| /* | 
 |  *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "rtc_base/numerics/running_statistics.h" | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <random> | 
 | #include <vector> | 
 |  | 
 | #include "absl/algorithm/container.h" | 
 | #include "test/gtest.h" | 
 |  | 
 | // Tests were copied from samples_stats_counter_unittest.cc. | 
 |  | 
 | namespace webrtc { | 
 | namespace { | 
 |  | 
 | RunningStatistics<double> CreateStatsFilledWithIntsFrom1ToN(int n) { | 
 |   std::vector<double> data; | 
 |   for (int i = 1; i <= n; i++) { | 
 |     data.push_back(i); | 
 |   } | 
 |   absl::c_shuffle(data, std::mt19937(std::random_device()())); | 
 |  | 
 |   RunningStatistics<double> stats; | 
 |   for (double v : data) { | 
 |     stats.AddSample(v); | 
 |   } | 
 |   return stats; | 
 | } | 
 |  | 
 | // Add n samples drawn from uniform distribution in [a;b]. | 
 | RunningStatistics<double> CreateStatsFromUniformDistribution(int n, | 
 |                                                              double a, | 
 |                                                              double b) { | 
 |   std::mt19937 gen{std::random_device()()}; | 
 |   std::uniform_real_distribution<> dis(a, b); | 
 |  | 
 |   RunningStatistics<double> stats; | 
 |   for (int i = 1; i <= n; i++) { | 
 |     stats.AddSample(dis(gen)); | 
 |   } | 
 |   return stats; | 
 | } | 
 |  | 
 | class RunningStatisticsTest : public ::testing::TestWithParam<int> {}; | 
 |  | 
 | constexpr int SIZE_FOR_MERGE = 5; | 
 |  | 
 | }  // namespace | 
 |  | 
 | TEST(RunningStatistics, FullSimpleTest) { | 
 |   auto stats = CreateStatsFilledWithIntsFrom1ToN(100); | 
 |  | 
 |   EXPECT_DOUBLE_EQ(*stats.GetMin(), 1.0); | 
 |   EXPECT_DOUBLE_EQ(*stats.GetMax(), 100.0); | 
 |   EXPECT_DOUBLE_EQ(*stats.GetMean(), 50.5); | 
 | } | 
 |  | 
 | TEST(RunningStatistics, VarianceAndDeviation) { | 
 |   RunningStatistics<int> stats; | 
 |   stats.AddSample(2); | 
 |   stats.AddSample(2); | 
 |   stats.AddSample(-1); | 
 |   stats.AddSample(5); | 
 |  | 
 |   EXPECT_DOUBLE_EQ(*stats.GetMean(), 2.0); | 
 |   EXPECT_DOUBLE_EQ(*stats.GetVariance(), 4.5); | 
 |   EXPECT_DOUBLE_EQ(*stats.GetStandardDeviation(), sqrt(4.5)); | 
 | } | 
 |  | 
 | TEST(RunningStatistics, RemoveSample) { | 
 |   // We check that adding then removing sample is no-op, | 
 |   // or so (due to loss of precision). | 
 |   RunningStatistics<int> stats; | 
 |   stats.AddSample(2); | 
 |   stats.AddSample(2); | 
 |   stats.AddSample(-1); | 
 |   stats.AddSample(5); | 
 |  | 
 |   constexpr int iterations = 1e5; | 
 |   for (int i = 0; i < iterations; ++i) { | 
 |     stats.AddSample(i); | 
 |     stats.RemoveSample(i); | 
 |  | 
 |     EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-8); | 
 |     EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3); | 
 |     EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4); | 
 |   } | 
 | } | 
 |  | 
 | TEST(RunningStatistics, RemoveSamplesSequence) { | 
 |   // We check that adding then removing a sequence of samples is no-op, | 
 |   // or so (due to loss of precision). | 
 |   RunningStatistics<int> stats; | 
 |   stats.AddSample(2); | 
 |   stats.AddSample(2); | 
 |   stats.AddSample(-1); | 
 |   stats.AddSample(5); | 
 |  | 
 |   constexpr int iterations = 1e4; | 
 |   for (int i = 0; i < iterations; ++i) { | 
 |     stats.AddSample(i); | 
 |   } | 
 |   for (int i = 0; i < iterations; ++i) { | 
 |     stats.RemoveSample(i); | 
 |   } | 
 |  | 
 |   EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-7); | 
 |   EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3); | 
 |   EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4); | 
 | } | 
 |  | 
 | TEST(RunningStatistics, VarianceFromUniformDistribution) { | 
 |   // Check variance converge to 1/12 for [0;1) uniform distribution. | 
 |   // Acts as a sanity check for NumericStabilityForVariance test. | 
 |   auto stats = CreateStatsFromUniformDistribution(1e6, 0, 1); | 
 |  | 
 |   EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3); | 
 | } | 
 |  | 
 | TEST(RunningStatistics, NumericStabilityForVariance) { | 
 |   // Same test as VarianceFromUniformDistribution, | 
 |   // except the range is shifted to [1e9;1e9+1). | 
 |   // Variance should also converge to 1/12. | 
 |   // NB: Although we lose precision for the samples themselves, the fractional | 
 |   //     part still enjoys 22 bits of mantissa and errors should even out, | 
 |   //     so that couldn't explain a mismatch. | 
 |   auto stats = CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1); | 
 |  | 
 |   EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3); | 
 | } | 
 |  | 
 | TEST(RunningStatistics, MinRemainsUnchangedAfterRemove) { | 
 |   // We don't want to recompute min (that's RollingAccumulator's role), | 
 |   // check we get the overall min. | 
 |   RunningStatistics<int> stats; | 
 |   stats.AddSample(1); | 
 |   stats.AddSample(2); | 
 |   stats.RemoveSample(1); | 
 |   EXPECT_EQ(stats.GetMin(), 1); | 
 | } | 
 |  | 
 | TEST(RunningStatistics, MaxRemainsUnchangedAfterRemove) { | 
 |   // We don't want to recompute max (that's RollingAccumulator's role), | 
 |   // check we get the overall max. | 
 |   RunningStatistics<int> stats; | 
 |   stats.AddSample(1); | 
 |   stats.AddSample(2); | 
 |   stats.RemoveSample(2); | 
 |   EXPECT_EQ(stats.GetMax(), 2); | 
 | } | 
 |  | 
 | TEST_P(RunningStatisticsTest, MergeStatistics) { | 
 |   int data[SIZE_FOR_MERGE] = {2, 2, -1, 5, 10}; | 
 |   // Split the data in different partitions. | 
 |   // We have 6 distinct tests: | 
 |   //   * Empty merged with full sequence. | 
 |   //   * 1 sample merged with 4 last. | 
 |   //   * 2 samples merged with 3 last. | 
 |   //   [...] | 
 |   //   * Full merged with empty sequence. | 
 |   // All must lead to the same result. | 
 |   // I miss QuickCheck so much. | 
 |   RunningStatistics<int> stats0, stats1; | 
 |   for (int i = 0; i < GetParam(); ++i) { | 
 |     stats0.AddSample(data[i]); | 
 |   } | 
 |   for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) { | 
 |     stats1.AddSample(data[i]); | 
 |   } | 
 |   stats0.MergeStatistics(stats1); | 
 |  | 
 |   EXPECT_EQ(stats0.Size(), SIZE_FOR_MERGE); | 
 |   EXPECT_DOUBLE_EQ(*stats0.GetMin(), -1); | 
 |   EXPECT_DOUBLE_EQ(*stats0.GetMax(), 10); | 
 |   EXPECT_DOUBLE_EQ(*stats0.GetMean(), 3.6); | 
 |   EXPECT_DOUBLE_EQ(*stats0.GetVariance(), 13.84); | 
 |   EXPECT_DOUBLE_EQ(*stats0.GetStandardDeviation(), sqrt(13.84)); | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(RunningStatisticsTests, | 
 |                          RunningStatisticsTest, | 
 |                          ::testing::Range(0, SIZE_FOR_MERGE + 1)); | 
 |  | 
 | }  // namespace webrtc |