| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| * |
| */ |
| |
| // Everything declared/defined in this header is only required when WebRTC is |
| // build with H264 support, please do not move anything out of the |
| // #ifdef unless needed and tested. |
| #ifdef WEBRTC_USE_H264 |
| |
| #include "modules/video_coding/codecs/h264/h264_encoder_impl.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <string> |
| |
| #include "absl/strings/match.h" |
| #include "absl/types/optional.h" |
| #include "api/video/video_codec_constants.h" |
| #include "api/video_codecs/scalability_mode.h" |
| #include "common_video/libyuv/include/webrtc_libyuv.h" |
| #include "modules/video_coding/svc/create_scalability_structure.h" |
| #include "modules/video_coding/utility/simulcast_rate_allocator.h" |
| #include "modules/video_coding/utility/simulcast_utility.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/time_utils.h" |
| #include "system_wrappers/include/metrics.h" |
| #include "third_party/libyuv/include/libyuv/convert.h" |
| #include "third_party/libyuv/include/libyuv/scale.h" |
| #include "third_party/openh264/src/codec/api/wels/codec_api.h" |
| #include "third_party/openh264/src/codec/api/wels/codec_app_def.h" |
| #include "third_party/openh264/src/codec/api/wels/codec_def.h" |
| #include "third_party/openh264/src/codec/api/wels/codec_ver.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| const bool kOpenH264EncoderDetailedLogging = false; |
| |
| // QP scaling thresholds. |
| static const int kLowH264QpThreshold = 24; |
| static const int kHighH264QpThreshold = 37; |
| |
| // Used by histograms. Values of entries should not be changed. |
| enum H264EncoderImplEvent { |
| kH264EncoderEventInit = 0, |
| kH264EncoderEventError = 1, |
| kH264EncoderEventMax = 16, |
| }; |
| |
| int NumberOfThreads(absl::optional<int> encoder_thread_limit, |
| int width, |
| int height, |
| int number_of_cores) { |
| // TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac, |
| // see crbug.com/583348. Until further investigated, only use one thread. |
| // While this limitation is gone, this changes the bitstream format (see |
| // bugs.webrtc.org/14368) so still guarded by field trial to allow for |
| // experimentation using th experimental |
| // WebRTC-VideoEncoderSettings/encoder_thread_limit trial. |
| if (encoder_thread_limit.has_value()) { |
| int limit = encoder_thread_limit.value(); |
| RTC_DCHECK_GE(limit, 1); |
| if (width * height >= 1920 * 1080 && number_of_cores > 8) { |
| return std::min(limit, 8); // 8 threads for 1080p on high perf machines. |
| } else if (width * height > 1280 * 960 && number_of_cores >= 6) { |
| return std::min(limit, 3); // 3 threads for 1080p. |
| } else if (width * height > 640 * 480 && number_of_cores >= 3) { |
| return std::min(limit, 2); // 2 threads for qHD/HD. |
| } else { |
| return 1; // 1 thread for VGA or less. |
| } |
| } |
| // TODO(sprang): Also check sSliceArgument.uiSliceNum on GetEncoderParams(), |
| // before enabling multithreading here. |
| return 1; |
| } |
| |
| VideoFrameType ConvertToVideoFrameType(EVideoFrameType type) { |
| switch (type) { |
| case videoFrameTypeIDR: |
| return VideoFrameType::kVideoFrameKey; |
| case videoFrameTypeSkip: |
| case videoFrameTypeI: |
| case videoFrameTypeP: |
| case videoFrameTypeIPMixed: |
| return VideoFrameType::kVideoFrameDelta; |
| case videoFrameTypeInvalid: |
| break; |
| } |
| RTC_DCHECK_NOTREACHED() << "Unexpected/invalid frame type: " << type; |
| return VideoFrameType::kEmptyFrame; |
| } |
| |
| absl::optional<ScalabilityMode> ScalabilityModeFromTemporalLayers( |
| int num_temporal_layers) { |
| switch (num_temporal_layers) { |
| case 0: |
| break; |
| case 1: |
| return ScalabilityMode::kL1T1; |
| case 2: |
| return ScalabilityMode::kL1T2; |
| case 3: |
| return ScalabilityMode::kL1T3; |
| default: |
| RTC_DCHECK_NOTREACHED(); |
| } |
| return absl::nullopt; |
| } |
| |
| } // namespace |
| |
| // Helper method used by H264EncoderImpl::Encode. |
| // Copies the encoded bytes from `info` to `encoded_image`. The |
| // `encoded_image->_buffer` may be deleted and reallocated if a bigger buffer is |
| // required. |
| // |
| // After OpenH264 encoding, the encoded bytes are stored in `info` spread out |
| // over a number of layers and "NAL units". Each NAL unit is a fragment starting |
| // with the four-byte start code {0,0,0,1}. All of this data (including the |
| // start codes) is copied to the `encoded_image->_buffer`. |
| static void RtpFragmentize(EncodedImage* encoded_image, SFrameBSInfo* info) { |
| // Calculate minimum buffer size required to hold encoded data. |
| size_t required_capacity = 0; |
| size_t fragments_count = 0; |
| for (int layer = 0; layer < info->iLayerNum; ++layer) { |
| const SLayerBSInfo& layerInfo = info->sLayerInfo[layer]; |
| for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) { |
| RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0); |
| // Ensure `required_capacity` will not overflow. |
| RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal], |
| std::numeric_limits<size_t>::max() - required_capacity); |
| required_capacity += layerInfo.pNalLengthInByte[nal]; |
| } |
| } |
| auto buffer = EncodedImageBuffer::Create(required_capacity); |
| encoded_image->SetEncodedData(buffer); |
| |
| // Iterate layers and NAL units, note each NAL unit as a fragment and copy |
| // the data to `encoded_image->_buffer`. |
| const uint8_t start_code[4] = {0, 0, 0, 1}; |
| size_t frag = 0; |
| encoded_image->set_size(0); |
| for (int layer = 0; layer < info->iLayerNum; ++layer) { |
| const SLayerBSInfo& layerInfo = info->sLayerInfo[layer]; |
| // Iterate NAL units making up this layer, noting fragments. |
| size_t layer_len = 0; |
| for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) { |
| // Because the sum of all layer lengths, `required_capacity`, fits in a |
| // `size_t`, we know that any indices in-between will not overflow. |
| RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 0], start_code[0]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 1], start_code[1]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 2], start_code[2]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 3], start_code[3]); |
| layer_len += layerInfo.pNalLengthInByte[nal]; |
| } |
| // Copy the entire layer's data (including start codes). |
| memcpy(buffer->data() + encoded_image->size(), layerInfo.pBsBuf, layer_len); |
| encoded_image->set_size(encoded_image->size() + layer_len); |
| } |
| } |
| |
| H264EncoderImpl::H264EncoderImpl(const Environment& env, |
| H264EncoderSettings settings) |
| : H264EncoderImpl(settings.packetization_mode) {} |
| |
| H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec) |
| : H264EncoderImpl([&] { |
| std::string packetization_mode_string; |
| if (codec.GetParam(cricket::kH264FmtpPacketizationMode, |
| &packetization_mode_string) && |
| packetization_mode_string == "1") { |
| return H264PacketizationMode::NonInterleaved; |
| } else { |
| return H264PacketizationMode::SingleNalUnit; |
| } |
| }()) { |
| RTC_CHECK(absl::EqualsIgnoreCase(codec.name, cricket::kH264CodecName)); |
| } |
| |
| H264EncoderImpl::H264EncoderImpl(H264PacketizationMode packetization_mode) |
| : packetization_mode_(packetization_mode), |
| max_payload_size_(0), |
| number_of_cores_(0), |
| encoded_image_callback_(nullptr), |
| has_reported_init_(false), |
| has_reported_error_(false) { |
| downscaled_buffers_.reserve(kMaxSimulcastStreams - 1); |
| encoded_images_.reserve(kMaxSimulcastStreams); |
| encoders_.reserve(kMaxSimulcastStreams); |
| configurations_.reserve(kMaxSimulcastStreams); |
| tl0sync_limit_.reserve(kMaxSimulcastStreams); |
| svc_controllers_.reserve(kMaxSimulcastStreams); |
| } |
| |
| H264EncoderImpl::~H264EncoderImpl() { |
| Release(); |
| } |
| |
| int32_t H264EncoderImpl::InitEncode(const VideoCodec* inst, |
| const VideoEncoder::Settings& settings) { |
| ReportInit(); |
| if (!inst || inst->codecType != kVideoCodecH264) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->maxFramerate == 0) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->width < 1 || inst->height < 1) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| int32_t release_ret = Release(); |
| if (release_ret != WEBRTC_VIDEO_CODEC_OK) { |
| ReportError(); |
| return release_ret; |
| } |
| |
| int number_of_streams = SimulcastUtility::NumberOfSimulcastStreams(*inst); |
| bool doing_simulcast = (number_of_streams > 1); |
| |
| if (doing_simulcast && |
| !SimulcastUtility::ValidSimulcastParameters(*inst, number_of_streams)) { |
| return WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED; |
| } |
| downscaled_buffers_.resize(number_of_streams - 1); |
| encoded_images_.resize(number_of_streams); |
| encoders_.resize(number_of_streams); |
| pictures_.resize(number_of_streams); |
| svc_controllers_.resize(number_of_streams); |
| scalability_modes_.resize(number_of_streams); |
| configurations_.resize(number_of_streams); |
| tl0sync_limit_.resize(number_of_streams); |
| |
| max_payload_size_ = settings.max_payload_size; |
| number_of_cores_ = settings.number_of_cores; |
| encoder_thread_limit_ = settings.encoder_thread_limit; |
| codec_ = *inst; |
| |
| // Code expects simulcastStream resolutions to be correct, make sure they are |
| // filled even when there are no simulcast layers. |
| if (codec_.numberOfSimulcastStreams == 0) { |
| codec_.simulcastStream[0].width = codec_.width; |
| codec_.simulcastStream[0].height = codec_.height; |
| } |
| |
| for (int i = 0, idx = number_of_streams - 1; i < number_of_streams; |
| ++i, --idx) { |
| ISVCEncoder* openh264_encoder; |
| // Create encoder. |
| if (WelsCreateSVCEncoder(&openh264_encoder) != 0) { |
| // Failed to create encoder. |
| RTC_LOG(LS_ERROR) << "Failed to create OpenH264 encoder"; |
| RTC_DCHECK(!openh264_encoder); |
| Release(); |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| RTC_DCHECK(openh264_encoder); |
| if (kOpenH264EncoderDetailedLogging) { |
| int trace_level = WELS_LOG_DETAIL; |
| openh264_encoder->SetOption(ENCODER_OPTION_TRACE_LEVEL, &trace_level); |
| } |
| // else WELS_LOG_DEFAULT is used by default. |
| |
| // Store h264 encoder. |
| encoders_[i] = openh264_encoder; |
| |
| // Set internal settings from codec_settings |
| configurations_[i].simulcast_idx = idx; |
| configurations_[i].sending = false; |
| configurations_[i].width = codec_.simulcastStream[idx].width; |
| configurations_[i].height = codec_.simulcastStream[idx].height; |
| configurations_[i].max_frame_rate = static_cast<float>(codec_.maxFramerate); |
| configurations_[i].frame_dropping_on = codec_.GetFrameDropEnabled(); |
| configurations_[i].key_frame_interval = codec_.H264()->keyFrameInterval; |
| configurations_[i].num_temporal_layers = |
| std::max(codec_.H264()->numberOfTemporalLayers, |
| codec_.simulcastStream[idx].numberOfTemporalLayers); |
| |
| // Create downscaled image buffers. |
| if (i > 0) { |
| downscaled_buffers_[i - 1] = I420Buffer::Create( |
| configurations_[i].width, configurations_[i].height, |
| configurations_[i].width, configurations_[i].width / 2, |
| configurations_[i].width / 2); |
| } |
| |
| // Codec_settings uses kbits/second; encoder uses bits/second. |
| configurations_[i].max_bps = codec_.maxBitrate * 1000; |
| configurations_[i].target_bps = codec_.startBitrate * 1000; |
| |
| // Create encoder parameters based on the layer configuration. |
| SEncParamExt encoder_params = CreateEncoderParams(i); |
| |
| // Initialize. |
| if (openh264_encoder->InitializeExt(&encoder_params) != 0) { |
| RTC_LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder"; |
| Release(); |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| // TODO(pbos): Base init params on these values before submitting. |
| int video_format = EVideoFormatType::videoFormatI420; |
| openh264_encoder->SetOption(ENCODER_OPTION_DATAFORMAT, &video_format); |
| |
| // Initialize encoded image. Default buffer size: size of unencoded data. |
| |
| const size_t new_capacity = |
| CalcBufferSize(VideoType::kI420, codec_.simulcastStream[idx].width, |
| codec_.simulcastStream[idx].height); |
| encoded_images_[i].SetEncodedData(EncodedImageBuffer::Create(new_capacity)); |
| encoded_images_[i]._encodedWidth = codec_.simulcastStream[idx].width; |
| encoded_images_[i]._encodedHeight = codec_.simulcastStream[idx].height; |
| encoded_images_[i].set_size(0); |
| |
| tl0sync_limit_[i] = configurations_[i].num_temporal_layers; |
| scalability_modes_[i] = ScalabilityModeFromTemporalLayers( |
| configurations_[i].num_temporal_layers); |
| if (scalability_modes_[i].has_value()) { |
| svc_controllers_[i] = CreateScalabilityStructure(*scalability_modes_[i]); |
| if (svc_controllers_[i] == nullptr) { |
| RTC_LOG(LS_ERROR) << "Failed to create scalability structure"; |
| Release(); |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| } |
| } |
| |
| SimulcastRateAllocator init_allocator(codec_); |
| VideoBitrateAllocation allocation = |
| init_allocator.Allocate(VideoBitrateAllocationParameters( |
| DataRate::KilobitsPerSec(codec_.startBitrate), codec_.maxFramerate)); |
| SetRates(RateControlParameters(allocation, codec_.maxFramerate)); |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::Release() { |
| while (!encoders_.empty()) { |
| ISVCEncoder* openh264_encoder = encoders_.back(); |
| if (openh264_encoder) { |
| RTC_CHECK_EQ(0, openh264_encoder->Uninitialize()); |
| WelsDestroySVCEncoder(openh264_encoder); |
| } |
| encoders_.pop_back(); |
| } |
| downscaled_buffers_.clear(); |
| configurations_.clear(); |
| encoded_images_.clear(); |
| pictures_.clear(); |
| tl0sync_limit_.clear(); |
| svc_controllers_.clear(); |
| scalability_modes_.clear(); |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| encoded_image_callback_ = callback; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| void H264EncoderImpl::SetRates(const RateControlParameters& parameters) { |
| if (encoders_.empty()) { |
| RTC_LOG(LS_WARNING) << "SetRates() while uninitialized."; |
| return; |
| } |
| |
| if (parameters.framerate_fps < 1.0) { |
| RTC_LOG(LS_WARNING) << "Invalid frame rate: " << parameters.framerate_fps; |
| return; |
| } |
| |
| if (parameters.bitrate.get_sum_bps() == 0) { |
| // Encoder paused, turn off all encoding. |
| for (size_t i = 0; i < configurations_.size(); ++i) { |
| configurations_[i].SetStreamState(false); |
| } |
| return; |
| } |
| |
| codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps); |
| |
| size_t stream_idx = encoders_.size() - 1; |
| for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) { |
| // Update layer config. |
| configurations_[i].target_bps = |
| parameters.bitrate.GetSpatialLayerSum(stream_idx); |
| configurations_[i].max_frame_rate = parameters.framerate_fps; |
| |
| if (configurations_[i].target_bps) { |
| configurations_[i].SetStreamState(true); |
| |
| // Update h264 encoder. |
| SBitrateInfo target_bitrate; |
| memset(&target_bitrate, 0, sizeof(SBitrateInfo)); |
| target_bitrate.iLayer = SPATIAL_LAYER_ALL, |
| target_bitrate.iBitrate = configurations_[i].target_bps; |
| encoders_[i]->SetOption(ENCODER_OPTION_BITRATE, &target_bitrate); |
| encoders_[i]->SetOption(ENCODER_OPTION_FRAME_RATE, |
| &configurations_[i].max_frame_rate); |
| } else { |
| configurations_[i].SetStreamState(false); |
| } |
| } |
| } |
| |
| int32_t H264EncoderImpl::Encode( |
| const VideoFrame& input_frame, |
| const std::vector<VideoFrameType>* frame_types) { |
| if (encoders_.empty()) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (!encoded_image_callback_) { |
| RTC_LOG(LS_WARNING) |
| << "InitEncode() has been called, but a callback function " |
| "has not been set with RegisterEncodeCompleteCallback()"; |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| |
| rtc::scoped_refptr<I420BufferInterface> frame_buffer = |
| input_frame.video_frame_buffer()->ToI420(); |
| if (!frame_buffer) { |
| RTC_LOG(LS_ERROR) << "Failed to convert " |
| << VideoFrameBufferTypeToString( |
| input_frame.video_frame_buffer()->type()) |
| << " image to I420. Can't encode frame."; |
| return WEBRTC_VIDEO_CODEC_ENCODER_FAILURE; |
| } |
| RTC_CHECK(frame_buffer->type() == VideoFrameBuffer::Type::kI420 || |
| frame_buffer->type() == VideoFrameBuffer::Type::kI420A); |
| |
| bool is_keyframe_needed = false; |
| for (size_t i = 0; i < configurations_.size(); ++i) { |
| if (configurations_[i].key_frame_request && configurations_[i].sending) { |
| // This is legacy behavior, generating a keyframe on all layers |
| // when generating one for a layer that became active for the first time |
| // or after being disabled. |
| is_keyframe_needed = true; |
| break; |
| } |
| } |
| |
| RTC_DCHECK_EQ(configurations_[0].width, frame_buffer->width()); |
| RTC_DCHECK_EQ(configurations_[0].height, frame_buffer->height()); |
| |
| // Encode image for each layer. |
| for (size_t i = 0; i < encoders_.size(); ++i) { |
| // EncodeFrame input. |
| pictures_[i] = {0}; |
| pictures_[i].iPicWidth = configurations_[i].width; |
| pictures_[i].iPicHeight = configurations_[i].height; |
| pictures_[i].iColorFormat = EVideoFormatType::videoFormatI420; |
| pictures_[i].uiTimeStamp = input_frame.ntp_time_ms(); |
| // Downscale images on second and ongoing layers. |
| if (i == 0) { |
| pictures_[i].iStride[0] = frame_buffer->StrideY(); |
| pictures_[i].iStride[1] = frame_buffer->StrideU(); |
| pictures_[i].iStride[2] = frame_buffer->StrideV(); |
| pictures_[i].pData[0] = const_cast<uint8_t*>(frame_buffer->DataY()); |
| pictures_[i].pData[1] = const_cast<uint8_t*>(frame_buffer->DataU()); |
| pictures_[i].pData[2] = const_cast<uint8_t*>(frame_buffer->DataV()); |
| } else { |
| pictures_[i].iStride[0] = downscaled_buffers_[i - 1]->StrideY(); |
| pictures_[i].iStride[1] = downscaled_buffers_[i - 1]->StrideU(); |
| pictures_[i].iStride[2] = downscaled_buffers_[i - 1]->StrideV(); |
| pictures_[i].pData[0] = |
| const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataY()); |
| pictures_[i].pData[1] = |
| const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataU()); |
| pictures_[i].pData[2] = |
| const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataV()); |
| // Scale the image down a number of times by downsampling factor. |
| libyuv::I420Scale(pictures_[i - 1].pData[0], pictures_[i - 1].iStride[0], |
| pictures_[i - 1].pData[1], pictures_[i - 1].iStride[1], |
| pictures_[i - 1].pData[2], pictures_[i - 1].iStride[2], |
| configurations_[i - 1].width, |
| configurations_[i - 1].height, pictures_[i].pData[0], |
| pictures_[i].iStride[0], pictures_[i].pData[1], |
| pictures_[i].iStride[1], pictures_[i].pData[2], |
| pictures_[i].iStride[2], configurations_[i].width, |
| configurations_[i].height, libyuv::kFilterBox); |
| } |
| |
| if (!configurations_[i].sending) { |
| continue; |
| } |
| if (frame_types != nullptr && i < frame_types->size()) { |
| // Skip frame? |
| if ((*frame_types)[i] == VideoFrameType::kEmptyFrame) { |
| continue; |
| } |
| } |
| // Send a key frame either when this layer is configured to require one |
| // or we have explicitly been asked to. |
| const size_t simulcast_idx = |
| static_cast<size_t>(configurations_[i].simulcast_idx); |
| bool send_key_frame = |
| is_keyframe_needed || |
| (frame_types && simulcast_idx < frame_types->size() && |
| (*frame_types)[simulcast_idx] == VideoFrameType::kVideoFrameKey); |
| if (send_key_frame) { |
| // API doc says ForceIntraFrame(false) does nothing, but calling this |
| // function forces a key frame regardless of the `bIDR` argument's value. |
| // (If every frame is a key frame we get lag/delays.) |
| encoders_[i]->ForceIntraFrame(true); |
| configurations_[i].key_frame_request = false; |
| } |
| // EncodeFrame output. |
| SFrameBSInfo info; |
| memset(&info, 0, sizeof(SFrameBSInfo)); |
| |
| std::vector<ScalableVideoController::LayerFrameConfig> layer_frames; |
| if (svc_controllers_[i]) { |
| layer_frames = svc_controllers_[i]->NextFrameConfig(send_key_frame); |
| RTC_CHECK_EQ(layer_frames.size(), 1); |
| } |
| |
| // Encode! |
| int enc_ret = encoders_[i]->EncodeFrame(&pictures_[i], &info); |
| if (enc_ret != 0) { |
| RTC_LOG(LS_ERROR) |
| << "OpenH264 frame encoding failed, EncodeFrame returned " << enc_ret |
| << "."; |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| |
| encoded_images_[i]._encodedWidth = configurations_[i].width; |
| encoded_images_[i]._encodedHeight = configurations_[i].height; |
| encoded_images_[i].SetRtpTimestamp(input_frame.rtp_timestamp()); |
| encoded_images_[i].SetColorSpace(input_frame.color_space()); |
| encoded_images_[i]._frameType = ConvertToVideoFrameType(info.eFrameType); |
| encoded_images_[i].SetSimulcastIndex(configurations_[i].simulcast_idx); |
| |
| // Split encoded image up into fragments. This also updates |
| // `encoded_image_`. |
| RtpFragmentize(&encoded_images_[i], &info); |
| |
| // Encoder can skip frames to save bandwidth in which case |
| // `encoded_images_[i]._length` == 0. |
| if (encoded_images_[i].size() > 0) { |
| // Parse QP. |
| h264_bitstream_parser_.ParseBitstream(encoded_images_[i]); |
| encoded_images_[i].qp_ = |
| h264_bitstream_parser_.GetLastSliceQp().value_or(-1); |
| |
| // Deliver encoded image. |
| CodecSpecificInfo codec_specific; |
| codec_specific.codecType = kVideoCodecH264; |
| codec_specific.codecSpecific.H264.packetization_mode = |
| packetization_mode_; |
| codec_specific.codecSpecific.H264.temporal_idx = kNoTemporalIdx; |
| codec_specific.codecSpecific.H264.idr_frame = |
| info.eFrameType == videoFrameTypeIDR; |
| codec_specific.codecSpecific.H264.base_layer_sync = false; |
| if (configurations_[i].num_temporal_layers > 1) { |
| const uint8_t tid = info.sLayerInfo[0].uiTemporalId; |
| codec_specific.codecSpecific.H264.temporal_idx = tid; |
| codec_specific.codecSpecific.H264.base_layer_sync = |
| tid > 0 && tid < tl0sync_limit_[i]; |
| if (svc_controllers_[i]) { |
| if (encoded_images_[i]._frameType == VideoFrameType::kVideoFrameKey) { |
| // Reset the ScalableVideoController on key frame |
| // to reset the expected dependency structure. |
| layer_frames = |
| svc_controllers_[i]->NextFrameConfig(/* restart= */ true); |
| RTC_CHECK_EQ(layer_frames.size(), 1); |
| RTC_DCHECK_EQ(layer_frames[0].TemporalId(), 0); |
| RTC_DCHECK_EQ(layer_frames[0].IsKeyframe(), true); |
| } |
| |
| if (layer_frames[0].TemporalId() != tid) { |
| RTC_LOG(LS_WARNING) |
| << "Encoder produced a frame with temporal id " << tid |
| << ", expected " << layer_frames[0].TemporalId() << "."; |
| continue; |
| } |
| encoded_images_[i].SetTemporalIndex(tid); |
| } |
| if (codec_specific.codecSpecific.H264.base_layer_sync) { |
| tl0sync_limit_[i] = tid; |
| } |
| if (tid == 0) { |
| tl0sync_limit_[i] = configurations_[i].num_temporal_layers; |
| } |
| } |
| if (svc_controllers_[i]) { |
| codec_specific.generic_frame_info = |
| svc_controllers_[i]->OnEncodeDone(layer_frames[0]); |
| if (send_key_frame && codec_specific.generic_frame_info.has_value()) { |
| codec_specific.template_structure = |
| svc_controllers_[i]->DependencyStructure(); |
| } |
| codec_specific.scalability_mode = scalability_modes_[i]; |
| } |
| encoded_image_callback_->OnEncodedImage(encoded_images_[i], |
| &codec_specific); |
| } |
| } |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| // Initialization parameters. |
| // There are two ways to initialize. There is SEncParamBase (cleared with |
| // memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt |
| // which is a superset of SEncParamBase (cleared with GetDefaultParams) used |
| // in InitializeExt. |
| SEncParamExt H264EncoderImpl::CreateEncoderParams(size_t i) const { |
| SEncParamExt encoder_params; |
| encoders_[i]->GetDefaultParams(&encoder_params); |
| if (codec_.mode == VideoCodecMode::kRealtimeVideo) { |
| encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME; |
| } else if (codec_.mode == VideoCodecMode::kScreensharing) { |
| encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME; |
| } else { |
| RTC_DCHECK_NOTREACHED(); |
| } |
| encoder_params.iPicWidth = configurations_[i].width; |
| encoder_params.iPicHeight = configurations_[i].height; |
| encoder_params.iTargetBitrate = configurations_[i].target_bps; |
| // Keep unspecified. WebRTC's max codec bitrate is not the same setting |
| // as OpenH264's iMaxBitrate. More details in https://crbug.com/webrtc/11543 |
| encoder_params.iMaxBitrate = UNSPECIFIED_BIT_RATE; |
| // Rate Control mode |
| encoder_params.iRCMode = RC_BITRATE_MODE; |
| encoder_params.fMaxFrameRate = configurations_[i].max_frame_rate; |
| |
| // The following parameters are extension parameters (they're in SEncParamExt, |
| // not in SEncParamBase). |
| encoder_params.bEnableFrameSkip = configurations_[i].frame_dropping_on; |
| // `uiIntraPeriod` - multiple of GOP size |
| // `keyFrameInterval` - number of frames |
| encoder_params.uiIntraPeriod = configurations_[i].key_frame_interval; |
| // Reuse SPS id if possible. This helps to avoid reset of chromium HW decoder |
| // on each key-frame. |
| // Note that WebRTC resets encoder on resolution change which makes all |
| // EParameterSetStrategy modes except INCREASING_ID (default) essentially |
| // equivalent to CONSTANT_ID. |
| encoder_params.eSpsPpsIdStrategy = SPS_LISTING; |
| encoder_params.uiMaxNalSize = 0; |
| // Threading model: use auto. |
| // 0: auto (dynamic imp. internal encoder) |
| // 1: single thread (default value) |
| // >1: number of threads |
| encoder_params.iMultipleThreadIdc = |
| NumberOfThreads(encoder_thread_limit_, encoder_params.iPicWidth, |
| encoder_params.iPicHeight, number_of_cores_); |
| // The base spatial layer 0 is the only one we use. |
| encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth; |
| encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight; |
| encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate; |
| encoder_params.sSpatialLayers[0].iSpatialBitrate = |
| encoder_params.iTargetBitrate; |
| encoder_params.sSpatialLayers[0].iMaxSpatialBitrate = |
| encoder_params.iMaxBitrate; |
| encoder_params.iTemporalLayerNum = configurations_[i].num_temporal_layers; |
| if (encoder_params.iTemporalLayerNum > 1) { |
| // iNumRefFrame specifies total number of reference buffers to allocate. |
| // For N temporal layers we need at least (N - 1) buffers to store last |
| // encoded frames of all reference temporal layers. |
| // Note that there is no API in OpenH264 encoder to specify exact set of |
| // references to be used to prediction of a given frame. Encoder can |
| // theoretically use all available reference buffers. |
| encoder_params.iNumRefFrame = encoder_params.iTemporalLayerNum - 1; |
| } |
| RTC_LOG(LS_INFO) << "OpenH264 version is " << OPENH264_MAJOR << "." |
| << OPENH264_MINOR; |
| switch (packetization_mode_) { |
| case H264PacketizationMode::SingleNalUnit: |
| // Limit the size of the packets produced. |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode = |
| SM_SIZELIMITED_SLICE; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint = |
| static_cast<unsigned int>(max_payload_size_); |
| RTC_LOG(LS_INFO) << "Encoder is configured with NALU constraint: " |
| << max_payload_size_ << " bytes"; |
| break; |
| case H264PacketizationMode::NonInterleaved: |
| // When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto |
| // design it with cpu core number. |
| // TODO(sprang): Set to 0 when we understand why the rate controller borks |
| // when uiSliceNum > 1. |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode = |
| SM_FIXEDSLCNUM_SLICE; |
| break; |
| } |
| return encoder_params; |
| } |
| |
| void H264EncoderImpl::ReportInit() { |
| if (has_reported_init_) |
| return; |
| RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event", |
| kH264EncoderEventInit, kH264EncoderEventMax); |
| has_reported_init_ = true; |
| } |
| |
| void H264EncoderImpl::ReportError() { |
| if (has_reported_error_) |
| return; |
| RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event", |
| kH264EncoderEventError, kH264EncoderEventMax); |
| has_reported_error_ = true; |
| } |
| |
| VideoEncoder::EncoderInfo H264EncoderImpl::GetEncoderInfo() const { |
| EncoderInfo info; |
| info.supports_native_handle = false; |
| info.implementation_name = "OpenH264"; |
| info.scaling_settings = |
| VideoEncoder::ScalingSettings(kLowH264QpThreshold, kHighH264QpThreshold); |
| info.is_hardware_accelerated = false; |
| info.supports_simulcast = true; |
| info.preferred_pixel_formats = {VideoFrameBuffer::Type::kI420}; |
| return info; |
| } |
| |
| void H264EncoderImpl::LayerConfig::SetStreamState(bool send_stream) { |
| if (send_stream && !sending) { |
| // Need a key frame if we have not sent this stream before. |
| key_frame_request = true; |
| } |
| sending = send_stream; |
| } |
| |
| } // namespace webrtc |
| |
| #endif // WEBRTC_USE_H264 |