET) { | 
 |     close(epoll_fd_); | 
 |   } | 
 | #endif | 
 |   RTC_DCHECK(dispatchers_.empty()); | 
 | } | 
 |  | 
 | void PhysicalSocketServer::WakeUp() { | 
 |   signal_wakeup_->Signal(); | 
 | } | 
 |  | 
 | Socket* PhysicalSocketServer::CreateSocket(int type) { | 
 |   return CreateSocket(AF_INET, type); | 
 | } | 
 |  | 
 | Socket* PhysicalSocketServer::CreateSocket(int family, int type) { | 
 |   PhysicalSocket* socket = new PhysicalSocket(this); | 
 |   if (socket->Create(family, type)) { | 
 |     return socket; | 
 |   } else { | 
 |     delete socket; | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) { | 
 |   return CreateAsyncSocket(AF_INET, type); | 
 | } | 
 |  | 
 | AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) { | 
 |   SocketDispatcher* dispatcher = new SocketDispatcher(this); | 
 |   if (dispatcher->Create(family, type)) { | 
 |     return dispatcher; | 
 |   } else { | 
 |     delete dispatcher; | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) { | 
 |   SocketDispatcher* dispatcher = new SocketDispatcher(s, this); | 
 |   if (dispatcher->Initialize()) { | 
 |     return dispatcher; | 
 |   } else { | 
 |     delete dispatcher; | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Add(Dispatcher *pdispatcher) { | 
 |   CritScope cs(&crit_); | 
 |   if (processing_dispatchers_) { | 
 |     // A dispatcher is being added while a "Wait" call is processing the | 
 |     // list of socket events. | 
 |     // Defer adding to "dispatchers_" set until processing is done to avoid | 
 |     // invalidating the iterator in "Wait". | 
 |     pending_remove_dispatchers_.erase(pdispatcher); | 
 |     pending_add_dispatchers_.insert(pdispatcher); | 
 |   } else { | 
 |     dispatchers_.insert(pdispatcher); | 
 |   } | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ != INVALID_SOCKET) { | 
 |     AddEpoll(pdispatcher); | 
 |   } | 
 | #endif  // WEBRTC_USE_EPOLL | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) { | 
 |   CritScope cs(&crit_); | 
 |   if (processing_dispatchers_) { | 
 |     // A dispatcher is being removed while a "Wait" call is processing the | 
 |     // list of socket events. | 
 |     // Defer removal from "dispatchers_" set until processing is done to avoid | 
 |     // invalidating the iterator in "Wait". | 
 |     if (!pending_add_dispatchers_.erase(pdispatcher) && | 
 |         dispatchers_.find(pdispatcher) == dispatchers_.end()) { | 
 |       RTC_LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown " | 
 |                           << "dispatcher, potentially from a duplicate call to " | 
 |                           << "Add."; | 
 |       return; | 
 |     } | 
 |  | 
 |     pending_remove_dispatchers_.insert(pdispatcher); | 
 |   } else if (!dispatchers_.erase(pdispatcher)) { | 
 |     RTC_LOG(LS_WARNING) | 
 |         << "PhysicalSocketServer asked to remove a unknown " | 
 |         << "dispatcher, potentially from a duplicate call to Add."; | 
 |     return; | 
 |   } | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ != INVALID_SOCKET) { | 
 |     RemoveEpoll(pdispatcher); | 
 |   } | 
 | #endif  // WEBRTC_USE_EPOLL | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Update(Dispatcher* pdispatcher) { | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   if (epoll_fd_ == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   CritScope cs(&crit_); | 
 |   if (dispatchers_.find(pdispatcher) == dispatchers_.end()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   UpdateEpoll(pdispatcher); | 
 | #endif | 
 | } | 
 |  | 
 | void PhysicalSocketServer::AddRemovePendingDispatchers() { | 
 |   if (!pending_add_dispatchers_.empty()) { | 
 |     for (Dispatcher* pdispatcher : pending_add_dispatchers_) { | 
 |       dispatchers_.insert(pdispatcher); | 
 |     } | 
 |     pending_add_dispatchers_.clear(); | 
 |   } | 
 |  | 
 |   if (!pending_remove_dispatchers_.empty()) { | 
 |     for (Dispatcher* pdispatcher : pending_remove_dispatchers_) { | 
 |       dispatchers_.erase(pdispatcher); | 
 |     } | 
 |     pending_remove_dispatchers_.clear(); | 
 |   } | 
 | } | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 |  | 
 | bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |   // We don't keep a dedicated "epoll" descriptor containing only the non-IO | 
 |   // (i.e. signaling) dispatcher, so "poll" will be used instead of the default | 
 |   // "select" to support sockets larger than FD_SETSIZE. | 
 |   if (!process_io) { | 
 |     return WaitPoll(cmsWait, signal_wakeup_); | 
 |   } else if (epoll_fd_ != INVALID_SOCKET) { | 
 |     return WaitEpoll(cmsWait); | 
 |   } | 
 | #endif | 
 |   return WaitSelect(cmsWait, process_io); | 
 | } | 
 |  | 
 | static void ProcessEvents(Dispatcher* dispatcher, | 
 |                           bool readable, | 
 |                           bool writable, | 
 |                           bool check_error) { | 
 |   int errcode = 0; | 
 |   // TODO(pthatcher): Should we set errcode if getsockopt fails? | 
 |   if (check_error) { | 
 |     socklen_t len = sizeof(errcode); | 
 |     ::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR, &errcode, | 
 |                  &len); | 
 |   } | 
 |  | 
 |   uint32_t ff = 0; | 
 |  | 
 |   // Check readable descriptors. If we're waiting on an accept, signal | 
 |   // that. Otherwise we're waiting for data, check to see if we're | 
 |   // readable or really closed. | 
 |   // TODO(pthatcher): Only peek at TCP descriptors. | 
 |   if (readable) { | 
 |     if (dispatcher->GetRequestedEvents() & DE_ACCEPT) { | 
 |       ff |= DE_ACCEPT; | 
 |     } else if (errcode || dispatcher->IsDescriptorClosed()) { | 
 |       ff |= DE_CLOSE; | 
 |     } else { | 
 |       ff |= DE_READ; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check writable descriptors. If we're waiting on a connect, detect | 
 |   // success versus failure by the reaped error code. | 
 |   if (writable) { | 
 |     if (dispatcher->GetRequestedEvents() & DE_CONNECT) { | 
 |       if (!errcode) { | 
 |         ff |= DE_CONNECT; | 
 |       } else { | 
 |         ff |= DE_CLOSE; | 
 |       } | 
 |     } else { | 
 |       ff |= DE_WRITE; | 
 |     } | 
 |   } | 
 |  | 
 |   // Tell the descriptor about the event. | 
 |   if (ff != 0) { | 
 |     dispatcher->OnPreEvent(ff); | 
 |     dispatcher->OnEvent(ff, errcode); | 
 |   } | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) { | 
 |   // Calculate timing information | 
 |  | 
 |   struct timeval* ptvWait = nullptr; | 
 |   struct timeval tvWait; | 
 |   struct timeval tvStop; | 
 |   if (cmsWait != kForever) { | 
 |     // Calculate wait timeval | 
 |     tvWait.tv_sec = cmsWait / 1000; | 
 |     tvWait.tv_usec = (cmsWait % 1000) * 1000; | 
 |     ptvWait = &tvWait; | 
 |  | 
 |     // Calculate when to return in a timeval | 
 |     gettimeofday(&tvStop, nullptr); | 
 |     tvStop.tv_sec += tvWait.tv_sec; | 
 |     tvStop.tv_usec += tvWait.tv_usec; | 
 |     if (tvStop.tv_usec >= 1000000) { | 
 |       tvStop.tv_usec -= 1000000; | 
 |       tvStop.tv_sec += 1; | 
 |     } | 
 |   } | 
 |  | 
 |   // Zero all fd_sets. Don't need to do this inside the loop since | 
 |   // select() zeros the descriptors not signaled | 
 |  | 
 |   fd_set fdsRead; | 
 |   FD_ZERO(&fdsRead); | 
 |   fd_set fdsWrite; | 
 |   FD_ZERO(&fdsWrite); | 
 |   // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the | 
 |   // inline assembly in FD_ZERO. | 
 |   // http://crbug.com/344505 | 
 | #ifdef MEMORY_SANITIZER | 
 |   __msan_unpoison(&fdsRead, sizeof(fdsRead)); | 
 |   __msan_unpoison(&fdsWrite, sizeof(fdsWrite)); | 
 | #endif | 
 |  | 
 |   fWait_ = true; | 
 |  | 
 |   while (fWait_) { | 
 |     int fdmax = -1; | 
 |     { | 
 |       CritScope cr(&crit_); | 
 |       // TODO(jbauch): Support re-entrant waiting. | 
 |       RTC_DCHECK(!processing_dispatchers_); | 
 |       for (Dispatcher* pdispatcher : dispatchers_) { | 
 |         // Query dispatchers for read and write wait state | 
 |         RTC_DCHECK(pdispatcher); | 
 |         if (!process_io && (pdispatcher != signal_wakeup_)) | 
 |           continue; | 
 |         int fd = pdispatcher->GetDescriptor(); | 
 |         // "select"ing a file descriptor that is equal to or larger than | 
 |         // FD_SETSIZE will result in undefined behavior. | 
 |         RTC_DCHECK_LT(fd, FD_SETSIZE); | 
 |         if (fd > fdmax) | 
 |           fdmax = fd; | 
 |  | 
 |         uint32_t ff = pdispatcher->GetRequestedEvents(); | 
 |         if (ff & (DE_READ | DE_ACCEPT)) | 
 |           FD_SET(fd, &fdsRead); | 
 |         if (ff & (DE_WRITE | DE_CONNECT)) | 
 |           FD_SET(fd, &fdsWrite); | 
 |       } | 
 |     } | 
 |  | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait); | 
 |  | 
 |     // If error, return error. | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "select"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors | 
 |       CritScope cr(&crit_); | 
 |       processing_dispatchers_ = true; | 
 |       for (Dispatcher* pdispatcher : dispatchers_) { | 
 |         int fd = pdispatcher->GetDescriptor(); | 
 |  | 
 |         bool readable = FD_ISSET(fd, &fdsRead); | 
 |         if (readable) { | 
 |           FD_CLR(fd, &fdsRead); | 
 |         } | 
 |  | 
 |         bool writable = FD_ISSET(fd, &fdsWrite); | 
 |         if (writable) { | 
 |           FD_CLR(fd, &fdsWrite); | 
 |         } | 
 |  | 
 |         // The error code can be signaled through reads or writes. | 
 |         ProcessEvents(pdispatcher, readable, writable, readable || writable); | 
 |       } | 
 |  | 
 |       processing_dispatchers_ = false; | 
 |       // Process deferred dispatchers that have been added/removed while the | 
 |       // events were handled above. | 
 |       AddRemovePendingDispatchers(); | 
 |     } | 
 |  | 
 |     // Recalc the time remaining to wait. Doing it here means it doesn't get | 
 |     // calced twice the first time through the loop | 
 |     if (ptvWait) { | 
 |       ptvWait->tv_sec = 0; | 
 |       ptvWait->tv_usec = 0; | 
 |       struct timeval tvT; | 
 |       gettimeofday(&tvT, nullptr); | 
 |       if ((tvStop.tv_sec > tvT.tv_sec) | 
 |           || ((tvStop.tv_sec == tvT.tv_sec) | 
 |               && (tvStop.tv_usec > tvT.tv_usec))) { | 
 |         ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec; | 
 |         ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec; | 
 |         if (ptvWait->tv_usec < 0) { | 
 |           RTC_DCHECK(ptvWait->tv_sec > 0); | 
 |           ptvWait->tv_usec += 1000000; | 
 |           ptvWait->tv_sec -= 1; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | #if defined(WEBRTC_USE_EPOLL) | 
 |  | 
 | // Initial number of events to process with one call to "epoll_wait". | 
 | static const size_t kInitialEpollEvents = 128; | 
 |  | 
 | // Maximum number of events to process with one call to "epoll_wait". | 
 | static const size_t kMaxEpollEvents = 8192; | 
 |  | 
 | void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int fd = pdispatcher->GetDescriptor(); | 
 |   RTC_DCHECK(fd != INVALID_SOCKET); | 
 |   if (fd == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   struct epoll_event event = {0}; | 
 |   event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); | 
 |   event.data.ptr = pdispatcher; | 
 |   int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event); | 
 |   RTC_DCHECK_EQ(err, 0); | 
 |   if (err == -1) { | 
 |     RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD"; | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int fd = pdispatcher->GetDescriptor(); | 
 |   RTC_DCHECK(fd != INVALID_SOCKET); | 
 |   if (fd == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   struct epoll_event event = {0}; | 
 |   int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event); | 
 |   RTC_DCHECK(err == 0 || errno == ENOENT); | 
 |   if (err == -1) { | 
 |     if (errno == ENOENT) { | 
 |       // Socket has already been closed. | 
 |       RTC_LOG_E(LS_VERBOSE, EN, errno) << "epoll_ctl EPOLL_CTL_DEL"; | 
 |     } else { | 
 |       RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int fd = pdispatcher->GetDescriptor(); | 
 |   RTC_DCHECK(fd != INVALID_SOCKET); | 
 |   if (fd == INVALID_SOCKET) { | 
 |     return; | 
 |   } | 
 |  | 
 |   struct epoll_event event = {0}; | 
 |   event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); | 
 |   event.data.ptr = pdispatcher; | 
 |   int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event); | 
 |   RTC_DCHECK_EQ(err, 0); | 
 |   if (err == -1) { | 
 |     RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD"; | 
 |   } | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::WaitEpoll(int cmsWait) { | 
 |   RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
 |   int64_t tvWait = -1; | 
 |   int64_t tvStop = -1; | 
 |   if (cmsWait != kForever) { | 
 |     tvWait = cmsWait; | 
 |     tvStop = TimeAfter(cmsWait); | 
 |   } | 
 |  | 
 |   if (epoll_events_.empty()) { | 
 |     // The initial space to receive events is created only if epoll is used. | 
 |     epoll_events_.resize(kInitialEpollEvents); | 
 |   } | 
 |  | 
 |   fWait_ = true; | 
 |  | 
 |   while (fWait_) { | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = epoll_wait(epoll_fd_, &epoll_events_[0], | 
 |                        static_cast<int>(epoll_events_.size()), | 
 |                        static_cast<int>(tvWait)); | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "epoll"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors | 
 |       CritScope cr(&crit_); | 
 |       for (int i = 0; i < n; ++i) { | 
 |         const epoll_event& event = epoll_events_[i]; | 
 |         Dispatcher* pdispatcher = static_cast<Dispatcher*>(event.data.ptr); | 
 |         if (dispatchers_.find(pdispatcher) == dispatchers_.end()) { | 
 |           // The dispatcher for this socket no longer exists. | 
 |           continue; | 
 |         } | 
 |  | 
 |         bool readable = (event.events & (EPOLLIN | EPOLLPRI)); | 
 |         bool writable = (event.events & EPOLLOUT); | 
 |         bool check_error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)); | 
 |  | 
 |         ProcessEvents(pdispatcher, readable, writable, check_error); | 
 |       } | 
 |     } | 
 |  | 
 |     if (static_cast<size_t>(n) == epoll_events_.size() && | 
 |         epoll_events_.size() < kMaxEpollEvents) { | 
 |       // We used the complete space to receive events, increase size for future | 
 |       // iterations. | 
 |       epoll_events_.resize(std::max(epoll_events_.size() * 2, kMaxEpollEvents)); | 
 |     } | 
 |  | 
 |     if (cmsWait != kForever) { | 
 |       tvWait = TimeDiff(tvStop, TimeMillis()); | 
 |       if (tvWait < 0) { | 
 |         // Return success on timeout. | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::WaitPoll(int cmsWait, Dispatcher* dispatcher) { | 
 |   RTC_DCHECK(dispatcher); | 
 |   int64_t tvWait = -1; | 
 |   int64_t tvStop = -1; | 
 |   if (cmsWait != kForever) { | 
 |     tvWait = cmsWait; | 
 |     tvStop = TimeAfter(cmsWait); | 
 |   } | 
 |  | 
 |   fWait_ = true; | 
 |  | 
 |   struct pollfd fds = {0}; | 
 |   int fd = dispatcher->GetDescriptor(); | 
 |   fds.fd = fd; | 
 |  | 
 |   while (fWait_) { | 
 |     uint32_t ff = dispatcher->GetRequestedEvents(); | 
 |     fds.events = 0; | 
 |     if (ff & (DE_READ | DE_ACCEPT)) { | 
 |       fds.events |= POLLIN; | 
 |     } | 
 |     if (ff & (DE_WRITE | DE_CONNECT)) { | 
 |       fds.events |= POLLOUT; | 
 |     } | 
 |     fds.revents = 0; | 
 |  | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = poll(&fds, 1, static_cast<int>(tvWait)); | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         RTC_LOG_E(LS_ERROR, EN, errno) << "poll"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors (should only be the passed dispatcher). | 
 |       RTC_DCHECK_EQ(n, 1); | 
 |       RTC_DCHECK_EQ(fds.fd, fd); | 
 |  | 
 |       bool readable = (fds.revents & (POLLIN | POLLPRI)); | 
 |       bool writable = (fds.revents & POLLOUT); | 
 |       bool check_error = (fds.revents & (POLLRDHUP | POLLERR | POLLHUP)); | 
 |  | 
 |       ProcessEvents(dispatcher, readable, writable, check_error); | 
 |     } | 
 |  | 
 |     if (cmsWait != kForever) { | 
 |       tvWait = TimeDiff(tvStop, TimeMillis()); | 
 |       if (tvWait < 0) { | 
 |         // Return success on timeout. | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | #endif  // WEBRTC_USE_EPOLL | 
 |  | 
 | static void GlobalSignalHandler(int signum) { | 
 |   PosixSignalHandler::Instance()->OnPosixSignalReceived(signum); | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::SetPosixSignalHandler(int signum, | 
 |                                                  void (*handler)(int)) { | 
 |   // If handler is SIG_IGN or SIG_DFL then clear our user-level handler, | 
 |   // otherwise set one. | 
 |   if (handler == SIG_IGN || handler == SIG_DFL) { | 
 |     if (!InstallSignal(signum, handler)) { | 
 |       return false; | 
 |     } | 
 |     if (signal_dispatcher_) { | 
 |       signal_dispatcher_->ClearHandler(signum); | 
 |       if (!signal_dispatcher_->HasHandlers()) { | 
 |         signal_dispatcher_.reset(); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (!signal_dispatcher_) { | 
 |       signal_dispatcher_.reset(new PosixSignalDispatcher(this)); | 
 |     } | 
 |     signal_dispatcher_->SetHandler(signum, handler); | 
 |     if (!InstallSignal(signum, &GlobalSignalHandler)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | Dispatcher* PhysicalSocketServer::signal_dispatcher() { | 
 |   return signal_dispatcher_.get(); | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) { | 
 |   struct sigaction act; | 
 |   // It doesn't really matter what we set this mask to. | 
 |   if (sigemptyset(&act.sa_mask) != 0) { | 
 |     RTC_LOG_ERR(LS_ERROR) << "Couldn't set mask"; | 
 |     return false; | 
 |   } | 
 |   act.sa_handler = handler; | 
 | #if !defined(__native_client__) | 
 |   // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it | 
 |   // and it's a nuisance. Though some syscalls still return EINTR and there's no | 
 |   // real standard for which ones. :( | 
 |   act.sa_flags = SA_RESTART; | 
 | #else | 
 |   act.sa_flags = 0; | 
 | #endif | 
 |   if (sigaction(signum, &act, nullptr) != 0) { | 
 |     RTC_LOG_ERR(LS_ERROR) << "Couldn't set sigaction"; | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { | 
 |   int64_t cmsTotal = cmsWait; | 
 |   int64_t cmsElapsed = 0; | 
 |   int64_t msStart = Time(); | 
 |  | 
 |   fWait_ = true; | 
 |   while (fWait_) { | 
 |     std::vector<WSAEVENT> events; | 
 |     std::vector<Dispatcher *> event_owners; | 
 |  | 
 |     events.push_back(socket_ev_); | 
 |  | 
 |     { | 
 |       CritScope cr(&crit_); | 
 |       // TODO(jbauch): Support re-entrant waiting. | 
 |       RTC_DCHECK(!processing_dispatchers_); | 
 |  | 
 |       // Calling "CheckSignalClose" might remove a closed dispatcher from the | 
 |       // set. This must be deferred to prevent invalidating the iterator. | 
 |       processing_dispatchers_ = true; | 
 |       for (Dispatcher* disp : dispatchers_) { | 
 |         if (!process_io && (disp != signal_wakeup_)) | 
 |           continue; | 
 |         SOCKET s = disp->GetSocket(); | 
 |         if (disp->CheckSignalClose()) { | 
 |           // We just signalled close, don't poll this socket | 
 |         } else if (s != INVALID_SOCKET) { | 
 |           WSAEventSelect(s, | 
 |                          events[0], | 
 |                          FlagsToEvents(disp->GetRequestedEvents())); | 
 |         } else { | 
 |           events.push_back(disp->GetWSAEvent()); | 
 |           event_owners.push_back(disp); | 
 |         } | 
 |       } | 
 |  | 
 |       processing_dispatchers_ = false; | 
 |       // Process deferred dispatchers that have been added/removed while the | 
 |       // events were handled above. | 
 |       AddRemovePendingDispatchers(); | 
 |     } | 
 |  | 
 |     // Which is shorter, the delay wait or the asked wait? | 
 |  | 
 |     int64_t cmsNext; | 
 |     if (cmsWait == kForever) { | 
 |       cmsNext = cmsWait; | 
 |     } else { | 
 |       cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed); | 
 |     } | 
 |  | 
 |     // Wait for one of the events to signal | 
 |     DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), | 
 |                                         &events[0], | 
 |                                         false, | 
 |                                         static_cast<DWORD>(cmsNext), | 
 |                                         false); | 
 |  | 
 |     if (dw == WSA_WAIT_FAILED) { | 
 |       // Failed? | 
 |       // TODO(pthatcher): need a better strategy than this! | 
 |       WSAGetLastError(); | 
 |       RTC_NOTREACHED(); | 
 |       return false; | 
 |     } else if (dw == WSA_WAIT_TIMEOUT) { | 
 |       // Timeout? | 
 |       return true; | 
 |     } else { | 
 |       // Figure out which one it is and call it | 
 |       CritScope cr(&crit_); | 
 |       int index = dw - WSA_WAIT_EVENT_0; | 
 |       if (index > 0) { | 
 |         --index; // The first event is the socket event | 
 |         Dispatcher* disp = event_owners[index]; | 
 |         // The dispatcher could have been removed while waiting for events. | 
 |         if (dispatchers_.find(disp) != dispatchers_.end()) { | 
 |           disp->OnPreEvent(0); | 
 |           disp->OnEvent(0, 0); | 
 |         } | 
 |       } else if (process_io) { | 
 |         processing_dispatchers_ = true; | 
 |         for (Dispatcher* disp : dispatchers_) { | 
 |           SOCKET s = disp->GetSocket(); | 
 |           if (s == INVALID_SOCKET) | 
 |             continue; | 
 |  | 
 |           WSANETWORKEVENTS wsaEvents; | 
 |           int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents); | 
 |           if (err == 0) { | 
 |             { | 
 |               if ((wsaEvents.lNetworkEvents & FD_READ) && | 
 |                   wsaEvents.iErrorCode[FD_READ_BIT] != 0) { | 
 |                 RTC_LOG(WARNING) | 
 |                     << "PhysicalSocketServer got FD_READ_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_READ_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_WRITE) && | 
 |                   wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) { | 
 |                 RTC_LOG(WARNING) | 
 |                     << "PhysicalSocketServer got FD_WRITE_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_WRITE_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_CONNECT) && | 
 |                   wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) { | 
 |                 RTC_LOG(WARNING) | 
 |                     << "PhysicalSocketServer got FD_CONNECT_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && | 
 |                   wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) { | 
 |                 RTC_LOG(WARNING) | 
 |                     << "PhysicalSocketServer got FD_ACCEPT_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_ACCEPT_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_CLOSE) && | 
 |                   wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) { | 
 |                 RTC_LOG(WARNING) | 
 |                     << "PhysicalSocketServer got FD_CLOSE_BIT error " | 
 |                     << wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
 |               } | 
 |             } | 
 |             uint32_t ff = 0; | 
 |             int errcode = 0; | 
 |             if (wsaEvents.lNetworkEvents & FD_READ) | 
 |               ff |= DE_READ; | 
 |             if (wsaEvents.lNetworkEvents & FD_WRITE) | 
 |               ff |= DE_WRITE; | 
 |             if (wsaEvents.lNetworkEvents & FD_CONNECT) { | 
 |               if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) { | 
 |                 ff |= DE_CONNECT; | 
 |               } else { | 
 |                 ff |= DE_CLOSE; | 
 |                 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
 |               } | 
 |             } | 
 |             if (wsaEvents.lNetworkEvents & FD_ACCEPT) | 
 |               ff |= DE_ACCEPT; | 
 |             if (wsaEvents.lNetworkEvents & FD_CLOSE) { | 
 |               ff |= DE_CLOSE; | 
 |               errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
 |             } | 
 |             if (ff != 0) { | 
 |               disp->OnPreEvent(ff); | 
 |               disp->OnEvent(ff, errcode); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         processing_dispatchers_ = false; | 
 |         // Process deferred dispatchers that have been added/removed while the | 
 |         // events were handled above. | 
 |         AddRemovePendingDispatchers(); | 
 |       } | 
 |  | 
 |       // Reset the network event until new activity occurs | 
 |       WSAResetEvent(socket_ev_); | 
 |     } | 
 |  | 
 |     // Break? | 
 |     if (!fWait_) | 
 |       break; | 
 |     cmsElapsed = TimeSince(msStart); | 
 |     if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) { | 
 |        break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Done | 
 |   return true; | 
 | } | 
 | #endif  // WEBRTC_WIN | 
 |  | 
 | }  // namespace rtc |