| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/residual_echo_estimator.h" |
| |
| #include <numeric> |
| |
| #include "api/audio/echo_canceller3_config.h" |
| #include "modules/audio_processing/aec3/aec3_fft.h" |
| #include "modules/audio_processing/aec3/aec_state.h" |
| #include "modules/audio_processing/aec3/render_delay_buffer.h" |
| #include "modules/audio_processing/test/echo_canceller_test_tools.h" |
| #include "rtc_base/random.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| constexpr int kSampleRateHz = 48000; |
| constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); |
| constexpr float kEpsilon = 1e-4f; |
| } // namespace |
| |
| class ResidualEchoEstimatorTest { |
| public: |
| ResidualEchoEstimatorTest(size_t num_render_channels, |
| size_t num_capture_channels, |
| const EchoCanceller3Config& config) |
| : num_render_channels_(num_render_channels), |
| num_capture_channels_(num_capture_channels), |
| config_(config), |
| estimator_(config_, num_render_channels_), |
| aec_state_(config_, num_capture_channels_), |
| render_delay_buffer_(RenderDelayBuffer::Create(config_, |
| kSampleRateHz, |
| num_render_channels_)), |
| E2_refined_(num_capture_channels_), |
| S2_linear_(num_capture_channels_), |
| Y2_(num_capture_channels_), |
| R2_(num_capture_channels_), |
| R2_unbounded_(num_capture_channels_), |
| x_(kNumBands, num_render_channels_), |
| H2_(num_capture_channels_, |
| std::vector<std::array<float, kFftLengthBy2Plus1>>(10)), |
| h_(num_capture_channels_, |
| std::vector<float>( |
| GetTimeDomainLength(config_.filter.refined.length_blocks), |
| 0.0f)), |
| random_generator_(42U), |
| output_(num_capture_channels_) { |
| for (auto& H2_ch : H2_) { |
| for (auto& H2_k : H2_ch) { |
| H2_k.fill(0.01f); |
| } |
| H2_ch[2].fill(10.f); |
| H2_ch[2][0] = 0.1f; |
| } |
| |
| for (auto& subtractor_output : output_) { |
| subtractor_output.Reset(); |
| subtractor_output.s_refined.fill(100.f); |
| } |
| y_.fill(0.f); |
| |
| constexpr float kLevel = 10.f; |
| for (auto& E2_refined_ch : E2_refined_) { |
| E2_refined_ch.fill(kLevel); |
| } |
| S2_linear_[0].fill(kLevel); |
| for (auto& Y2_ch : Y2_) { |
| Y2_ch.fill(kLevel); |
| } |
| } |
| |
| void RunOneFrame(bool dominant_nearend) { |
| RandomizeSampleVector(&random_generator_, |
| x_.View(/*band=*/0, /*channel=*/0)); |
| render_delay_buffer_->Insert(x_); |
| if (first_frame_) { |
| render_delay_buffer_->Reset(); |
| first_frame_ = false; |
| } |
| render_delay_buffer_->PrepareCaptureProcessing(); |
| |
| aec_state_.Update(delay_estimate_, H2_, h_, |
| *render_delay_buffer_->GetRenderBuffer(), E2_refined_, |
| Y2_, output_); |
| |
| estimator_.Estimate(aec_state_, *render_delay_buffer_->GetRenderBuffer(), |
| S2_linear_, Y2_, dominant_nearend, R2_, R2_unbounded_); |
| } |
| |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> R2() const { |
| return R2_; |
| } |
| |
| private: |
| const size_t num_render_channels_; |
| const size_t num_capture_channels_; |
| const EchoCanceller3Config& config_; |
| ResidualEchoEstimator estimator_; |
| AecState aec_state_; |
| std::unique_ptr<RenderDelayBuffer> render_delay_buffer_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> S2_linear_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> Y2_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> R2_; |
| std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded_; |
| Block x_; |
| std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> H2_; |
| std::vector<std::vector<float>> h_; |
| Random random_generator_; |
| std::vector<SubtractorOutput> output_; |
| std::array<float, kBlockSize> y_; |
| absl::optional<DelayEstimate> delay_estimate_; |
| bool first_frame_ = true; |
| }; |
| |
| class ResidualEchoEstimatorMultiChannel |
| : public ::testing::Test, |
| public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {}; |
| |
| INSTANTIATE_TEST_SUITE_P(MultiChannel, |
| ResidualEchoEstimatorMultiChannel, |
| ::testing::Combine(::testing::Values(1, 2, 4), |
| ::testing::Values(1, 2, 4))); |
| |
| TEST_P(ResidualEchoEstimatorMultiChannel, BasicTest) { |
| const size_t num_render_channels = std::get<0>(GetParam()); |
| const size_t num_capture_channels = std::get<1>(GetParam()); |
| |
| EchoCanceller3Config config; |
| ResidualEchoEstimatorTest residual_echo_estimator_test( |
| num_render_channels, num_capture_channels, config); |
| for (int k = 0; k < 1993; ++k) { |
| residual_echo_estimator_test.RunOneFrame(/*dominant_nearend=*/false); |
| } |
| } |
| |
| TEST(ResidualEchoEstimatorMultiChannel, ReverbTest) { |
| const size_t num_render_channels = 1; |
| const size_t num_capture_channels = 1; |
| const size_t nFrames = 100; |
| |
| EchoCanceller3Config reference_config; |
| reference_config.ep_strength.default_len = 0.95f; |
| reference_config.ep_strength.nearend_len = 0.95f; |
| EchoCanceller3Config config_use_nearend_len = reference_config; |
| config_use_nearend_len.ep_strength.default_len = 0.95f; |
| config_use_nearend_len.ep_strength.nearend_len = 0.83f; |
| |
| ResidualEchoEstimatorTest reference_residual_echo_estimator_test( |
| num_render_channels, num_capture_channels, reference_config); |
| ResidualEchoEstimatorTest use_nearend_len_residual_echo_estimator_test( |
| num_render_channels, num_capture_channels, config_use_nearend_len); |
| |
| std::vector<float> acum_energy_reference_R2(num_capture_channels, 0.0f); |
| std::vector<float> acum_energy_R2(num_capture_channels, 0.0f); |
| for (size_t frame = 0; frame < nFrames; ++frame) { |
| bool dominant_nearend = frame <= nFrames / 2 ? false : true; |
| reference_residual_echo_estimator_test.RunOneFrame(dominant_nearend); |
| use_nearend_len_residual_echo_estimator_test.RunOneFrame(dominant_nearend); |
| const auto& reference_R2 = reference_residual_echo_estimator_test.R2(); |
| const auto& R2 = use_nearend_len_residual_echo_estimator_test.R2(); |
| ASSERT_EQ(reference_R2.size(), R2.size()); |
| for (size_t ch = 0; ch < reference_R2.size(); ++ch) { |
| float energy_reference_R2 = std::accumulate( |
| reference_R2[ch].cbegin(), reference_R2[ch].cend(), 0.0f); |
| float energy_R2 = std::accumulate(R2[ch].cbegin(), R2[ch].cend(), 0.0f); |
| if (dominant_nearend) { |
| EXPECT_GE(energy_reference_R2, energy_R2); |
| } else { |
| EXPECT_NEAR(energy_reference_R2, energy_R2, kEpsilon); |
| } |
| acum_energy_reference_R2[ch] += energy_reference_R2; |
| acum_energy_R2[ch] += energy_R2; |
| } |
| if (frame == nFrames / 2 || frame == nFrames - 1) { |
| for (size_t ch = 0; ch < acum_energy_reference_R2.size(); ch++) { |
| if (dominant_nearend) { |
| EXPECT_GT(acum_energy_reference_R2[ch], acum_energy_R2[ch]); |
| } else { |
| EXPECT_NEAR(acum_energy_reference_R2[ch], acum_energy_R2[ch], |
| kEpsilon); |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace webrtc |