| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "common_video/h264/sps_parser.h" |
| |
| #include <cstdint> |
| #include <vector> |
| |
| #include "common_video/h264/h264_common.h" |
| #include "rtc_base/bitstream_reader.h" |
| |
| namespace { |
| constexpr int kScalingDeltaMin = -128; |
| constexpr int kScaldingDeltaMax = 127; |
| } // namespace |
| |
| namespace webrtc { |
| |
| SpsParser::SpsState::SpsState() = default; |
| SpsParser::SpsState::SpsState(const SpsState&) = default; |
| SpsParser::SpsState::~SpsState() = default; |
| |
| // General note: this is based off the 02/2014 version of the H.264 standard. |
| // You can find it on this page: |
| // http://www.itu.int/rec/T-REC-H.264 |
| |
| // Unpack RBSP and parse SPS state from the supplied buffer. |
| absl::optional<SpsParser::SpsState> SpsParser::ParseSps(const uint8_t* data, |
| size_t length) { |
| std::vector<uint8_t> unpacked_buffer = H264::ParseRbsp(data, length); |
| BitstreamReader reader(unpacked_buffer); |
| return ParseSpsUpToVui(reader); |
| } |
| |
| absl::optional<SpsParser::SpsState> SpsParser::ParseSpsUpToVui( |
| BitstreamReader& reader) { |
| // Now, we need to use a bitstream reader to parse through the actual AVC SPS |
| // format. See Section 7.3.2.1.1 ("Sequence parameter set data syntax") of the |
| // H.264 standard for a complete description. |
| // Since we only care about resolution, we ignore the majority of fields, but |
| // we still have to actively parse through a lot of the data, since many of |
| // the fields have variable size. |
| // We're particularly interested in: |
| // chroma_format_idc -> affects crop units |
| // pic_{width,height}_* -> resolution of the frame in macroblocks (16x16). |
| // frame_crop_*_offset -> crop information |
| |
| SpsState sps; |
| |
| // chroma_format_idc will be ChromaArrayType if separate_colour_plane_flag is |
| // 0. It defaults to 1, when not specified. |
| uint32_t chroma_format_idc = 1; |
| |
| // profile_idc: u(8). We need it to determine if we need to read/skip chroma |
| // formats. |
| uint8_t profile_idc = reader.Read<uint8_t>(); |
| // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits |
| // 1 bit each for the flags + 2 bits + 8 bits for level_idc = 16 bits. |
| reader.ConsumeBits(16); |
| // seq_parameter_set_id: ue(v) |
| sps.id = reader.ReadExponentialGolomb(); |
| sps.separate_colour_plane_flag = 0; |
| // See if profile_idc has chroma format information. |
| if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 || |
| profile_idc == 244 || profile_idc == 44 || profile_idc == 83 || |
| profile_idc == 86 || profile_idc == 118 || profile_idc == 128 || |
| profile_idc == 138 || profile_idc == 139 || profile_idc == 134) { |
| // chroma_format_idc: ue(v) |
| chroma_format_idc = reader.ReadExponentialGolomb(); |
| if (chroma_format_idc == 3) { |
| // separate_colour_plane_flag: u(1) |
| sps.separate_colour_plane_flag = reader.ReadBit(); |
| } |
| // bit_depth_luma_minus8: ue(v) |
| reader.ReadExponentialGolomb(); |
| // bit_depth_chroma_minus8: ue(v) |
| reader.ReadExponentialGolomb(); |
| // qpprime_y_zero_transform_bypass_flag: u(1) |
| reader.ConsumeBits(1); |
| // seq_scaling_matrix_present_flag: u(1) |
| if (reader.Read<bool>()) { |
| // Process the scaling lists just enough to be able to properly |
| // skip over them, so we can still read the resolution on streams |
| // where this is included. |
| int scaling_list_count = (chroma_format_idc == 3 ? 12 : 8); |
| for (int i = 0; i < scaling_list_count; ++i) { |
| // seq_scaling_list_present_flag[i] : u(1) |
| if (reader.Read<bool>()) { |
| int last_scale = 8; |
| int next_scale = 8; |
| int size_of_scaling_list = i < 6 ? 16 : 64; |
| for (int j = 0; j < size_of_scaling_list; j++) { |
| if (next_scale != 0) { |
| // delta_scale: se(v) |
| int delta_scale = reader.ReadSignedExponentialGolomb(); |
| if (!reader.Ok() || delta_scale < kScalingDeltaMin || |
| delta_scale > kScaldingDeltaMax) { |
| return absl::nullopt; |
| } |
| next_scale = (last_scale + delta_scale + 256) % 256; |
| } |
| if (next_scale != 0) |
| last_scale = next_scale; |
| } |
| } |
| } |
| } |
| } |
| // log2_max_frame_num and log2_max_pic_order_cnt_lsb are used with |
| // BitstreamReader::ReadBits, which can read at most 64 bits at a time. We |
| // also have to avoid overflow when adding 4 to the on-wire golomb value, |
| // e.g., for evil input data, ReadExponentialGolomb might return 0xfffc. |
| const uint32_t kMaxLog2Minus4 = 12; |
| |
| // log2_max_frame_num_minus4: ue(v) |
| uint32_t log2_max_frame_num_minus4 = reader.ReadExponentialGolomb(); |
| if (!reader.Ok() || log2_max_frame_num_minus4 > kMaxLog2Minus4) { |
| return absl::nullopt; |
| } |
| sps.log2_max_frame_num = log2_max_frame_num_minus4 + 4; |
| |
| // pic_order_cnt_type: ue(v) |
| sps.pic_order_cnt_type = reader.ReadExponentialGolomb(); |
| if (sps.pic_order_cnt_type == 0) { |
| // log2_max_pic_order_cnt_lsb_minus4: ue(v) |
| uint32_t log2_max_pic_order_cnt_lsb_minus4 = reader.ReadExponentialGolomb(); |
| if (!reader.Ok() || log2_max_pic_order_cnt_lsb_minus4 > kMaxLog2Minus4) { |
| return absl::nullopt; |
| } |
| sps.log2_max_pic_order_cnt_lsb = log2_max_pic_order_cnt_lsb_minus4 + 4; |
| } else if (sps.pic_order_cnt_type == 1) { |
| // delta_pic_order_always_zero_flag: u(1) |
| sps.delta_pic_order_always_zero_flag = reader.ReadBit(); |
| // offset_for_non_ref_pic: se(v) |
| reader.ReadExponentialGolomb(); |
| // offset_for_top_to_bottom_field: se(v) |
| reader.ReadExponentialGolomb(); |
| // num_ref_frames_in_pic_order_cnt_cycle: ue(v) |
| uint32_t num_ref_frames_in_pic_order_cnt_cycle = |
| reader.ReadExponentialGolomb(); |
| for (size_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; ++i) { |
| // offset_for_ref_frame[i]: se(v) |
| reader.ReadExponentialGolomb(); |
| if (!reader.Ok()) { |
| return absl::nullopt; |
| } |
| } |
| } |
| // max_num_ref_frames: ue(v) |
| sps.max_num_ref_frames = reader.ReadExponentialGolomb(); |
| // gaps_in_frame_num_value_allowed_flag: u(1) |
| reader.ConsumeBits(1); |
| // |
| // IMPORTANT ONES! Now we're getting to resolution. First we read the pic |
| // width/height in macroblocks (16x16), which gives us the base resolution, |
| // and then we continue on until we hit the frame crop offsets, which are used |
| // to signify resolutions that aren't multiples of 16. |
| // |
| // pic_width_in_mbs_minus1: ue(v) |
| sps.width = 16 * (reader.ReadExponentialGolomb() + 1); |
| // pic_height_in_map_units_minus1: ue(v) |
| uint32_t pic_height_in_map_units_minus1 = reader.ReadExponentialGolomb(); |
| // frame_mbs_only_flag: u(1) |
| sps.frame_mbs_only_flag = reader.ReadBit(); |
| if (!sps.frame_mbs_only_flag) { |
| // mb_adaptive_frame_field_flag: u(1) |
| reader.ConsumeBits(1); |
| } |
| sps.height = |
| 16 * (2 - sps.frame_mbs_only_flag) * (pic_height_in_map_units_minus1 + 1); |
| // direct_8x8_inference_flag: u(1) |
| reader.ConsumeBits(1); |
| // |
| // MORE IMPORTANT ONES! Now we're at the frame crop information. |
| // |
| uint32_t frame_crop_left_offset = 0; |
| uint32_t frame_crop_right_offset = 0; |
| uint32_t frame_crop_top_offset = 0; |
| uint32_t frame_crop_bottom_offset = 0; |
| // frame_cropping_flag: u(1) |
| if (reader.Read<bool>()) { |
| // frame_crop_{left, right, top, bottom}_offset: ue(v) |
| frame_crop_left_offset = reader.ReadExponentialGolomb(); |
| frame_crop_right_offset = reader.ReadExponentialGolomb(); |
| frame_crop_top_offset = reader.ReadExponentialGolomb(); |
| frame_crop_bottom_offset = reader.ReadExponentialGolomb(); |
| } |
| // vui_parameters_present_flag: u(1) |
| sps.vui_params_present = reader.ReadBit(); |
| |
| // Far enough! We don't use the rest of the SPS. |
| if (!reader.Ok()) { |
| return absl::nullopt; |
| } |
| |
| // Figure out the crop units in pixels. That's based on the chroma format's |
| // sampling, which is indicated by chroma_format_idc. |
| if (sps.separate_colour_plane_flag || chroma_format_idc == 0) { |
| frame_crop_bottom_offset *= (2 - sps.frame_mbs_only_flag); |
| frame_crop_top_offset *= (2 - sps.frame_mbs_only_flag); |
| } else if (!sps.separate_colour_plane_flag && chroma_format_idc > 0) { |
| // Width multipliers for formats 1 (4:2:0) and 2 (4:2:2). |
| if (chroma_format_idc == 1 || chroma_format_idc == 2) { |
| frame_crop_left_offset *= 2; |
| frame_crop_right_offset *= 2; |
| } |
| // Height multipliers for format 1 (4:2:0). |
| if (chroma_format_idc == 1) { |
| frame_crop_top_offset *= 2; |
| frame_crop_bottom_offset *= 2; |
| } |
| } |
| // Subtract the crop for each dimension. |
| sps.width -= (frame_crop_left_offset + frame_crop_right_offset); |
| sps.height -= (frame_crop_top_offset + frame_crop_bottom_offset); |
| |
| return sps; |
| } |
| |
| } // namespace webrtc |