| /* | 
 |  *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "modules/audio_processing/aec3/subtractor.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <numeric> | 
 |  | 
 | #include "api/array_view.h" | 
 | #include "modules/audio_processing/logging/apm_data_dumper.h" | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/safe_minmax.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | namespace { | 
 |  | 
 | void PredictionError(const Aec3Fft& fft, | 
 |                      const FftData& S, | 
 |                      rtc::ArrayView<const float> y, | 
 |                      std::array<float, kBlockSize>* e, | 
 |                      FftData* E, | 
 |                      std::array<float, kBlockSize>* s) { | 
 |   std::array<float, kFftLength> s_scratch; | 
 |   fft.Ifft(S, &s_scratch); | 
 |   constexpr float kScale = 1.0f / kFftLengthBy2; | 
 |   std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, | 
 |                  e->begin(), [&](float a, float b) { return a - b * kScale; }); | 
 |   std::for_each(e->begin(), e->end(), | 
 |                 [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); | 
 |   fft.ZeroPaddedFft(*e, E); | 
 |  | 
 |   if (s) { | 
 |     for (size_t k = 0; k < s->size(); ++k) { | 
 |       (*s)[k] = kScale * s_scratch[k + kFftLengthBy2]; | 
 |     } | 
 |   } | 
 | } | 
 | }  // namespace | 
 |  | 
 | Subtractor::Subtractor(ApmDataDumper* data_dumper, | 
 |                        Aec3Optimization optimization) | 
 |     : fft_(), | 
 |       data_dumper_(data_dumper), | 
 |       optimization_(optimization), | 
 |       main_filter_(kAdaptiveFilterLength, optimization, data_dumper_), | 
 |       shadow_filter_(kAdaptiveFilterLength, optimization, data_dumper_) { | 
 |   RTC_DCHECK(data_dumper_); | 
 | } | 
 |  | 
 | Subtractor::~Subtractor() = default; | 
 |  | 
 | void Subtractor::HandleEchoPathChange( | 
 |     const EchoPathVariability& echo_path_variability) { | 
 |   use_shadow_filter_frequency_response_ = false; | 
 |   if (echo_path_variability.delay_change) { | 
 |     main_filter_.HandleEchoPathChange(); | 
 |     shadow_filter_.HandleEchoPathChange(); | 
 |     G_main_.HandleEchoPathChange(); | 
 |     G_shadow_.HandleEchoPathChange(); | 
 |     converged_filter_ = false; | 
 |     converged_filter_counter_ = 0; | 
 |   } | 
 | } | 
 |  | 
 | void Subtractor::Process(const RenderBuffer& render_buffer, | 
 |                          const rtc::ArrayView<const float> capture, | 
 |                          const RenderSignalAnalyzer& render_signal_analyzer, | 
 |                          const AecState& aec_state, | 
 |                          SubtractorOutput* output) { | 
 |   RTC_DCHECK_EQ(kBlockSize, capture.size()); | 
 |   rtc::ArrayView<const float> y = capture; | 
 |   FftData& E_main = output->E_main; | 
 |   FftData E_shadow; | 
 |   std::array<float, kBlockSize>& e_main = output->e_main; | 
 |   std::array<float, kBlockSize>& e_shadow = output->e_shadow; | 
 |  | 
 |   FftData S; | 
 |   FftData& G = S; | 
 |  | 
 |   // Form the output of the main filter. | 
 |   main_filter_.Filter(render_buffer, &S); | 
 |   PredictionError(fft_, S, y, &e_main, &E_main, &output->s_main); | 
 |  | 
 |   // Form the output of the shadow filter. | 
 |   shadow_filter_.Filter(render_buffer, &S); | 
 |   PredictionError(fft_, S, y, &e_shadow, &E_shadow, nullptr); | 
 |  | 
 |   // Determine which frequency response should be used. | 
 |   const auto sum_of_squares = [](float a, float b) { return a + b * b; }; | 
 |   const float e2_main = | 
 |       std::accumulate(e_main.begin(), e_main.end(), 0.f, sum_of_squares); | 
 |   const float e2_shadow = | 
 |       std::accumulate(e_shadow.begin(), e_shadow.end(), 0.f, sum_of_squares); | 
 |   const float y2 = std::accumulate(y.begin(), y.end(), 0.f, sum_of_squares); | 
 |  | 
 |   if (e2_main < e2_shadow && e2_main < 0.1 * y2) { | 
 |     use_shadow_filter_frequency_response_ = false; | 
 |   } else if (e2_shadow < e2_main && e2_shadow < 0.01 * y2) { | 
 |     use_shadow_filter_frequency_response_ = true; | 
 |   } | 
 |  | 
 |   // Flag whether the filter has at some point converged. | 
 |   // TODO(peah): Consider using a timeout for this. | 
 |   if (!converged_filter_) { | 
 |     if (y2 > kBlockSize * 100.f * 100.f) { | 
 |       if (e2_main < 0.3 * y2) { | 
 |         converged_filter_ = (++converged_filter_counter_) > 10; | 
 |       } else { | 
 |         converged_filter_counter_ = 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Compute spectra for future use. | 
 |   E_main.Spectrum(optimization_, &output->E2_main); | 
 |   E_shadow.Spectrum(optimization_, &output->E2_shadow); | 
 |  | 
 |   // Update the main filter. | 
 |   G_main_.Compute(render_buffer, render_signal_analyzer, *output, main_filter_, | 
 |                   aec_state.SaturatedCapture(), &G); | 
 |   main_filter_.Adapt(render_buffer, G); | 
 |   data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re); | 
 |   data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im); | 
 |  | 
 |   // Update the shadow filter. | 
 |   G_shadow_.Compute(render_buffer, render_signal_analyzer, E_shadow, | 
 |                     shadow_filter_.SizePartitions(), | 
 |                     aec_state.SaturatedCapture(), &G); | 
 |   shadow_filter_.Adapt(render_buffer, G); | 
 |  | 
 |   data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re); | 
 |   data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im); | 
 |  | 
 |   main_filter_.DumpFilter("aec3_subtractor_H_main"); | 
 |   shadow_filter_.DumpFilter("aec3_subtractor_H_shadow"); | 
 | } | 
 |  | 
 | }  // namespace webrtc |