| /* |
| * Copyright 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "test/network/simulated_network.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstdint> |
| #include <utility> |
| |
| #include "api/units/data_rate.h" |
| #include "api/units/data_size.h" |
| #include "api/units/time_delta.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| // Calculate the time (in microseconds) that takes to send N `bits` on a |
| // network with link capacity equal to `capacity_kbps` starting at time |
| // `start_time_us`. |
| int64_t CalculateArrivalTimeUs(int64_t start_time_us, |
| int64_t bits, |
| int capacity_kbps) { |
| // If capacity is 0, the link capacity is assumed to be infinite. |
| if (capacity_kbps == 0) { |
| return start_time_us; |
| } |
| // Adding `capacity - 1` to the numerator rounds the extra delay caused by |
| // capacity constraints up to an integral microsecond. Sending 0 bits takes 0 |
| // extra time, while sending 1 bit gets rounded up to 1 (the multiplication by |
| // 1000 is because capacity is in kbps). |
| // The factor 1000 comes from 10^6 / 10^3, where 10^6 is due to the time unit |
| // being us and 10^3 is due to the rate unit being kbps. |
| return start_time_us + ((1000 * bits + capacity_kbps - 1) / capacity_kbps); |
| } |
| |
| } // namespace |
| |
| SimulatedNetwork::SimulatedNetwork(Config config, uint64_t random_seed) |
| : random_(random_seed), |
| bursting_(false), |
| last_enqueue_time_us_(0), |
| last_capacity_link_exit_time_(0) { |
| SetConfig(config); |
| } |
| |
| SimulatedNetwork::~SimulatedNetwork() = default; |
| |
| void SimulatedNetwork::SetConfig(const Config& config) { |
| MutexLock lock(&config_lock_); |
| config_state_.config = config; // Shallow copy of the struct. |
| double prob_loss = config.loss_percent / 100.0; |
| if (config_state_.config.avg_burst_loss_length == -1) { |
| // Uniform loss |
| config_state_.prob_loss_bursting = prob_loss; |
| config_state_.prob_start_bursting = prob_loss; |
| } else { |
| // Lose packets according to a gilbert-elliot model. |
| int avg_burst_loss_length = config.avg_burst_loss_length; |
| int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss)); |
| |
| RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length) |
| << "For a total packet loss of " << config.loss_percent |
| << "%% then" |
| " avg_burst_loss_length must be " |
| << min_avg_burst_loss_length + 1 << " or higher."; |
| |
| config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length); |
| config_state_.prob_start_bursting = |
| prob_loss / (1 - prob_loss) / avg_burst_loss_length; |
| } |
| } |
| |
| void SimulatedNetwork::UpdateConfig( |
| std::function<void(BuiltInNetworkBehaviorConfig*)> config_modifier) { |
| MutexLock lock(&config_lock_); |
| config_modifier(&config_state_.config); |
| } |
| |
| void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) { |
| MutexLock lock(&config_lock_); |
| config_state_.pause_transmission_until_us = until_us; |
| } |
| |
| bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) { |
| RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); |
| |
| // Check that old packets don't get enqueued, the SimulatedNetwork expect that |
| // the packets' send time is monotonically increasing. The tolerance for |
| // non-monotonic enqueue events is 0.5 ms because on multi core systems |
| // clock_gettime(CLOCK_MONOTONIC) can show non-monotonic behaviour between |
| // theads running on different cores. |
| // TODO(bugs.webrtc.org/14525): Open a bug on this with the goal to re-enable |
| // the DCHECK. |
| // At the moment, we see more than 130ms between non-monotonic events, which |
| // is more than expected. |
| // RTC_DCHECK_GE(packet.send_time_us - last_enqueue_time_us_, -2000); |
| |
| ConfigState state = GetConfigState(); |
| |
| // If the network config requires packet overhead, let's apply it as early as |
| // possible. |
| packet.size += state.config.packet_overhead; |
| |
| // If `queue_length_packets` is 0, the queue size is infinite. |
| if (state.config.queue_length_packets > 0 && |
| capacity_link_.size() >= state.config.queue_length_packets) { |
| // Too many packet on the link, drop this one. |
| return false; |
| } |
| |
| // If the packet has been sent before the previous packet in the network left |
| // the capacity queue, let's ensure the new packet will start its trip in the |
| // network after the last bit of the previous packet has left it. |
| int64_t packet_send_time_us = packet.send_time_us; |
| if (!capacity_link_.empty()) { |
| packet_send_time_us = |
| std::max(packet_send_time_us, capacity_link_.back().arrival_time_us); |
| } |
| capacity_link_.push({.packet = packet, |
| .arrival_time_us = CalculateArrivalTimeUs( |
| packet_send_time_us, packet.size * 8, |
| state.config.link_capacity_kbps)}); |
| |
| // Only update `next_process_time_us_` if not already set (if set, there is no |
| // way that a new packet will make the `next_process_time_us_` change). |
| if (!next_process_time_us_) { |
| RTC_DCHECK_EQ(capacity_link_.size(), 1); |
| next_process_time_us_ = capacity_link_.front().arrival_time_us; |
| } |
| |
| last_enqueue_time_us_ = packet.send_time_us; |
| return true; |
| } |
| |
| absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const { |
| RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); |
| return next_process_time_us_; |
| } |
| |
| void SimulatedNetwork::UpdateCapacityQueue(ConfigState state, |
| int64_t time_now_us) { |
| // If there is at least one packet in the `capacity_link_`, let's update its |
| // arrival time to take into account changes in the network configuration |
| // since the last call to UpdateCapacityQueue. |
| if (!capacity_link_.empty()) { |
| capacity_link_.front().arrival_time_us = CalculateArrivalTimeUs( |
| std::max(capacity_link_.front().packet.send_time_us, |
| last_capacity_link_exit_time_), |
| capacity_link_.front().packet.size * 8, |
| state.config.link_capacity_kbps); |
| } |
| |
| // The capacity link is empty or the first packet is not expected to exit yet. |
| if (capacity_link_.empty() || |
| time_now_us < capacity_link_.front().arrival_time_us) { |
| return; |
| } |
| bool reorder_packets = false; |
| |
| do { |
| // Time to get this packet (the original or just updated arrival_time_us is |
| // smaller or equal to time_now_us). |
| PacketInfo packet = capacity_link_.front(); |
| capacity_link_.pop(); |
| |
| // If the network is paused, the pause will be implemented as an extra delay |
| // to be spent in the `delay_link_` queue. |
| if (state.pause_transmission_until_us > packet.arrival_time_us) { |
| packet.arrival_time_us = state.pause_transmission_until_us; |
| } |
| |
| // Store the original arrival time, before applying packet loss or extra |
| // delay. This is needed to know when it is the first available time the |
| // next packet in the `capacity_link_` queue can start transmitting. |
| last_capacity_link_exit_time_ = packet.arrival_time_us; |
| |
| // Drop packets at an average rate of `state.config.loss_percent` with |
| // and average loss burst length of `state.config.avg_burst_loss_length`. |
| if ((bursting_ && random_.Rand<double>() < state.prob_loss_bursting) || |
| (!bursting_ && random_.Rand<double>() < state.prob_start_bursting)) { |
| bursting_ = true; |
| packet.arrival_time_us = PacketDeliveryInfo::kNotReceived; |
| } else { |
| // If packets are not dropped, apply extra delay as configured. |
| bursting_ = false; |
| int64_t arrival_time_jitter_us = std::max( |
| random_.Gaussian(state.config.queue_delay_ms * 1000, |
| state.config.delay_standard_deviation_ms * 1000), |
| 0.0); |
| |
| // If reordering is not allowed then adjust arrival_time_jitter |
| // to make sure all packets are sent in order. |
| int64_t last_arrival_time_us = |
| delay_link_.empty() ? -1 : delay_link_.back().arrival_time_us; |
| if (!state.config.allow_reordering && !delay_link_.empty() && |
| packet.arrival_time_us + arrival_time_jitter_us < |
| last_arrival_time_us) { |
| arrival_time_jitter_us = last_arrival_time_us - packet.arrival_time_us; |
| } |
| packet.arrival_time_us += arrival_time_jitter_us; |
| |
| // Optimization: Schedule a reorder only when a packet will exit before |
| // the one in front. |
| if (last_arrival_time_us > packet.arrival_time_us) { |
| reorder_packets = true; |
| } |
| } |
| delay_link_.emplace_back(packet); |
| |
| // If there are no packets in the queue, there is nothing else to do. |
| if (capacity_link_.empty()) { |
| break; |
| } |
| // If instead there is another packet in the `capacity_link_` queue, let's |
| // calculate its arrival_time_us based on the latest config (which might |
| // have been changed since it was enqueued). |
| int64_t next_start = std::max(last_capacity_link_exit_time_, |
| capacity_link_.front().packet.send_time_us); |
| capacity_link_.front().arrival_time_us = CalculateArrivalTimeUs( |
| next_start, capacity_link_.front().packet.size * 8, |
| state.config.link_capacity_kbps); |
| // And if the next packet in the queue needs to exit, let's dequeue it. |
| } while (capacity_link_.front().arrival_time_us <= time_now_us); |
| |
| if (state.config.allow_reordering && reorder_packets) { |
| // Packets arrived out of order and since the network config allows |
| // reordering, let's sort them per arrival_time_us to make so they will also |
| // be delivered out of order. |
| std::stable_sort(delay_link_.begin(), delay_link_.end(), |
| [](const PacketInfo& p1, const PacketInfo& p2) { |
| return p1.arrival_time_us < p2.arrival_time_us; |
| }); |
| } |
| } |
| |
| SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const { |
| MutexLock lock(&config_lock_); |
| return config_state_; |
| } |
| |
| std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets( |
| int64_t receive_time_us) { |
| RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); |
| |
| UpdateCapacityQueue(GetConfigState(), receive_time_us); |
| std::vector<PacketDeliveryInfo> packets_to_deliver; |
| |
| // Check the extra delay queue. |
| while (!delay_link_.empty() && |
| receive_time_us >= delay_link_.front().arrival_time_us) { |
| PacketInfo packet_info = delay_link_.front(); |
| packets_to_deliver.emplace_back( |
| PacketDeliveryInfo(packet_info.packet, packet_info.arrival_time_us)); |
| delay_link_.pop_front(); |
| } |
| |
| if (!delay_link_.empty()) { |
| next_process_time_us_ = delay_link_.front().arrival_time_us; |
| } else if (!capacity_link_.empty()) { |
| next_process_time_us_ = capacity_link_.front().arrival_time_us; |
| } else { |
| next_process_time_us_.reset(); |
| } |
| return packets_to_deliver; |
| } |
| |
| } // namespace webrtc |