|  | /* | 
|  | *  Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "api/audio/audio_device.h" | 
|  |  | 
|  | #include <list> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "api/scoped_refptr.h" | 
|  | #include "modules/audio_device/include/mock_audio_transport.h" | 
|  | #include "rtc_base/arraysize.h" | 
|  | #include "rtc_base/event.h" | 
|  | #include "rtc_base/synchronization/mutex.h" | 
|  | #include "rtc_base/time_utils.h" | 
|  | #include "sdk/android/generated_native_unittests_jni/BuildInfo_jni.h" | 
|  | #include "sdk/android/native_api/audio_device_module/audio_device_android.h" | 
|  | #include "sdk/android/native_api/jni/application_context_provider.h" | 
|  | #include "sdk/android/src/jni/audio_device/audio_common.h" | 
|  | #include "sdk/android/src/jni/audio_device/audio_device_module.h" | 
|  | #include "sdk/android/src/jni/audio_device/opensles_common.h" | 
|  | #include "sdk/android/src/jni/jni_helpers.h" | 
|  | #include "test/gmock.h" | 
|  | #include "test/gtest.h" | 
|  | #include "test/testsupport/file_utils.h" | 
|  |  | 
|  | using std::cout; | 
|  | using std::endl; | 
|  | using ::testing::_; | 
|  | using ::testing::AtLeast; | 
|  | using ::testing::Gt; | 
|  | using ::testing::Invoke; | 
|  | using ::testing::NiceMock; | 
|  | using ::testing::NotNull; | 
|  | using ::testing::Return; | 
|  |  | 
|  | // #define ENABLE_DEBUG_PRINTF | 
|  | #ifdef ENABLE_DEBUG_PRINTF | 
|  | #define PRINTD(...) fprintf(stderr, __VA_ARGS__); | 
|  | #else | 
|  | #define PRINTD(...) ((void)0) | 
|  | #endif | 
|  | #define PRINT(...) fprintf(stderr, __VA_ARGS__); | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | namespace jni { | 
|  |  | 
|  | // Number of callbacks (input or output) the tests waits for before we set | 
|  | // an event indicating that the test was OK. | 
|  | static const size_t kNumCallbacks = 10; | 
|  | // Max amount of time we wait for an event to be set while counting callbacks. | 
|  | static constexpr TimeDelta kTestTimeOut = TimeDelta::Seconds(10); | 
|  | // Average number of audio callbacks per second assuming 10ms packet size. | 
|  | static const size_t kNumCallbacksPerSecond = 100; | 
|  | // Play out a test file during this time (unit is in seconds). | 
|  | static const int kFilePlayTimeInSec = 5; | 
|  | static const size_t kBitsPerSample = 16; | 
|  | static const size_t kBytesPerSample = kBitsPerSample / 8; | 
|  | // Run the full-duplex test during this time (unit is in seconds). | 
|  | // Note that first `kNumIgnoreFirstCallbacks` are ignored. | 
|  | static constexpr TimeDelta kFullDuplexTime = TimeDelta::Seconds(5); | 
|  | // Wait for the callback sequence to stabilize by ignoring this amount of the | 
|  | // initial callbacks (avoids initial FIFO access). | 
|  | // Only used in the RunPlayoutAndRecordingInFullDuplex test. | 
|  | static const size_t kNumIgnoreFirstCallbacks = 50; | 
|  | // Sets the number of impulses per second in the latency test. | 
|  | static const int kImpulseFrequencyInHz = 1; | 
|  | // Length of round-trip latency measurements. Number of transmitted impulses | 
|  | // is kImpulseFrequencyInHz * kMeasureLatencyTime - 1. | 
|  | static constexpr TimeDelta kMeasureLatencyTime = TimeDelta::Seconds(11); | 
|  | // Utilized in round-trip latency measurements to avoid capturing noise samples. | 
|  | static const int kImpulseThreshold = 1000; | 
|  | static const char kTag[] = "[..........] "; | 
|  |  | 
|  | enum TransportType { | 
|  | kPlayout = 0x1, | 
|  | kRecording = 0x2, | 
|  | }; | 
|  |  | 
|  | // Interface for processing the audio stream. Real implementations can e.g. | 
|  | // run audio in loopback, read audio from a file or perform latency | 
|  | // measurements. | 
|  | class AudioStreamInterface { | 
|  | public: | 
|  | virtual void Write(const void* source, size_t num_frames) = 0; | 
|  | virtual void Read(void* destination, size_t num_frames) = 0; | 
|  |  | 
|  | protected: | 
|  | virtual ~AudioStreamInterface() {} | 
|  | }; | 
|  |  | 
|  | // Reads audio samples from a PCM file where the file is stored in memory at | 
|  | // construction. | 
|  | class FileAudioStream : public AudioStreamInterface { | 
|  | public: | 
|  | FileAudioStream(size_t num_callbacks, | 
|  | const std::string& file_name, | 
|  | int sample_rate) | 
|  | : file_size_in_bytes_(0), sample_rate_(sample_rate), file_pos_(0) { | 
|  | file_size_in_bytes_ = test::GetFileSize(file_name); | 
|  | sample_rate_ = sample_rate; | 
|  | EXPECT_GE(file_size_in_callbacks(), num_callbacks) | 
|  | << "Size of test file is not large enough to last during the test."; | 
|  | const size_t num_16bit_samples = | 
|  | test::GetFileSize(file_name) / kBytesPerSample; | 
|  | file_.reset(new int16_t[num_16bit_samples]); | 
|  | FILE* audio_file = fopen(file_name.c_str(), "rb"); | 
|  | EXPECT_NE(audio_file, nullptr); | 
|  | size_t num_samples_read = | 
|  | fread(file_.get(), sizeof(int16_t), num_16bit_samples, audio_file); | 
|  | EXPECT_EQ(num_samples_read, num_16bit_samples); | 
|  | fclose(audio_file); | 
|  | } | 
|  |  | 
|  | // AudioStreamInterface::Write() is not implemented. | 
|  | void Write(const void* source, size_t num_frames) override {} | 
|  |  | 
|  | // Read samples from file stored in memory (at construction) and copy | 
|  | // `num_frames` (<=> 10ms) to the `destination` byte buffer. | 
|  | void Read(void* destination, size_t num_frames) override { | 
|  | memcpy(destination, static_cast<int16_t*>(&file_[file_pos_]), | 
|  | num_frames * sizeof(int16_t)); | 
|  | file_pos_ += num_frames; | 
|  | } | 
|  |  | 
|  | int file_size_in_seconds() const { | 
|  | return static_cast<int>(file_size_in_bytes_ / | 
|  | (kBytesPerSample * sample_rate_)); | 
|  | } | 
|  | size_t file_size_in_callbacks() const { | 
|  | return file_size_in_seconds() * kNumCallbacksPerSecond; | 
|  | } | 
|  |  | 
|  | private: | 
|  | size_t file_size_in_bytes_; | 
|  | int sample_rate_; | 
|  | std::unique_ptr<int16_t[]> file_; | 
|  | size_t file_pos_; | 
|  | }; | 
|  |  | 
|  | // Simple first in first out (FIFO) class that wraps a list of 16-bit audio | 
|  | // buffers of fixed size and allows Write and Read operations. The idea is to | 
|  | // store recorded audio buffers (using Write) and then read (using Read) these | 
|  | // stored buffers with as short delay as possible when the audio layer needs | 
|  | // data to play out. The number of buffers in the FIFO will stabilize under | 
|  | // normal conditions since there will be a balance between Write and Read calls. | 
|  | // The container is a std::list container and access is protected with a lock | 
|  | // since both sides (playout and recording) are driven by its own thread. | 
|  | class FifoAudioStream : public AudioStreamInterface { | 
|  | public: | 
|  | explicit FifoAudioStream(size_t frames_per_buffer) | 
|  | : frames_per_buffer_(frames_per_buffer), | 
|  | bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)), | 
|  | fifo_(new AudioBufferList), | 
|  | largest_size_(0), | 
|  | total_written_elements_(0), | 
|  | write_count_(0) { | 
|  | EXPECT_NE(fifo_.get(), nullptr); | 
|  | } | 
|  |  | 
|  | ~FifoAudioStream() { Flush(); } | 
|  |  | 
|  | // Allocate new memory, copy `num_frames` samples from `source` into memory | 
|  | // and add pointer to the memory location to end of the list. | 
|  | // Increases the size of the FIFO by one element. | 
|  | void Write(const void* source, size_t num_frames) override { | 
|  | ASSERT_EQ(num_frames, frames_per_buffer_); | 
|  | PRINTD("+"); | 
|  | if (write_count_++ < kNumIgnoreFirstCallbacks) { | 
|  | return; | 
|  | } | 
|  | int16_t* memory = new int16_t[frames_per_buffer_]; | 
|  | memcpy(static_cast<int16_t*>(&memory[0]), source, bytes_per_buffer_); | 
|  | MutexLock lock(&lock_); | 
|  | fifo_->push_back(memory); | 
|  | const size_t size = fifo_->size(); | 
|  | if (size > largest_size_) { | 
|  | largest_size_ = size; | 
|  | PRINTD("(%zu)", largest_size_); | 
|  | } | 
|  | total_written_elements_ += size; | 
|  | } | 
|  |  | 
|  | // Read pointer to data buffer from front of list, copy `num_frames` of stored | 
|  | // data into `destination` and delete the utilized memory allocation. | 
|  | // Decreases the size of the FIFO by one element. | 
|  | void Read(void* destination, size_t num_frames) override { | 
|  | ASSERT_EQ(num_frames, frames_per_buffer_); | 
|  | PRINTD("-"); | 
|  | MutexLock lock(&lock_); | 
|  | if (fifo_->empty()) { | 
|  | memset(destination, 0, bytes_per_buffer_); | 
|  | } else { | 
|  | int16_t* memory = fifo_->front(); | 
|  | fifo_->pop_front(); | 
|  | memcpy(destination, static_cast<int16_t*>(&memory[0]), bytes_per_buffer_); | 
|  | delete memory; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t size() const { return fifo_->size(); } | 
|  |  | 
|  | size_t largest_size() const { return largest_size_; } | 
|  |  | 
|  | size_t average_size() const { | 
|  | return (total_written_elements_ == 0) | 
|  | ? 0.0 | 
|  | : 0.5 + static_cast<float>(total_written_elements_) / | 
|  | (write_count_ - kNumIgnoreFirstCallbacks); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void Flush() { | 
|  | for (auto it = fifo_->begin(); it != fifo_->end(); ++it) { | 
|  | delete *it; | 
|  | } | 
|  | fifo_->clear(); | 
|  | } | 
|  |  | 
|  | using AudioBufferList = std::list<int16_t*>; | 
|  | Mutex lock_; | 
|  | const size_t frames_per_buffer_; | 
|  | const size_t bytes_per_buffer_; | 
|  | std::unique_ptr<AudioBufferList> fifo_; | 
|  | size_t largest_size_; | 
|  | size_t total_written_elements_; | 
|  | size_t write_count_; | 
|  | }; | 
|  |  | 
|  | // Inserts periodic impulses and measures the latency between the time of | 
|  | // transmission and time of receiving the same impulse. | 
|  | // Usage requires a special hardware called Audio Loopback Dongle. | 
|  | // See http://source.android.com/devices/audio/loopback.html for details. | 
|  | class LatencyMeasuringAudioStream : public AudioStreamInterface { | 
|  | public: | 
|  | explicit LatencyMeasuringAudioStream(size_t frames_per_buffer) | 
|  | : frames_per_buffer_(frames_per_buffer), | 
|  | bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)), | 
|  | play_count_(0), | 
|  | rec_count_(0), | 
|  | pulse_time_(0) {} | 
|  |  | 
|  | // Insert periodic impulses in first two samples of `destination`. | 
|  | void Read(void* destination, size_t num_frames) override { | 
|  | ASSERT_EQ(num_frames, frames_per_buffer_); | 
|  | if (play_count_ == 0) { | 
|  | PRINT("["); | 
|  | } | 
|  | play_count_++; | 
|  | memset(destination, 0, bytes_per_buffer_); | 
|  | if (play_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) { | 
|  | if (pulse_time_ == 0) { | 
|  | pulse_time_ = rtc::TimeMillis(); | 
|  | } | 
|  | PRINT("."); | 
|  | const int16_t impulse = std::numeric_limits<int16_t>::max(); | 
|  | int16_t* ptr16 = static_cast<int16_t*>(destination); | 
|  | for (size_t i = 0; i < 2; ++i) { | 
|  | ptr16[i] = impulse; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Detect received impulses in `source`, derive time between transmission and | 
|  | // detection and add the calculated delay to list of latencies. | 
|  | void Write(const void* source, size_t num_frames) override { | 
|  | ASSERT_EQ(num_frames, frames_per_buffer_); | 
|  | rec_count_++; | 
|  | if (pulse_time_ == 0) { | 
|  | // Avoid detection of new impulse response until a new impulse has | 
|  | // been transmitted (sets `pulse_time_` to value larger than zero). | 
|  | return; | 
|  | } | 
|  | const int16_t* ptr16 = static_cast<const int16_t*>(source); | 
|  | std::vector<int16_t> vec(ptr16, ptr16 + num_frames); | 
|  | // Find max value in the audio buffer. | 
|  | int max = *std::max_element(vec.begin(), vec.end()); | 
|  | // Find index (element position in vector) of the max element. | 
|  | int index_of_max = | 
|  | std::distance(vec.begin(), std::find(vec.begin(), vec.end(), max)); | 
|  | if (max > kImpulseThreshold) { | 
|  | PRINTD("(%d,%d)", max, index_of_max); | 
|  | int64_t now_time = rtc::TimeMillis(); | 
|  | int extra_delay = IndexToMilliseconds(static_cast<double>(index_of_max)); | 
|  | PRINTD("[%d]", static_cast<int>(now_time - pulse_time_)); | 
|  | PRINTD("[%d]", extra_delay); | 
|  | // Total latency is the difference between transmit time and detection | 
|  | // tome plus the extra delay within the buffer in which we detected the | 
|  | // received impulse. It is transmitted at sample 0 but can be received | 
|  | // at sample N where N > 0. The term `extra_delay` accounts for N and it | 
|  | // is a value between 0 and 10ms. | 
|  | latencies_.push_back(now_time - pulse_time_ + extra_delay); | 
|  | pulse_time_ = 0; | 
|  | } else { | 
|  | PRINTD("-"); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t num_latency_values() const { return latencies_.size(); } | 
|  |  | 
|  | int min_latency() const { | 
|  | if (latencies_.empty()) | 
|  | return 0; | 
|  | return *std::min_element(latencies_.begin(), latencies_.end()); | 
|  | } | 
|  |  | 
|  | int max_latency() const { | 
|  | if (latencies_.empty()) | 
|  | return 0; | 
|  | return *std::max_element(latencies_.begin(), latencies_.end()); | 
|  | } | 
|  |  | 
|  | int average_latency() const { | 
|  | if (latencies_.empty()) | 
|  | return 0; | 
|  | return 0.5 + static_cast<double>( | 
|  | std::accumulate(latencies_.begin(), latencies_.end(), 0)) / | 
|  | latencies_.size(); | 
|  | } | 
|  |  | 
|  | void PrintResults() const { | 
|  | PRINT("] "); | 
|  | for (auto it = latencies_.begin(); it != latencies_.end(); ++it) { | 
|  | PRINT("%d ", *it); | 
|  | } | 
|  | PRINT("\n"); | 
|  | PRINT("%s[min, max, avg]=[%d, %d, %d] ms\n", kTag, min_latency(), | 
|  | max_latency(), average_latency()); | 
|  | } | 
|  |  | 
|  | int IndexToMilliseconds(double index) const { | 
|  | return static_cast<int>(10.0 * (index / frames_per_buffer_) + 0.5); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const size_t frames_per_buffer_; | 
|  | const size_t bytes_per_buffer_; | 
|  | size_t play_count_; | 
|  | size_t rec_count_; | 
|  | int64_t pulse_time_; | 
|  | std::vector<int> latencies_; | 
|  | }; | 
|  |  | 
|  | // Mocks the AudioTransport object and proxies actions for the two callbacks | 
|  | // (RecordedDataIsAvailable and NeedMorePlayData) to different implementations | 
|  | // of AudioStreamInterface. | 
|  | class MockAudioTransportAndroid : public test::MockAudioTransport { | 
|  | public: | 
|  | explicit MockAudioTransportAndroid(int type) | 
|  | : num_callbacks_(0), | 
|  | type_(type), | 
|  | play_count_(0), | 
|  | rec_count_(0), | 
|  | audio_stream_(nullptr) {} | 
|  |  | 
|  | virtual ~MockAudioTransportAndroid() {} | 
|  |  | 
|  | // Set default actions of the mock object. We are delegating to fake | 
|  | // implementations (of AudioStreamInterface) here. | 
|  | void HandleCallbacks(rtc::Event* test_is_done, | 
|  | AudioStreamInterface* audio_stream, | 
|  | int num_callbacks) { | 
|  | test_is_done_ = test_is_done; | 
|  | audio_stream_ = audio_stream; | 
|  | num_callbacks_ = num_callbacks; | 
|  | if (play_mode()) { | 
|  | ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _)) | 
|  | .WillByDefault( | 
|  | Invoke(this, &MockAudioTransportAndroid::RealNeedMorePlayData)); | 
|  | } | 
|  | if (rec_mode()) { | 
|  | ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _)) | 
|  | .WillByDefault(Invoke( | 
|  | this, &MockAudioTransportAndroid::RealRecordedDataIsAvailable)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t RealRecordedDataIsAvailable(const void* audioSamples, | 
|  | const size_t nSamples, | 
|  | const size_t nBytesPerSample, | 
|  | const size_t nChannels, | 
|  | const uint32_t samplesPerSec, | 
|  | const uint32_t totalDelayMS, | 
|  | const int32_t clockDrift, | 
|  | const uint32_t currentMicLevel, | 
|  | const bool keyPressed, | 
|  | const uint32_t& newMicLevel) { | 
|  | EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks."; | 
|  | rec_count_++; | 
|  | // Process the recorded audio stream if an AudioStreamInterface | 
|  | // implementation exists. | 
|  | if (audio_stream_) { | 
|  | audio_stream_->Write(audioSamples, nSamples); | 
|  | } | 
|  | if (ReceivedEnoughCallbacks()) { | 
|  | test_is_done_->Set(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t RealNeedMorePlayData(const size_t nSamples, | 
|  | const size_t nBytesPerSample, | 
|  | const size_t nChannels, | 
|  | const uint32_t samplesPerSec, | 
|  | void* audioSamples, | 
|  | size_t& nSamplesOut,  // NOLINT | 
|  | int64_t* elapsed_time_ms, | 
|  | int64_t* ntp_time_ms) { | 
|  | EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks."; | 
|  | play_count_++; | 
|  | nSamplesOut = nSamples; | 
|  | // Read (possibly processed) audio stream samples to be played out if an | 
|  | // AudioStreamInterface implementation exists. | 
|  | if (audio_stream_) { | 
|  | audio_stream_->Read(audioSamples, nSamples); | 
|  | } | 
|  | if (ReceivedEnoughCallbacks()) { | 
|  | test_is_done_->Set(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool ReceivedEnoughCallbacks() { | 
|  | bool recording_done = false; | 
|  | if (rec_mode()) | 
|  | recording_done = rec_count_ >= num_callbacks_; | 
|  | else | 
|  | recording_done = true; | 
|  |  | 
|  | bool playout_done = false; | 
|  | if (play_mode()) | 
|  | playout_done = play_count_ >= num_callbacks_; | 
|  | else | 
|  | playout_done = true; | 
|  |  | 
|  | return recording_done && playout_done; | 
|  | } | 
|  |  | 
|  | bool play_mode() const { return type_ & kPlayout; } | 
|  | bool rec_mode() const { return type_ & kRecording; } | 
|  |  | 
|  | private: | 
|  | rtc::Event* test_is_done_; | 
|  | size_t num_callbacks_; | 
|  | int type_; | 
|  | size_t play_count_; | 
|  | size_t rec_count_; | 
|  | AudioStreamInterface* audio_stream_; | 
|  | std::unique_ptr<LatencyMeasuringAudioStream> latency_audio_stream_; | 
|  | }; | 
|  |  | 
|  | // AudioDeviceTest test fixture. | 
|  | class AudioDeviceTest : public ::testing::Test { | 
|  | protected: | 
|  | AudioDeviceTest() { | 
|  | // One-time initialization of JVM and application context. Ensures that we | 
|  | // can do calls between C++ and Java. Initializes both Java and OpenSL ES | 
|  | // implementations. | 
|  | // Creates an audio device using a default audio layer. | 
|  | jni_ = AttachCurrentThreadIfNeeded(); | 
|  | context_ = GetAppContext(jni_); | 
|  | audio_device_ = CreateJavaAudioDeviceModule(jni_, context_.obj()); | 
|  | EXPECT_NE(audio_device_.get(), nullptr); | 
|  | EXPECT_EQ(0, audio_device_->Init()); | 
|  | audio_manager_ = GetAudioManager(jni_, context_); | 
|  | UpdateParameters(); | 
|  | } | 
|  | virtual ~AudioDeviceTest() { EXPECT_EQ(0, audio_device_->Terminate()); } | 
|  |  | 
|  | int total_delay_ms() const { return 10; } | 
|  |  | 
|  | void UpdateParameters() { | 
|  | int input_sample_rate = GetDefaultSampleRate(jni_, audio_manager_); | 
|  | int output_sample_rate = GetDefaultSampleRate(jni_, audio_manager_); | 
|  | bool stereo_playout_is_available; | 
|  | bool stereo_record_is_available; | 
|  | audio_device_->StereoPlayoutIsAvailable(&stereo_playout_is_available); | 
|  | audio_device_->StereoRecordingIsAvailable(&stereo_record_is_available); | 
|  | GetAudioParameters(jni_, context_, audio_manager_, input_sample_rate, | 
|  | output_sample_rate, stereo_playout_is_available, | 
|  | stereo_record_is_available, &input_parameters_, | 
|  | &output_parameters_); | 
|  | } | 
|  |  | 
|  | void SetActiveAudioLayer(AudioDeviceModule::AudioLayer audio_layer) { | 
|  | audio_device_ = CreateAndroidAudioDeviceModule(audio_layer); | 
|  | EXPECT_NE(audio_device_.get(), nullptr); | 
|  | EXPECT_EQ(0, audio_device_->Init()); | 
|  | UpdateParameters(); | 
|  | } | 
|  |  | 
|  | int playout_sample_rate() const { return output_parameters_.sample_rate(); } | 
|  | int record_sample_rate() const { return input_parameters_.sample_rate(); } | 
|  | size_t playout_channels() const { return output_parameters_.channels(); } | 
|  | size_t record_channels() const { return input_parameters_.channels(); } | 
|  | size_t playout_frames_per_10ms_buffer() const { | 
|  | return output_parameters_.frames_per_10ms_buffer(); | 
|  | } | 
|  | size_t record_frames_per_10ms_buffer() const { | 
|  | return input_parameters_.frames_per_10ms_buffer(); | 
|  | } | 
|  |  | 
|  | rtc::scoped_refptr<AudioDeviceModule> audio_device() const { | 
|  | return audio_device_; | 
|  | } | 
|  |  | 
|  | // Returns file name relative to the resource root given a sample rate. | 
|  | std::string GetFileName(int sample_rate) { | 
|  | EXPECT_TRUE(sample_rate == 48000 || sample_rate == 44100); | 
|  | char fname[64]; | 
|  | snprintf(fname, sizeof(fname), "audio_device/audio_short%d", | 
|  | sample_rate / 1000); | 
|  | std::string file_name(webrtc::test::ResourcePath(fname, "pcm")); | 
|  | EXPECT_TRUE(test::FileExists(file_name)); | 
|  | #ifdef ENABLE_PRINTF | 
|  | PRINT("file name: %s\n", file_name.c_str()); | 
|  | const size_t bytes = test::GetFileSize(file_name); | 
|  | PRINT("file size: %zu [bytes]\n", bytes); | 
|  | PRINT("file size: %zu [samples]\n", bytes / kBytesPerSample); | 
|  | const int seconds = | 
|  | static_cast<int>(bytes / (sample_rate * kBytesPerSample)); | 
|  | PRINT("file size: %d [secs]\n", seconds); | 
|  | PRINT("file size: %zu [callbacks]\n", seconds * kNumCallbacksPerSecond); | 
|  | #endif | 
|  | return file_name; | 
|  | } | 
|  |  | 
|  | AudioDeviceModule::AudioLayer GetActiveAudioLayer() const { | 
|  | AudioDeviceModule::AudioLayer audio_layer; | 
|  | EXPECT_EQ(0, audio_device()->ActiveAudioLayer(&audio_layer)); | 
|  | return audio_layer; | 
|  | } | 
|  |  | 
|  | int TestDelayOnAudioLayer( | 
|  | const AudioDeviceModule::AudioLayer& layer_to_test) { | 
|  | rtc::scoped_refptr<AudioDeviceModule> audio_device; | 
|  | audio_device = CreateAndroidAudioDeviceModule(layer_to_test); | 
|  | EXPECT_NE(audio_device.get(), nullptr); | 
|  | uint16_t playout_delay; | 
|  | EXPECT_EQ(0, audio_device->PlayoutDelay(&playout_delay)); | 
|  | return playout_delay; | 
|  | } | 
|  |  | 
|  | AudioDeviceModule::AudioLayer TestActiveAudioLayer( | 
|  | const AudioDeviceModule::AudioLayer& layer_to_test) { | 
|  | rtc::scoped_refptr<AudioDeviceModule> audio_device; | 
|  | audio_device = CreateAndroidAudioDeviceModule(layer_to_test); | 
|  | EXPECT_NE(audio_device.get(), nullptr); | 
|  | AudioDeviceModule::AudioLayer active; | 
|  | EXPECT_EQ(0, audio_device->ActiveAudioLayer(&active)); | 
|  | return active; | 
|  | } | 
|  |  | 
|  | // One way to ensure that the engine object is valid is to create an | 
|  | // SL Engine interface since it exposes creation methods of all the OpenSL ES | 
|  | // object types and it is only supported on the engine object. This method | 
|  | // also verifies that the engine interface supports at least one interface. | 
|  | // Note that, the test below is not a full test of the SLEngineItf object | 
|  | // but only a simple sanity test to check that the global engine object is OK. | 
|  | void ValidateSLEngine(SLObjectItf engine_object) { | 
|  | EXPECT_NE(nullptr, engine_object); | 
|  | // Get the SL Engine interface which is exposed by the engine object. | 
|  | SLEngineItf engine; | 
|  | SLresult result = | 
|  | (*engine_object)->GetInterface(engine_object, SL_IID_ENGINE, &engine); | 
|  | EXPECT_EQ(result, SL_RESULT_SUCCESS) << "GetInterface() on engine failed"; | 
|  | // Ensure that the SL Engine interface exposes at least one interface. | 
|  | SLuint32 object_id = SL_OBJECTID_ENGINE; | 
|  | SLuint32 num_supported_interfaces = 0; | 
|  | result = (*engine)->QueryNumSupportedInterfaces(engine, object_id, | 
|  | &num_supported_interfaces); | 
|  | EXPECT_EQ(result, SL_RESULT_SUCCESS) | 
|  | << "QueryNumSupportedInterfaces() failed"; | 
|  | EXPECT_GE(num_supported_interfaces, 1u); | 
|  | } | 
|  |  | 
|  | // Volume control is currently only supported for the Java output audio layer. | 
|  | // For OpenSL ES, the internal stream volume is always on max level and there | 
|  | // is no need for this test to set it to max. | 
|  | bool AudioLayerSupportsVolumeControl() const { | 
|  | return GetActiveAudioLayer() == AudioDeviceModule::kAndroidJavaAudio; | 
|  | } | 
|  |  | 
|  | void SetMaxPlayoutVolume() { | 
|  | if (!AudioLayerSupportsVolumeControl()) | 
|  | return; | 
|  | uint32_t max_volume; | 
|  | EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume)); | 
|  | EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume)); | 
|  | } | 
|  |  | 
|  | void DisableBuiltInAECIfAvailable() { | 
|  | if (audio_device()->BuiltInAECIsAvailable()) { | 
|  | EXPECT_EQ(0, audio_device()->EnableBuiltInAEC(false)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void StartPlayout() { | 
|  | EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); | 
|  | EXPECT_FALSE(audio_device()->Playing()); | 
|  | EXPECT_EQ(0, audio_device()->InitPlayout()); | 
|  | EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); | 
|  | EXPECT_EQ(0, audio_device()->StartPlayout()); | 
|  | EXPECT_TRUE(audio_device()->Playing()); | 
|  | } | 
|  |  | 
|  | void StopPlayout() { | 
|  | EXPECT_EQ(0, audio_device()->StopPlayout()); | 
|  | EXPECT_FALSE(audio_device()->Playing()); | 
|  | EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); | 
|  | } | 
|  |  | 
|  | void StartRecording() { | 
|  | EXPECT_FALSE(audio_device()->RecordingIsInitialized()); | 
|  | EXPECT_FALSE(audio_device()->Recording()); | 
|  | EXPECT_EQ(0, audio_device()->InitRecording()); | 
|  | EXPECT_TRUE(audio_device()->RecordingIsInitialized()); | 
|  | EXPECT_EQ(0, audio_device()->StartRecording()); | 
|  | EXPECT_TRUE(audio_device()->Recording()); | 
|  | } | 
|  |  | 
|  | void StopRecording() { | 
|  | EXPECT_EQ(0, audio_device()->StopRecording()); | 
|  | EXPECT_FALSE(audio_device()->Recording()); | 
|  | } | 
|  |  | 
|  | int GetMaxSpeakerVolume() const { | 
|  | uint32_t max_volume(0); | 
|  | EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume)); | 
|  | return max_volume; | 
|  | } | 
|  |  | 
|  | int GetMinSpeakerVolume() const { | 
|  | uint32_t min_volume(0); | 
|  | EXPECT_EQ(0, audio_device()->MinSpeakerVolume(&min_volume)); | 
|  | return min_volume; | 
|  | } | 
|  |  | 
|  | int GetSpeakerVolume() const { | 
|  | uint32_t volume(0); | 
|  | EXPECT_EQ(0, audio_device()->SpeakerVolume(&volume)); | 
|  | return volume; | 
|  | } | 
|  |  | 
|  | bool IsLowLatencyPlayoutSupported() { | 
|  | return jni::IsLowLatencyInputSupported(jni_, context_); | 
|  | } | 
|  |  | 
|  | bool IsLowLatencyRecordSupported() { | 
|  | return jni::IsLowLatencyOutputSupported(jni_, context_); | 
|  | } | 
|  |  | 
|  | bool IsAAudioSupported() { | 
|  | #if defined(WEBRTC_AUDIO_DEVICE_INCLUDE_ANDROID_AAUDIO) | 
|  | return true; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | JNIEnv* jni_; | 
|  | ScopedJavaLocalRef<jobject> context_; | 
|  | rtc::Event test_is_done_; | 
|  | rtc::scoped_refptr<AudioDeviceModule> audio_device_; | 
|  | ScopedJavaLocalRef<jobject> audio_manager_; | 
|  | AudioParameters output_parameters_; | 
|  | AudioParameters input_parameters_; | 
|  | }; | 
|  |  | 
|  | TEST_F(AudioDeviceTest, ConstructDestruct) { | 
|  | // Using the test fixture to create and destruct the audio device module. | 
|  | } | 
|  |  | 
|  | // We always ask for a default audio layer when the ADM is constructed. But the | 
|  | // ADM will then internally set the best suitable combination of audio layers, | 
|  | // for input and output based on if low-latency output and/or input audio in | 
|  | // combination with OpenSL ES is supported or not. This test ensures that the | 
|  | // correct selection is done. | 
|  | TEST_F(AudioDeviceTest, VerifyDefaultAudioLayer) { | 
|  | const AudioDeviceModule::AudioLayer audio_layer = | 
|  | TestActiveAudioLayer(AudioDeviceModule::kPlatformDefaultAudio); | 
|  | bool low_latency_output = IsLowLatencyPlayoutSupported(); | 
|  | bool low_latency_input = IsLowLatencyRecordSupported(); | 
|  | bool aaudio = IsAAudioSupported(); | 
|  | AudioDeviceModule::AudioLayer expected_audio_layer; | 
|  | if (aaudio) { | 
|  | expected_audio_layer = AudioDeviceModule::kAndroidAAudioAudio; | 
|  | } else if (low_latency_output && low_latency_input) { | 
|  | expected_audio_layer = AudioDeviceModule::kAndroidOpenSLESAudio; | 
|  | } else if (low_latency_output && !low_latency_input) { | 
|  | expected_audio_layer = | 
|  | AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio; | 
|  | } else { | 
|  | expected_audio_layer = AudioDeviceModule::kAndroidJavaAudio; | 
|  | } | 
|  | EXPECT_EQ(expected_audio_layer, audio_layer); | 
|  | } | 
|  |  | 
|  | // Verify that it is possible to explicitly create the two types of supported | 
|  | // ADMs. These two tests overrides the default selection of native audio layer | 
|  | // by ignoring if the device supports low-latency output or not. | 
|  | TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForCombinedJavaOpenSLCombo) { | 
|  | AudioDeviceModule::AudioLayer expected_layer = | 
|  | AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio; | 
|  | AudioDeviceModule::AudioLayer active_layer = | 
|  | TestActiveAudioLayer(expected_layer); | 
|  | EXPECT_EQ(expected_layer, active_layer); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForJavaInBothDirections) { | 
|  | AudioDeviceModule::AudioLayer expected_layer = | 
|  | AudioDeviceModule::kAndroidJavaAudio; | 
|  | AudioDeviceModule::AudioLayer active_layer = | 
|  | TestActiveAudioLayer(expected_layer); | 
|  | EXPECT_EQ(expected_layer, active_layer); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForOpenSLInBothDirections) { | 
|  | AudioDeviceModule::AudioLayer expected_layer = | 
|  | AudioDeviceModule::kAndroidOpenSLESAudio; | 
|  | AudioDeviceModule::AudioLayer active_layer = | 
|  | TestActiveAudioLayer(expected_layer); | 
|  | EXPECT_EQ(expected_layer, active_layer); | 
|  | } | 
|  |  | 
|  | #if !defined(WEBRTC_AUDIO_DEVICE_INCLUDE_ANDROID_AAUDIO) | 
|  | #define MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections \ | 
|  | DISABLED_CorrectAudioLayerIsUsedForAAudioInBothDirections | 
|  |  | 
|  | #define MAYBE_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo \ | 
|  | DISABLED_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo | 
|  | #else | 
|  | #define MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections \ | 
|  | CorrectAudioLayerIsUsedForAAudioInBothDirections | 
|  |  | 
|  | #define MAYBE_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo \ | 
|  | CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo | 
|  | #endif | 
|  | TEST_F(AudioDeviceTest, | 
|  | MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections) { | 
|  | AudioDeviceModule::AudioLayer expected_layer = | 
|  | AudioDeviceModule::kAndroidAAudioAudio; | 
|  | AudioDeviceModule::AudioLayer active_layer = | 
|  | TestActiveAudioLayer(expected_layer); | 
|  | EXPECT_EQ(expected_layer, active_layer); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, | 
|  | MAYBE_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo) { | 
|  | AudioDeviceModule::AudioLayer expected_layer = | 
|  | AudioDeviceModule::kAndroidJavaInputAndAAudioOutputAudio; | 
|  | AudioDeviceModule::AudioLayer active_layer = | 
|  | TestActiveAudioLayer(expected_layer); | 
|  | EXPECT_EQ(expected_layer, active_layer); | 
|  | } | 
|  |  | 
|  | // The Android ADM supports two different delay reporting modes. One for the | 
|  | // low-latency output path (in combination with OpenSL ES), and one for the | 
|  | // high-latency output path (Java backends in both directions). These two tests | 
|  | // verifies that the audio device reports correct delay estimate given the | 
|  | // selected audio layer. Note that, this delay estimate will only be utilized | 
|  | // if the HW AEC is disabled. | 
|  | // Delay should be 75 ms in high latency and 25 ms in low latency. | 
|  | TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForHighLatencyOutputPath) { | 
|  | EXPECT_EQ(75, TestDelayOnAudioLayer(AudioDeviceModule::kAndroidJavaAudio)); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForLowLatencyOutputPath) { | 
|  | EXPECT_EQ(25, | 
|  | TestDelayOnAudioLayer( | 
|  | AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio)); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, InitTerminate) { | 
|  | // Initialization is part of the test fixture. | 
|  | EXPECT_TRUE(audio_device()->Initialized()); | 
|  | EXPECT_EQ(0, audio_device()->Terminate()); | 
|  | EXPECT_FALSE(audio_device()->Initialized()); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, Devices) { | 
|  | // Device enumeration is not supported. Verify fixed values only. | 
|  | EXPECT_EQ(1, audio_device()->PlayoutDevices()); | 
|  | EXPECT_EQ(1, audio_device()->RecordingDevices()); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, IsAcousticEchoCancelerSupported) { | 
|  | PRINT("%sAcoustic Echo Canceler support: %s\n", kTag, | 
|  | audio_device()->BuiltInAECIsAvailable() ? "Yes" : "No"); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, IsNoiseSuppressorSupported) { | 
|  | PRINT("%sNoise Suppressor support: %s\n", kTag, | 
|  | audio_device()->BuiltInNSIsAvailable() ? "Yes" : "No"); | 
|  | } | 
|  |  | 
|  | // Verify that playout side is configured for mono by default. | 
|  | TEST_F(AudioDeviceTest, UsesMonoPlayoutByDefault) { | 
|  | EXPECT_EQ(1u, output_parameters_.channels()); | 
|  | } | 
|  |  | 
|  | // Verify that recording side is configured for mono by default. | 
|  | TEST_F(AudioDeviceTest, UsesMonoRecordingByDefault) { | 
|  | EXPECT_EQ(1u, input_parameters_.channels()); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, SpeakerVolumeShouldBeAvailable) { | 
|  | // The OpenSL ES output audio path does not support volume control. | 
|  | if (!AudioLayerSupportsVolumeControl()) | 
|  | return; | 
|  | bool available; | 
|  | EXPECT_EQ(0, audio_device()->SpeakerVolumeIsAvailable(&available)); | 
|  | EXPECT_TRUE(available); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, MaxSpeakerVolumeIsPositive) { | 
|  | // The OpenSL ES output audio path does not support volume control. | 
|  | if (!AudioLayerSupportsVolumeControl()) | 
|  | return; | 
|  | StartPlayout(); | 
|  | EXPECT_GT(GetMaxSpeakerVolume(), 0); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, MinSpeakerVolumeIsZero) { | 
|  | // The OpenSL ES output audio path does not support volume control. | 
|  | if (!AudioLayerSupportsVolumeControl()) | 
|  | return; | 
|  | EXPECT_EQ(GetMinSpeakerVolume(), 0); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, DefaultSpeakerVolumeIsWithinMinMax) { | 
|  | // The OpenSL ES output audio path does not support volume control. | 
|  | if (!AudioLayerSupportsVolumeControl()) | 
|  | return; | 
|  | const int default_volume = GetSpeakerVolume(); | 
|  | EXPECT_GE(default_volume, GetMinSpeakerVolume()); | 
|  | EXPECT_LE(default_volume, GetMaxSpeakerVolume()); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, SetSpeakerVolumeActuallySetsVolume) { | 
|  | // The OpenSL ES output audio path does not support volume control. | 
|  | if (!AudioLayerSupportsVolumeControl()) | 
|  | return; | 
|  | const int default_volume = GetSpeakerVolume(); | 
|  | const int max_volume = GetMaxSpeakerVolume(); | 
|  | EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume)); | 
|  | int new_volume = GetSpeakerVolume(); | 
|  | EXPECT_EQ(new_volume, max_volume); | 
|  | EXPECT_EQ(0, audio_device()->SetSpeakerVolume(default_volume)); | 
|  | } | 
|  |  | 
|  | // Tests that playout can be initiated, started and stopped. No audio callback | 
|  | // is registered in this test. | 
|  | TEST_F(AudioDeviceTest, StartStopPlayout) { | 
|  | StartPlayout(); | 
|  | StopPlayout(); | 
|  | StartPlayout(); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Tests that recording can be initiated, started and stopped. No audio callback | 
|  | // is registered in this test. | 
|  | TEST_F(AudioDeviceTest, StartStopRecording) { | 
|  | StartRecording(); | 
|  | StopRecording(); | 
|  | StartRecording(); | 
|  | StopRecording(); | 
|  | } | 
|  |  | 
|  | // Verify that calling StopPlayout() will leave us in an uninitialized state | 
|  | // which will require a new call to InitPlayout(). This test does not call | 
|  | // StartPlayout() while being uninitialized since doing so will hit a | 
|  | // RTC_DCHECK and death tests are not supported on Android. | 
|  | TEST_F(AudioDeviceTest, StopPlayoutRequiresInitToRestart) { | 
|  | EXPECT_EQ(0, audio_device()->InitPlayout()); | 
|  | EXPECT_EQ(0, audio_device()->StartPlayout()); | 
|  | EXPECT_EQ(0, audio_device()->StopPlayout()); | 
|  | EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); | 
|  | } | 
|  |  | 
|  | // Verify that calling StopRecording() will leave us in an uninitialized state | 
|  | // which will require a new call to InitRecording(). This test does not call | 
|  | // StartRecording() while being uninitialized since doing so will hit a | 
|  | // RTC_DCHECK and death tests are not supported on Android. | 
|  | TEST_F(AudioDeviceTest, StopRecordingRequiresInitToRestart) { | 
|  | EXPECT_EQ(0, audio_device()->InitRecording()); | 
|  | EXPECT_EQ(0, audio_device()->StartRecording()); | 
|  | EXPECT_EQ(0, audio_device()->StopRecording()); | 
|  | EXPECT_FALSE(audio_device()->RecordingIsInitialized()); | 
|  | } | 
|  |  | 
|  | // Start playout and verify that the native audio layer starts asking for real | 
|  | // audio samples to play out using the NeedMorePlayData callback. | 
|  | TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) { | 
|  | MockAudioTransportAndroid mock(kPlayout); | 
|  | mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks); | 
|  | EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(), | 
|  | kBytesPerSample, playout_channels(), | 
|  | playout_sample_rate(), NotNull(), _, _, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartPlayout(); | 
|  | test_is_done_.Wait(kTestTimeOut); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Start recording and verify that the native audio layer starts feeding real | 
|  | // audio samples via the RecordedDataIsAvailable callback. | 
|  | TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) { | 
|  | MockAudioTransportAndroid mock(kRecording); | 
|  | mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks); | 
|  | EXPECT_CALL( | 
|  | mock, RecordedDataIsAvailable(NotNull(), record_frames_per_10ms_buffer(), | 
|  | kBytesPerSample, record_channels(), | 
|  | record_sample_rate(), _, 0, 0, false, _, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  |  | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartRecording(); | 
|  | test_is_done_.Wait(kTestTimeOut); | 
|  | StopRecording(); | 
|  | } | 
|  |  | 
|  | // Start playout and recording (full-duplex audio) and verify that audio is | 
|  | // active in both directions. | 
|  | TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) { | 
|  | MockAudioTransportAndroid mock(kPlayout | kRecording); | 
|  | mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks); | 
|  | EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(), | 
|  | kBytesPerSample, playout_channels(), | 
|  | playout_sample_rate(), NotNull(), _, _, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  | EXPECT_CALL( | 
|  | mock, RecordedDataIsAvailable(NotNull(), record_frames_per_10ms_buffer(), | 
|  | kBytesPerSample, record_channels(), | 
|  | record_sample_rate(), _, 0, 0, false, _, _)) | 
|  | .Times(AtLeast(kNumCallbacks)); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartPlayout(); | 
|  | StartRecording(); | 
|  | test_is_done_.Wait(kTestTimeOut); | 
|  | StopRecording(); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // Start playout and read audio from an external PCM file when the audio layer | 
|  | // asks for data to play out. Real audio is played out in this test but it does | 
|  | // not contain any explicit verification that the audio quality is perfect. | 
|  | TEST_F(AudioDeviceTest, RunPlayoutWithFileAsSource) { | 
|  | // TODO(henrika): extend test when mono output is supported. | 
|  | EXPECT_EQ(1u, playout_channels()); | 
|  | NiceMock<MockAudioTransportAndroid> mock(kPlayout); | 
|  | const int num_callbacks = kFilePlayTimeInSec * kNumCallbacksPerSecond; | 
|  | std::string file_name = GetFileName(playout_sample_rate()); | 
|  | std::unique_ptr<FileAudioStream> file_audio_stream( | 
|  | new FileAudioStream(num_callbacks, file_name, playout_sample_rate())); | 
|  | mock.HandleCallbacks(&test_is_done_, file_audio_stream.get(), num_callbacks); | 
|  | // SetMaxPlayoutVolume(); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartPlayout(); | 
|  | test_is_done_.Wait(kTestTimeOut); | 
|  | StopPlayout(); | 
|  | } | 
|  |  | 
|  | // It should be possible to create an OpenSL engine object if OpenSL ES based | 
|  | // audio is requested in any direction. | 
|  | TEST_F(AudioDeviceTest, TestCreateOpenSLEngine) { | 
|  | // Verify that the global (singleton) OpenSL Engine can be acquired. | 
|  | OpenSLEngineManager engine_manager; | 
|  | SLObjectItf engine_object = engine_manager.GetOpenSLEngine(); | 
|  | EXPECT_NE(nullptr, engine_object); | 
|  | // Perform a simple sanity check of the created engine object. | 
|  | ValidateSLEngine(engine_object); | 
|  | } | 
|  |  | 
|  | // The audio device module only suppors the same sample rate in both directions. | 
|  | // In addition, in full-duplex low-latency mode (OpenSL ES), both input and | 
|  | // output must use the same native buffer size to allow for usage of the fast | 
|  | // audio track in Android. | 
|  | TEST_F(AudioDeviceTest, VerifyAudioParameters) { | 
|  | EXPECT_EQ(output_parameters_.sample_rate(), input_parameters_.sample_rate()); | 
|  | SetActiveAudioLayer(AudioDeviceModule::kAndroidOpenSLESAudio); | 
|  | EXPECT_EQ(output_parameters_.frames_per_buffer(), | 
|  | input_parameters_.frames_per_buffer()); | 
|  | } | 
|  |  | 
|  | TEST_F(AudioDeviceTest, ShowAudioParameterInfo) { | 
|  | const bool low_latency_out = false; | 
|  | const bool low_latency_in = false; | 
|  | PRINT("PLAYOUT:\n"); | 
|  | PRINT("%saudio layer: %s\n", kTag, | 
|  | low_latency_out ? "Low latency OpenSL" : "Java/JNI based AudioTrack"); | 
|  | PRINT("%ssample rate: %d Hz\n", kTag, output_parameters_.sample_rate()); | 
|  | PRINT("%schannels: %zu\n", kTag, output_parameters_.channels()); | 
|  | PRINT("%sframes per buffer: %zu <=> %.2f ms\n", kTag, | 
|  | output_parameters_.frames_per_buffer(), | 
|  | output_parameters_.GetBufferSizeInMilliseconds()); | 
|  | PRINT("RECORD: \n"); | 
|  | PRINT("%saudio layer: %s\n", kTag, | 
|  | low_latency_in ? "Low latency OpenSL" : "Java/JNI based AudioRecord"); | 
|  | PRINT("%ssample rate: %d Hz\n", kTag, input_parameters_.sample_rate()); | 
|  | PRINT("%schannels: %zu\n", kTag, input_parameters_.channels()); | 
|  | PRINT("%sframes per buffer: %zu <=> %.2f ms\n", kTag, | 
|  | input_parameters_.frames_per_buffer(), | 
|  | input_parameters_.GetBufferSizeInMilliseconds()); | 
|  | } | 
|  |  | 
|  | // Add device-specific information to the test for logging purposes. | 
|  | TEST_F(AudioDeviceTest, ShowDeviceInfo) { | 
|  | std::string model = | 
|  | JavaToNativeString(jni_, Java_BuildInfo_getDeviceModel(jni_)); | 
|  | std::string brand = JavaToNativeString(jni_, Java_BuildInfo_getBrand(jni_)); | 
|  | std::string manufacturer = | 
|  | JavaToNativeString(jni_, Java_BuildInfo_getDeviceManufacturer(jni_)); | 
|  |  | 
|  | PRINT("%smodel: %s\n", kTag, model.c_str()); | 
|  | PRINT("%sbrand: %s\n", kTag, brand.c_str()); | 
|  | PRINT("%smanufacturer: %s\n", kTag, manufacturer.c_str()); | 
|  | } | 
|  |  | 
|  | // Add Android build information to the test for logging purposes. | 
|  | TEST_F(AudioDeviceTest, ShowBuildInfo) { | 
|  | std::string release = | 
|  | JavaToNativeString(jni_, Java_BuildInfo_getBuildRelease(jni_)); | 
|  | std::string build_id = | 
|  | JavaToNativeString(jni_, Java_BuildInfo_getAndroidBuildId(jni_)); | 
|  | std::string build_type = | 
|  | JavaToNativeString(jni_, Java_BuildInfo_getBuildType(jni_)); | 
|  | int sdk = Java_BuildInfo_getSdkVersion(jni_); | 
|  |  | 
|  | PRINT("%sbuild release: %s\n", kTag, release.c_str()); | 
|  | PRINT("%sbuild id: %s\n", kTag, build_id.c_str()); | 
|  | PRINT("%sbuild type: %s\n", kTag, build_type.c_str()); | 
|  | PRINT("%sSDK version: %d\n", kTag, sdk); | 
|  | } | 
|  |  | 
|  | // Basic test of the AudioParameters class using default construction where | 
|  | // all members are set to zero. | 
|  | TEST_F(AudioDeviceTest, AudioParametersWithDefaultConstruction) { | 
|  | AudioParameters params; | 
|  | EXPECT_FALSE(params.is_valid()); | 
|  | EXPECT_EQ(0, params.sample_rate()); | 
|  | EXPECT_EQ(0U, params.channels()); | 
|  | EXPECT_EQ(0U, params.frames_per_buffer()); | 
|  | EXPECT_EQ(0U, params.frames_per_10ms_buffer()); | 
|  | EXPECT_EQ(0U, params.GetBytesPerFrame()); | 
|  | EXPECT_EQ(0U, params.GetBytesPerBuffer()); | 
|  | EXPECT_EQ(0U, params.GetBytesPer10msBuffer()); | 
|  | EXPECT_EQ(0.0f, params.GetBufferSizeInMilliseconds()); | 
|  | } | 
|  |  | 
|  | // Basic test of the AudioParameters class using non default construction. | 
|  | TEST_F(AudioDeviceTest, AudioParametersWithNonDefaultConstruction) { | 
|  | const int kSampleRate = 48000; | 
|  | const size_t kChannels = 1; | 
|  | const size_t kFramesPerBuffer = 480; | 
|  | const size_t kFramesPer10msBuffer = 480; | 
|  | const size_t kBytesPerFrame = 2; | 
|  | const float kBufferSizeInMs = 10.0f; | 
|  | AudioParameters params(kSampleRate, kChannels, kFramesPerBuffer); | 
|  | EXPECT_TRUE(params.is_valid()); | 
|  | EXPECT_EQ(kSampleRate, params.sample_rate()); | 
|  | EXPECT_EQ(kChannels, params.channels()); | 
|  | EXPECT_EQ(kFramesPerBuffer, params.frames_per_buffer()); | 
|  | EXPECT_EQ(static_cast<size_t>(kSampleRate / 100), | 
|  | params.frames_per_10ms_buffer()); | 
|  | EXPECT_EQ(kBytesPerFrame, params.GetBytesPerFrame()); | 
|  | EXPECT_EQ(kBytesPerFrame * kFramesPerBuffer, params.GetBytesPerBuffer()); | 
|  | EXPECT_EQ(kBytesPerFrame * kFramesPer10msBuffer, | 
|  | params.GetBytesPer10msBuffer()); | 
|  | EXPECT_EQ(kBufferSizeInMs, params.GetBufferSizeInMilliseconds()); | 
|  | } | 
|  |  | 
|  | // Start playout and recording and store recorded data in an intermediate FIFO | 
|  | // buffer from which the playout side then reads its samples in the same order | 
|  | // as they were stored. Under ideal circumstances, a callback sequence would | 
|  | // look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-' | 
|  | // means 'packet played'. Under such conditions, the FIFO would only contain | 
|  | // one packet on average. However, under more realistic conditions, the size | 
|  | // of the FIFO will vary more due to an unbalance between the two sides. | 
|  | // This test tries to verify that the device maintains a balanced callback- | 
|  | // sequence by running in loopback for kFullDuplexTime seconds while | 
|  | // measuring the size (max and average) of the FIFO. The size of the FIFO is | 
|  | // increased by the recording side and decreased by the playout side. | 
|  | // TODO(henrika): tune the final test parameters after running tests on several | 
|  | // different devices. | 
|  | // Disabling this test on bots since it is difficult to come up with a robust | 
|  | // test condition that all worked as intended. The main issue is that, when | 
|  | // swarming is used, an initial latency can be built up when the both sides | 
|  | // starts at different times. Hence, the test can fail even if audio works | 
|  | // as intended. Keeping the test so it can be enabled manually. | 
|  | // http://bugs.webrtc.org/7744 | 
|  | TEST_F(AudioDeviceTest, DISABLED_RunPlayoutAndRecordingInFullDuplex) { | 
|  | EXPECT_EQ(record_channels(), playout_channels()); | 
|  | EXPECT_EQ(record_sample_rate(), playout_sample_rate()); | 
|  | NiceMock<MockAudioTransportAndroid> mock(kPlayout | kRecording); | 
|  | std::unique_ptr<FifoAudioStream> fifo_audio_stream( | 
|  | new FifoAudioStream(playout_frames_per_10ms_buffer())); | 
|  | mock.HandleCallbacks(&test_is_done_, fifo_audio_stream.get(), | 
|  | kFullDuplexTime.seconds() * kNumCallbacksPerSecond); | 
|  | SetMaxPlayoutVolume(); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | StartRecording(); | 
|  | StartPlayout(); | 
|  | test_is_done_.Wait(std::max(kTestTimeOut, kFullDuplexTime)); | 
|  | StopPlayout(); | 
|  | StopRecording(); | 
|  |  | 
|  | // These thresholds are set rather high to accomodate differences in hardware | 
|  | // in several devices, so this test can be used in swarming. | 
|  | // See http://bugs.webrtc.org/6464 | 
|  | EXPECT_LE(fifo_audio_stream->average_size(), 60u); | 
|  | EXPECT_LE(fifo_audio_stream->largest_size(), 70u); | 
|  | } | 
|  |  | 
|  | // Measures loopback latency and reports the min, max and average values for | 
|  | // a full duplex audio session. | 
|  | // The latency is measured like so: | 
|  | // - Insert impulses periodically on the output side. | 
|  | // - Detect the impulses on the input side. | 
|  | // - Measure the time difference between the transmit time and receive time. | 
|  | // - Store time differences in a vector and calculate min, max and average. | 
|  | // This test requires a special hardware called Audio Loopback Dongle. | 
|  | // See http://source.android.com/devices/audio/loopback.html for details. | 
|  | TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) { | 
|  | EXPECT_EQ(record_channels(), playout_channels()); | 
|  | EXPECT_EQ(record_sample_rate(), playout_sample_rate()); | 
|  | NiceMock<MockAudioTransportAndroid> mock(kPlayout | kRecording); | 
|  | std::unique_ptr<LatencyMeasuringAudioStream> latency_audio_stream( | 
|  | new LatencyMeasuringAudioStream(playout_frames_per_10ms_buffer())); | 
|  | mock.HandleCallbacks(&test_is_done_, latency_audio_stream.get(), | 
|  | kMeasureLatencyTime.seconds() * kNumCallbacksPerSecond); | 
|  | EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); | 
|  | SetMaxPlayoutVolume(); | 
|  | DisableBuiltInAECIfAvailable(); | 
|  | StartRecording(); | 
|  | StartPlayout(); | 
|  | test_is_done_.Wait(std::max(kTestTimeOut, kMeasureLatencyTime)); | 
|  | StopPlayout(); | 
|  | StopRecording(); | 
|  | // Verify that the correct number of transmitted impulses are detected. | 
|  | EXPECT_EQ(latency_audio_stream->num_latency_values(), | 
|  | static_cast<size_t>( | 
|  | kImpulseFrequencyInHz * kMeasureLatencyTime.seconds() - 1)); | 
|  | latency_audio_stream->PrintResults(); | 
|  | } | 
|  |  | 
|  | // TODO(https://crbug.com/webrtc/15537): test randomly fails. | 
|  | TEST(JavaAudioDeviceTest, DISABLED_TestRunningTwoAdmsSimultaneously) { | 
|  | JNIEnv* jni = AttachCurrentThreadIfNeeded(); | 
|  | ScopedJavaLocalRef<jobject> context = GetAppContext(jni); | 
|  |  | 
|  | // Create and start the first ADM. | 
|  | rtc::scoped_refptr<AudioDeviceModule> adm_1 = | 
|  | CreateJavaAudioDeviceModule(jni, context.obj()); | 
|  | EXPECT_EQ(0, adm_1->Init()); | 
|  | EXPECT_EQ(0, adm_1->InitRecording()); | 
|  | EXPECT_EQ(0, adm_1->StartRecording()); | 
|  |  | 
|  | // Create and start a second ADM. Expect this to fail due to the microphone | 
|  | // already being in use. | 
|  | rtc::scoped_refptr<AudioDeviceModule> adm_2 = | 
|  | CreateJavaAudioDeviceModule(jni, context.obj()); | 
|  | int32_t err = adm_2->Init(); | 
|  | err |= adm_2->InitRecording(); | 
|  | err |= adm_2->StartRecording(); | 
|  | EXPECT_NE(0, err); | 
|  |  | 
|  | // Stop and terminate second adm. | 
|  | adm_2->StopRecording(); | 
|  | adm_2->Terminate(); | 
|  |  | 
|  | // Stop first ADM. | 
|  | EXPECT_EQ(0, adm_1->StopRecording()); | 
|  | EXPECT_EQ(0, adm_1->Terminate()); | 
|  | } | 
|  |  | 
|  | }  // namespace jni | 
|  |  | 
|  | }  // namespace webrtc |