| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "api/audio/audio_device.h" |
| |
| #include <list> |
| #include <memory> |
| #include <numeric> |
| |
| #include "api/scoped_refptr.h" |
| #include "modules/audio_device/include/mock_audio_transport.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/event.h" |
| #include "rtc_base/synchronization/mutex.h" |
| #include "rtc_base/time_utils.h" |
| #include "sdk/android/generated_native_unittests_jni/BuildInfo_jni.h" |
| #include "sdk/android/native_api/audio_device_module/audio_device_android.h" |
| #include "sdk/android/native_api/jni/application_context_provider.h" |
| #include "sdk/android/src/jni/audio_device/audio_common.h" |
| #include "sdk/android/src/jni/audio_device/audio_device_module.h" |
| #include "sdk/android/src/jni/audio_device/opensles_common.h" |
| #include "sdk/android/src/jni/jni_helpers.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| #include "test/testsupport/file_utils.h" |
| |
| using std::cout; |
| using std::endl; |
| using ::testing::_; |
| using ::testing::AtLeast; |
| using ::testing::Gt; |
| using ::testing::Invoke; |
| using ::testing::NiceMock; |
| using ::testing::NotNull; |
| using ::testing::Return; |
| |
| // #define ENABLE_DEBUG_PRINTF |
| #ifdef ENABLE_DEBUG_PRINTF |
| #define PRINTD(...) fprintf(stderr, __VA_ARGS__); |
| #else |
| #define PRINTD(...) ((void)0) |
| #endif |
| #define PRINT(...) fprintf(stderr, __VA_ARGS__); |
| |
| namespace webrtc { |
| |
| namespace jni { |
| |
| // Number of callbacks (input or output) the tests waits for before we set |
| // an event indicating that the test was OK. |
| static const size_t kNumCallbacks = 10; |
| // Max amount of time we wait for an event to be set while counting callbacks. |
| static constexpr TimeDelta kTestTimeOut = TimeDelta::Seconds(10); |
| // Average number of audio callbacks per second assuming 10ms packet size. |
| static const size_t kNumCallbacksPerSecond = 100; |
| // Play out a test file during this time (unit is in seconds). |
| static const int kFilePlayTimeInSec = 5; |
| static const size_t kBitsPerSample = 16; |
| static const size_t kBytesPerSample = kBitsPerSample / 8; |
| // Run the full-duplex test during this time (unit is in seconds). |
| // Note that first `kNumIgnoreFirstCallbacks` are ignored. |
| static constexpr TimeDelta kFullDuplexTime = TimeDelta::Seconds(5); |
| // Wait for the callback sequence to stabilize by ignoring this amount of the |
| // initial callbacks (avoids initial FIFO access). |
| // Only used in the RunPlayoutAndRecordingInFullDuplex test. |
| static const size_t kNumIgnoreFirstCallbacks = 50; |
| // Sets the number of impulses per second in the latency test. |
| static const int kImpulseFrequencyInHz = 1; |
| // Length of round-trip latency measurements. Number of transmitted impulses |
| // is kImpulseFrequencyInHz * kMeasureLatencyTime - 1. |
| static constexpr TimeDelta kMeasureLatencyTime = TimeDelta::Seconds(11); |
| // Utilized in round-trip latency measurements to avoid capturing noise samples. |
| static const int kImpulseThreshold = 1000; |
| static const char kTag[] = "[..........] "; |
| |
| enum TransportType { |
| kPlayout = 0x1, |
| kRecording = 0x2, |
| }; |
| |
| // Interface for processing the audio stream. Real implementations can e.g. |
| // run audio in loopback, read audio from a file or perform latency |
| // measurements. |
| class AudioStreamInterface { |
| public: |
| virtual void Write(const void* source, size_t num_frames) = 0; |
| virtual void Read(void* destination, size_t num_frames) = 0; |
| |
| protected: |
| virtual ~AudioStreamInterface() {} |
| }; |
| |
| // Reads audio samples from a PCM file where the file is stored in memory at |
| // construction. |
| class FileAudioStream : public AudioStreamInterface { |
| public: |
| FileAudioStream(size_t num_callbacks, |
| const std::string& file_name, |
| int sample_rate) |
| : file_size_in_bytes_(0), sample_rate_(sample_rate), file_pos_(0) { |
| file_size_in_bytes_ = test::GetFileSize(file_name); |
| sample_rate_ = sample_rate; |
| EXPECT_GE(file_size_in_callbacks(), num_callbacks) |
| << "Size of test file is not large enough to last during the test."; |
| const size_t num_16bit_samples = |
| test::GetFileSize(file_name) / kBytesPerSample; |
| file_.reset(new int16_t[num_16bit_samples]); |
| FILE* audio_file = fopen(file_name.c_str(), "rb"); |
| EXPECT_NE(audio_file, nullptr); |
| size_t num_samples_read = |
| fread(file_.get(), sizeof(int16_t), num_16bit_samples, audio_file); |
| EXPECT_EQ(num_samples_read, num_16bit_samples); |
| fclose(audio_file); |
| } |
| |
| // AudioStreamInterface::Write() is not implemented. |
| void Write(const void* source, size_t num_frames) override {} |
| |
| // Read samples from file stored in memory (at construction) and copy |
| // `num_frames` (<=> 10ms) to the `destination` byte buffer. |
| void Read(void* destination, size_t num_frames) override { |
| memcpy(destination, static_cast<int16_t*>(&file_[file_pos_]), |
| num_frames * sizeof(int16_t)); |
| file_pos_ += num_frames; |
| } |
| |
| int file_size_in_seconds() const { |
| return static_cast<int>(file_size_in_bytes_ / |
| (kBytesPerSample * sample_rate_)); |
| } |
| size_t file_size_in_callbacks() const { |
| return file_size_in_seconds() * kNumCallbacksPerSecond; |
| } |
| |
| private: |
| size_t file_size_in_bytes_; |
| int sample_rate_; |
| std::unique_ptr<int16_t[]> file_; |
| size_t file_pos_; |
| }; |
| |
| // Simple first in first out (FIFO) class that wraps a list of 16-bit audio |
| // buffers of fixed size and allows Write and Read operations. The idea is to |
| // store recorded audio buffers (using Write) and then read (using Read) these |
| // stored buffers with as short delay as possible when the audio layer needs |
| // data to play out. The number of buffers in the FIFO will stabilize under |
| // normal conditions since there will be a balance between Write and Read calls. |
| // The container is a std::list container and access is protected with a lock |
| // since both sides (playout and recording) are driven by its own thread. |
| class FifoAudioStream : public AudioStreamInterface { |
| public: |
| explicit FifoAudioStream(size_t frames_per_buffer) |
| : frames_per_buffer_(frames_per_buffer), |
| bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)), |
| fifo_(new AudioBufferList), |
| largest_size_(0), |
| total_written_elements_(0), |
| write_count_(0) { |
| EXPECT_NE(fifo_.get(), nullptr); |
| } |
| |
| ~FifoAudioStream() { Flush(); } |
| |
| // Allocate new memory, copy `num_frames` samples from `source` into memory |
| // and add pointer to the memory location to end of the list. |
| // Increases the size of the FIFO by one element. |
| void Write(const void* source, size_t num_frames) override { |
| ASSERT_EQ(num_frames, frames_per_buffer_); |
| PRINTD("+"); |
| if (write_count_++ < kNumIgnoreFirstCallbacks) { |
| return; |
| } |
| int16_t* memory = new int16_t[frames_per_buffer_]; |
| memcpy(static_cast<int16_t*>(&memory[0]), source, bytes_per_buffer_); |
| MutexLock lock(&lock_); |
| fifo_->push_back(memory); |
| const size_t size = fifo_->size(); |
| if (size > largest_size_) { |
| largest_size_ = size; |
| PRINTD("(%zu)", largest_size_); |
| } |
| total_written_elements_ += size; |
| } |
| |
| // Read pointer to data buffer from front of list, copy `num_frames` of stored |
| // data into `destination` and delete the utilized memory allocation. |
| // Decreases the size of the FIFO by one element. |
| void Read(void* destination, size_t num_frames) override { |
| ASSERT_EQ(num_frames, frames_per_buffer_); |
| PRINTD("-"); |
| MutexLock lock(&lock_); |
| if (fifo_->empty()) { |
| memset(destination, 0, bytes_per_buffer_); |
| } else { |
| int16_t* memory = fifo_->front(); |
| fifo_->pop_front(); |
| memcpy(destination, static_cast<int16_t*>(&memory[0]), bytes_per_buffer_); |
| delete memory; |
| } |
| } |
| |
| size_t size() const { return fifo_->size(); } |
| |
| size_t largest_size() const { return largest_size_; } |
| |
| size_t average_size() const { |
| return (total_written_elements_ == 0) |
| ? 0.0 |
| : 0.5 + static_cast<float>(total_written_elements_) / |
| (write_count_ - kNumIgnoreFirstCallbacks); |
| } |
| |
| private: |
| void Flush() { |
| for (auto it = fifo_->begin(); it != fifo_->end(); ++it) { |
| delete *it; |
| } |
| fifo_->clear(); |
| } |
| |
| using AudioBufferList = std::list<int16_t*>; |
| Mutex lock_; |
| const size_t frames_per_buffer_; |
| const size_t bytes_per_buffer_; |
| std::unique_ptr<AudioBufferList> fifo_; |
| size_t largest_size_; |
| size_t total_written_elements_; |
| size_t write_count_; |
| }; |
| |
| // Inserts periodic impulses and measures the latency between the time of |
| // transmission and time of receiving the same impulse. |
| // Usage requires a special hardware called Audio Loopback Dongle. |
| // See http://source.android.com/devices/audio/loopback.html for details. |
| class LatencyMeasuringAudioStream : public AudioStreamInterface { |
| public: |
| explicit LatencyMeasuringAudioStream(size_t frames_per_buffer) |
| : frames_per_buffer_(frames_per_buffer), |
| bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)), |
| play_count_(0), |
| rec_count_(0), |
| pulse_time_(0) {} |
| |
| // Insert periodic impulses in first two samples of `destination`. |
| void Read(void* destination, size_t num_frames) override { |
| ASSERT_EQ(num_frames, frames_per_buffer_); |
| if (play_count_ == 0) { |
| PRINT("["); |
| } |
| play_count_++; |
| memset(destination, 0, bytes_per_buffer_); |
| if (play_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) { |
| if (pulse_time_ == 0) { |
| pulse_time_ = rtc::TimeMillis(); |
| } |
| PRINT("."); |
| const int16_t impulse = std::numeric_limits<int16_t>::max(); |
| int16_t* ptr16 = static_cast<int16_t*>(destination); |
| for (size_t i = 0; i < 2; ++i) { |
| ptr16[i] = impulse; |
| } |
| } |
| } |
| |
| // Detect received impulses in `source`, derive time between transmission and |
| // detection and add the calculated delay to list of latencies. |
| void Write(const void* source, size_t num_frames) override { |
| ASSERT_EQ(num_frames, frames_per_buffer_); |
| rec_count_++; |
| if (pulse_time_ == 0) { |
| // Avoid detection of new impulse response until a new impulse has |
| // been transmitted (sets `pulse_time_` to value larger than zero). |
| return; |
| } |
| const int16_t* ptr16 = static_cast<const int16_t*>(source); |
| std::vector<int16_t> vec(ptr16, ptr16 + num_frames); |
| // Find max value in the audio buffer. |
| int max = *std::max_element(vec.begin(), vec.end()); |
| // Find index (element position in vector) of the max element. |
| int index_of_max = |
| std::distance(vec.begin(), std::find(vec.begin(), vec.end(), max)); |
| if (max > kImpulseThreshold) { |
| PRINTD("(%d,%d)", max, index_of_max); |
| int64_t now_time = rtc::TimeMillis(); |
| int extra_delay = IndexToMilliseconds(static_cast<double>(index_of_max)); |
| PRINTD("[%d]", static_cast<int>(now_time - pulse_time_)); |
| PRINTD("[%d]", extra_delay); |
| // Total latency is the difference between transmit time and detection |
| // tome plus the extra delay within the buffer in which we detected the |
| // received impulse. It is transmitted at sample 0 but can be received |
| // at sample N where N > 0. The term `extra_delay` accounts for N and it |
| // is a value between 0 and 10ms. |
| latencies_.push_back(now_time - pulse_time_ + extra_delay); |
| pulse_time_ = 0; |
| } else { |
| PRINTD("-"); |
| } |
| } |
| |
| size_t num_latency_values() const { return latencies_.size(); } |
| |
| int min_latency() const { |
| if (latencies_.empty()) |
| return 0; |
| return *std::min_element(latencies_.begin(), latencies_.end()); |
| } |
| |
| int max_latency() const { |
| if (latencies_.empty()) |
| return 0; |
| return *std::max_element(latencies_.begin(), latencies_.end()); |
| } |
| |
| int average_latency() const { |
| if (latencies_.empty()) |
| return 0; |
| return 0.5 + static_cast<double>( |
| std::accumulate(latencies_.begin(), latencies_.end(), 0)) / |
| latencies_.size(); |
| } |
| |
| void PrintResults() const { |
| PRINT("] "); |
| for (auto it = latencies_.begin(); it != latencies_.end(); ++it) { |
| PRINT("%d ", *it); |
| } |
| PRINT("\n"); |
| PRINT("%s[min, max, avg]=[%d, %d, %d] ms\n", kTag, min_latency(), |
| max_latency(), average_latency()); |
| } |
| |
| int IndexToMilliseconds(double index) const { |
| return static_cast<int>(10.0 * (index / frames_per_buffer_) + 0.5); |
| } |
| |
| private: |
| const size_t frames_per_buffer_; |
| const size_t bytes_per_buffer_; |
| size_t play_count_; |
| size_t rec_count_; |
| int64_t pulse_time_; |
| std::vector<int> latencies_; |
| }; |
| |
| // Mocks the AudioTransport object and proxies actions for the two callbacks |
| // (RecordedDataIsAvailable and NeedMorePlayData) to different implementations |
| // of AudioStreamInterface. |
| class MockAudioTransportAndroid : public test::MockAudioTransport { |
| public: |
| explicit MockAudioTransportAndroid(int type) |
| : num_callbacks_(0), |
| type_(type), |
| play_count_(0), |
| rec_count_(0), |
| audio_stream_(nullptr) {} |
| |
| virtual ~MockAudioTransportAndroid() {} |
| |
| // Set default actions of the mock object. We are delegating to fake |
| // implementations (of AudioStreamInterface) here. |
| void HandleCallbacks(rtc::Event* test_is_done, |
| AudioStreamInterface* audio_stream, |
| int num_callbacks) { |
| test_is_done_ = test_is_done; |
| audio_stream_ = audio_stream; |
| num_callbacks_ = num_callbacks; |
| if (play_mode()) { |
| ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _)) |
| .WillByDefault( |
| Invoke(this, &MockAudioTransportAndroid::RealNeedMorePlayData)); |
| } |
| if (rec_mode()) { |
| ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _)) |
| .WillByDefault(Invoke( |
| this, &MockAudioTransportAndroid::RealRecordedDataIsAvailable)); |
| } |
| } |
| |
| int32_t RealRecordedDataIsAvailable(const void* audioSamples, |
| const size_t nSamples, |
| const size_t nBytesPerSample, |
| const size_t nChannels, |
| const uint32_t samplesPerSec, |
| const uint32_t totalDelayMS, |
| const int32_t clockDrift, |
| const uint32_t currentMicLevel, |
| const bool keyPressed, |
| const uint32_t& newMicLevel) { |
| EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks."; |
| rec_count_++; |
| // Process the recorded audio stream if an AudioStreamInterface |
| // implementation exists. |
| if (audio_stream_) { |
| audio_stream_->Write(audioSamples, nSamples); |
| } |
| if (ReceivedEnoughCallbacks()) { |
| test_is_done_->Set(); |
| } |
| return 0; |
| } |
| |
| int32_t RealNeedMorePlayData(const size_t nSamples, |
| const size_t nBytesPerSample, |
| const size_t nChannels, |
| const uint32_t samplesPerSec, |
| void* audioSamples, |
| size_t& nSamplesOut, // NOLINT |
| int64_t* elapsed_time_ms, |
| int64_t* ntp_time_ms) { |
| EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks."; |
| play_count_++; |
| nSamplesOut = nSamples; |
| // Read (possibly processed) audio stream samples to be played out if an |
| // AudioStreamInterface implementation exists. |
| if (audio_stream_) { |
| audio_stream_->Read(audioSamples, nSamples); |
| } |
| if (ReceivedEnoughCallbacks()) { |
| test_is_done_->Set(); |
| } |
| return 0; |
| } |
| |
| bool ReceivedEnoughCallbacks() { |
| bool recording_done = false; |
| if (rec_mode()) |
| recording_done = rec_count_ >= num_callbacks_; |
| else |
| recording_done = true; |
| |
| bool playout_done = false; |
| if (play_mode()) |
| playout_done = play_count_ >= num_callbacks_; |
| else |
| playout_done = true; |
| |
| return recording_done && playout_done; |
| } |
| |
| bool play_mode() const { return type_ & kPlayout; } |
| bool rec_mode() const { return type_ & kRecording; } |
| |
| private: |
| rtc::Event* test_is_done_; |
| size_t num_callbacks_; |
| int type_; |
| size_t play_count_; |
| size_t rec_count_; |
| AudioStreamInterface* audio_stream_; |
| std::unique_ptr<LatencyMeasuringAudioStream> latency_audio_stream_; |
| }; |
| |
| // AudioDeviceTest test fixture. |
| class AudioDeviceTest : public ::testing::Test { |
| protected: |
| AudioDeviceTest() { |
| // One-time initialization of JVM and application context. Ensures that we |
| // can do calls between C++ and Java. Initializes both Java and OpenSL ES |
| // implementations. |
| // Creates an audio device using a default audio layer. |
| jni_ = AttachCurrentThreadIfNeeded(); |
| context_ = GetAppContext(jni_); |
| audio_device_ = CreateJavaAudioDeviceModule(jni_, context_.obj()); |
| EXPECT_NE(audio_device_.get(), nullptr); |
| EXPECT_EQ(0, audio_device_->Init()); |
| audio_manager_ = GetAudioManager(jni_, context_); |
| UpdateParameters(); |
| } |
| virtual ~AudioDeviceTest() { EXPECT_EQ(0, audio_device_->Terminate()); } |
| |
| int total_delay_ms() const { return 10; } |
| |
| void UpdateParameters() { |
| int input_sample_rate = GetDefaultSampleRate(jni_, audio_manager_); |
| int output_sample_rate = GetDefaultSampleRate(jni_, audio_manager_); |
| bool stereo_playout_is_available; |
| bool stereo_record_is_available; |
| audio_device_->StereoPlayoutIsAvailable(&stereo_playout_is_available); |
| audio_device_->StereoRecordingIsAvailable(&stereo_record_is_available); |
| GetAudioParameters(jni_, context_, audio_manager_, input_sample_rate, |
| output_sample_rate, stereo_playout_is_available, |
| stereo_record_is_available, &input_parameters_, |
| &output_parameters_); |
| } |
| |
| void SetActiveAudioLayer(AudioDeviceModule::AudioLayer audio_layer) { |
| audio_device_ = CreateAndroidAudioDeviceModule(audio_layer); |
| EXPECT_NE(audio_device_.get(), nullptr); |
| EXPECT_EQ(0, audio_device_->Init()); |
| UpdateParameters(); |
| } |
| |
| int playout_sample_rate() const { return output_parameters_.sample_rate(); } |
| int record_sample_rate() const { return input_parameters_.sample_rate(); } |
| size_t playout_channels() const { return output_parameters_.channels(); } |
| size_t record_channels() const { return input_parameters_.channels(); } |
| size_t playout_frames_per_10ms_buffer() const { |
| return output_parameters_.frames_per_10ms_buffer(); |
| } |
| size_t record_frames_per_10ms_buffer() const { |
| return input_parameters_.frames_per_10ms_buffer(); |
| } |
| |
| rtc::scoped_refptr<AudioDeviceModule> audio_device() const { |
| return audio_device_; |
| } |
| |
| // Returns file name relative to the resource root given a sample rate. |
| std::string GetFileName(int sample_rate) { |
| EXPECT_TRUE(sample_rate == 48000 || sample_rate == 44100); |
| char fname[64]; |
| snprintf(fname, sizeof(fname), "audio_device/audio_short%d", |
| sample_rate / 1000); |
| std::string file_name(webrtc::test::ResourcePath(fname, "pcm")); |
| EXPECT_TRUE(test::FileExists(file_name)); |
| #ifdef ENABLE_PRINTF |
| PRINT("file name: %s\n", file_name.c_str()); |
| const size_t bytes = test::GetFileSize(file_name); |
| PRINT("file size: %zu [bytes]\n", bytes); |
| PRINT("file size: %zu [samples]\n", bytes / kBytesPerSample); |
| const int seconds = |
| static_cast<int>(bytes / (sample_rate * kBytesPerSample)); |
| PRINT("file size: %d [secs]\n", seconds); |
| PRINT("file size: %zu [callbacks]\n", seconds * kNumCallbacksPerSecond); |
| #endif |
| return file_name; |
| } |
| |
| AudioDeviceModule::AudioLayer GetActiveAudioLayer() const { |
| AudioDeviceModule::AudioLayer audio_layer; |
| EXPECT_EQ(0, audio_device()->ActiveAudioLayer(&audio_layer)); |
| return audio_layer; |
| } |
| |
| int TestDelayOnAudioLayer( |
| const AudioDeviceModule::AudioLayer& layer_to_test) { |
| rtc::scoped_refptr<AudioDeviceModule> audio_device; |
| audio_device = CreateAndroidAudioDeviceModule(layer_to_test); |
| EXPECT_NE(audio_device.get(), nullptr); |
| uint16_t playout_delay; |
| EXPECT_EQ(0, audio_device->PlayoutDelay(&playout_delay)); |
| return playout_delay; |
| } |
| |
| AudioDeviceModule::AudioLayer TestActiveAudioLayer( |
| const AudioDeviceModule::AudioLayer& layer_to_test) { |
| rtc::scoped_refptr<AudioDeviceModule> audio_device; |
| audio_device = CreateAndroidAudioDeviceModule(layer_to_test); |
| EXPECT_NE(audio_device.get(), nullptr); |
| AudioDeviceModule::AudioLayer active; |
| EXPECT_EQ(0, audio_device->ActiveAudioLayer(&active)); |
| return active; |
| } |
| |
| // One way to ensure that the engine object is valid is to create an |
| // SL Engine interface since it exposes creation methods of all the OpenSL ES |
| // object types and it is only supported on the engine object. This method |
| // also verifies that the engine interface supports at least one interface. |
| // Note that, the test below is not a full test of the SLEngineItf object |
| // but only a simple sanity test to check that the global engine object is OK. |
| void ValidateSLEngine(SLObjectItf engine_object) { |
| EXPECT_NE(nullptr, engine_object); |
| // Get the SL Engine interface which is exposed by the engine object. |
| SLEngineItf engine; |
| SLresult result = |
| (*engine_object)->GetInterface(engine_object, SL_IID_ENGINE, &engine); |
| EXPECT_EQ(result, SL_RESULT_SUCCESS) << "GetInterface() on engine failed"; |
| // Ensure that the SL Engine interface exposes at least one interface. |
| SLuint32 object_id = SL_OBJECTID_ENGINE; |
| SLuint32 num_supported_interfaces = 0; |
| result = (*engine)->QueryNumSupportedInterfaces(engine, object_id, |
| &num_supported_interfaces); |
| EXPECT_EQ(result, SL_RESULT_SUCCESS) |
| << "QueryNumSupportedInterfaces() failed"; |
| EXPECT_GE(num_supported_interfaces, 1u); |
| } |
| |
| // Volume control is currently only supported for the Java output audio layer. |
| // For OpenSL ES, the internal stream volume is always on max level and there |
| // is no need for this test to set it to max. |
| bool AudioLayerSupportsVolumeControl() const { |
| return GetActiveAudioLayer() == AudioDeviceModule::kAndroidJavaAudio; |
| } |
| |
| void SetMaxPlayoutVolume() { |
| if (!AudioLayerSupportsVolumeControl()) |
| return; |
| uint32_t max_volume; |
| EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume)); |
| EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume)); |
| } |
| |
| void DisableBuiltInAECIfAvailable() { |
| if (audio_device()->BuiltInAECIsAvailable()) { |
| EXPECT_EQ(0, audio_device()->EnableBuiltInAEC(false)); |
| } |
| } |
| |
| void StartPlayout() { |
| EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); |
| EXPECT_FALSE(audio_device()->Playing()); |
| EXPECT_EQ(0, audio_device()->InitPlayout()); |
| EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); |
| EXPECT_EQ(0, audio_device()->StartPlayout()); |
| EXPECT_TRUE(audio_device()->Playing()); |
| } |
| |
| void StopPlayout() { |
| EXPECT_EQ(0, audio_device()->StopPlayout()); |
| EXPECT_FALSE(audio_device()->Playing()); |
| EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); |
| } |
| |
| void StartRecording() { |
| EXPECT_FALSE(audio_device()->RecordingIsInitialized()); |
| EXPECT_FALSE(audio_device()->Recording()); |
| EXPECT_EQ(0, audio_device()->InitRecording()); |
| EXPECT_TRUE(audio_device()->RecordingIsInitialized()); |
| EXPECT_EQ(0, audio_device()->StartRecording()); |
| EXPECT_TRUE(audio_device()->Recording()); |
| } |
| |
| void StopRecording() { |
| EXPECT_EQ(0, audio_device()->StopRecording()); |
| EXPECT_FALSE(audio_device()->Recording()); |
| } |
| |
| int GetMaxSpeakerVolume() const { |
| uint32_t max_volume(0); |
| EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume)); |
| return max_volume; |
| } |
| |
| int GetMinSpeakerVolume() const { |
| uint32_t min_volume(0); |
| EXPECT_EQ(0, audio_device()->MinSpeakerVolume(&min_volume)); |
| return min_volume; |
| } |
| |
| int GetSpeakerVolume() const { |
| uint32_t volume(0); |
| EXPECT_EQ(0, audio_device()->SpeakerVolume(&volume)); |
| return volume; |
| } |
| |
| bool IsLowLatencyPlayoutSupported() { |
| return jni::IsLowLatencyInputSupported(jni_, context_); |
| } |
| |
| bool IsLowLatencyRecordSupported() { |
| return jni::IsLowLatencyOutputSupported(jni_, context_); |
| } |
| |
| bool IsAAudioSupported() { |
| #if defined(WEBRTC_AUDIO_DEVICE_INCLUDE_ANDROID_AAUDIO) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| JNIEnv* jni_; |
| ScopedJavaLocalRef<jobject> context_; |
| rtc::Event test_is_done_; |
| rtc::scoped_refptr<AudioDeviceModule> audio_device_; |
| ScopedJavaLocalRef<jobject> audio_manager_; |
| AudioParameters output_parameters_; |
| AudioParameters input_parameters_; |
| }; |
| |
| TEST_F(AudioDeviceTest, ConstructDestruct) { |
| // Using the test fixture to create and destruct the audio device module. |
| } |
| |
| // We always ask for a default audio layer when the ADM is constructed. But the |
| // ADM will then internally set the best suitable combination of audio layers, |
| // for input and output based on if low-latency output and/or input audio in |
| // combination with OpenSL ES is supported or not. This test ensures that the |
| // correct selection is done. |
| TEST_F(AudioDeviceTest, VerifyDefaultAudioLayer) { |
| const AudioDeviceModule::AudioLayer audio_layer = |
| TestActiveAudioLayer(AudioDeviceModule::kPlatformDefaultAudio); |
| bool low_latency_output = IsLowLatencyPlayoutSupported(); |
| bool low_latency_input = IsLowLatencyRecordSupported(); |
| bool aaudio = IsAAudioSupported(); |
| AudioDeviceModule::AudioLayer expected_audio_layer; |
| if (aaudio) { |
| expected_audio_layer = AudioDeviceModule::kAndroidAAudioAudio; |
| } else if (low_latency_output && low_latency_input) { |
| expected_audio_layer = AudioDeviceModule::kAndroidOpenSLESAudio; |
| } else if (low_latency_output && !low_latency_input) { |
| expected_audio_layer = |
| AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio; |
| } else { |
| expected_audio_layer = AudioDeviceModule::kAndroidJavaAudio; |
| } |
| EXPECT_EQ(expected_audio_layer, audio_layer); |
| } |
| |
| // Verify that it is possible to explicitly create the two types of supported |
| // ADMs. These two tests overrides the default selection of native audio layer |
| // by ignoring if the device supports low-latency output or not. |
| TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForCombinedJavaOpenSLCombo) { |
| AudioDeviceModule::AudioLayer expected_layer = |
| AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio; |
| AudioDeviceModule::AudioLayer active_layer = |
| TestActiveAudioLayer(expected_layer); |
| EXPECT_EQ(expected_layer, active_layer); |
| } |
| |
| TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForJavaInBothDirections) { |
| AudioDeviceModule::AudioLayer expected_layer = |
| AudioDeviceModule::kAndroidJavaAudio; |
| AudioDeviceModule::AudioLayer active_layer = |
| TestActiveAudioLayer(expected_layer); |
| EXPECT_EQ(expected_layer, active_layer); |
| } |
| |
| TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForOpenSLInBothDirections) { |
| AudioDeviceModule::AudioLayer expected_layer = |
| AudioDeviceModule::kAndroidOpenSLESAudio; |
| AudioDeviceModule::AudioLayer active_layer = |
| TestActiveAudioLayer(expected_layer); |
| EXPECT_EQ(expected_layer, active_layer); |
| } |
| |
| #if !defined(WEBRTC_AUDIO_DEVICE_INCLUDE_ANDROID_AAUDIO) |
| #define MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections \ |
| DISABLED_CorrectAudioLayerIsUsedForAAudioInBothDirections |
| |
| #define MAYBE_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo \ |
| DISABLED_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo |
| #else |
| #define MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections \ |
| CorrectAudioLayerIsUsedForAAudioInBothDirections |
| |
| #define MAYBE_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo \ |
| CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo |
| #endif |
| TEST_F(AudioDeviceTest, |
| MAYBE_CorrectAudioLayerIsUsedForAAudioInBothDirections) { |
| AudioDeviceModule::AudioLayer expected_layer = |
| AudioDeviceModule::kAndroidAAudioAudio; |
| AudioDeviceModule::AudioLayer active_layer = |
| TestActiveAudioLayer(expected_layer); |
| EXPECT_EQ(expected_layer, active_layer); |
| } |
| |
| TEST_F(AudioDeviceTest, |
| MAYBE_CorrectAudioLayerIsUsedForCombinedJavaAAudioCombo) { |
| AudioDeviceModule::AudioLayer expected_layer = |
| AudioDeviceModule::kAndroidJavaInputAndAAudioOutputAudio; |
| AudioDeviceModule::AudioLayer active_layer = |
| TestActiveAudioLayer(expected_layer); |
| EXPECT_EQ(expected_layer, active_layer); |
| } |
| |
| // The Android ADM supports two different delay reporting modes. One for the |
| // low-latency output path (in combination with OpenSL ES), and one for the |
| // high-latency output path (Java backends in both directions). These two tests |
| // verifies that the audio device reports correct delay estimate given the |
| // selected audio layer. Note that, this delay estimate will only be utilized |
| // if the HW AEC is disabled. |
| // Delay should be 75 ms in high latency and 25 ms in low latency. |
| TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForHighLatencyOutputPath) { |
| EXPECT_EQ(75, TestDelayOnAudioLayer(AudioDeviceModule::kAndroidJavaAudio)); |
| } |
| |
| TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForLowLatencyOutputPath) { |
| EXPECT_EQ(25, |
| TestDelayOnAudioLayer( |
| AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio)); |
| } |
| |
| TEST_F(AudioDeviceTest, InitTerminate) { |
| // Initialization is part of the test fixture. |
| EXPECT_TRUE(audio_device()->Initialized()); |
| EXPECT_EQ(0, audio_device()->Terminate()); |
| EXPECT_FALSE(audio_device()->Initialized()); |
| } |
| |
| TEST_F(AudioDeviceTest, Devices) { |
| // Device enumeration is not supported. Verify fixed values only. |
| EXPECT_EQ(1, audio_device()->PlayoutDevices()); |
| EXPECT_EQ(1, audio_device()->RecordingDevices()); |
| } |
| |
| TEST_F(AudioDeviceTest, IsAcousticEchoCancelerSupported) { |
| PRINT("%sAcoustic Echo Canceler support: %s\n", kTag, |
| audio_device()->BuiltInAECIsAvailable() ? "Yes" : "No"); |
| } |
| |
| TEST_F(AudioDeviceTest, IsNoiseSuppressorSupported) { |
| PRINT("%sNoise Suppressor support: %s\n", kTag, |
| audio_device()->BuiltInNSIsAvailable() ? "Yes" : "No"); |
| } |
| |
| // Verify that playout side is configured for mono by default. |
| TEST_F(AudioDeviceTest, UsesMonoPlayoutByDefault) { |
| EXPECT_EQ(1u, output_parameters_.channels()); |
| } |
| |
| // Verify that recording side is configured for mono by default. |
| TEST_F(AudioDeviceTest, UsesMonoRecordingByDefault) { |
| EXPECT_EQ(1u, input_parameters_.channels()); |
| } |
| |
| TEST_F(AudioDeviceTest, SpeakerVolumeShouldBeAvailable) { |
| // The OpenSL ES output audio path does not support volume control. |
| if (!AudioLayerSupportsVolumeControl()) |
| return; |
| bool available; |
| EXPECT_EQ(0, audio_device()->SpeakerVolumeIsAvailable(&available)); |
| EXPECT_TRUE(available); |
| } |
| |
| TEST_F(AudioDeviceTest, MaxSpeakerVolumeIsPositive) { |
| // The OpenSL ES output audio path does not support volume control. |
| if (!AudioLayerSupportsVolumeControl()) |
| return; |
| StartPlayout(); |
| EXPECT_GT(GetMaxSpeakerVolume(), 0); |
| StopPlayout(); |
| } |
| |
| TEST_F(AudioDeviceTest, MinSpeakerVolumeIsZero) { |
| // The OpenSL ES output audio path does not support volume control. |
| if (!AudioLayerSupportsVolumeControl()) |
| return; |
| EXPECT_EQ(GetMinSpeakerVolume(), 0); |
| } |
| |
| TEST_F(AudioDeviceTest, DefaultSpeakerVolumeIsWithinMinMax) { |
| // The OpenSL ES output audio path does not support volume control. |
| if (!AudioLayerSupportsVolumeControl()) |
| return; |
| const int default_volume = GetSpeakerVolume(); |
| EXPECT_GE(default_volume, GetMinSpeakerVolume()); |
| EXPECT_LE(default_volume, GetMaxSpeakerVolume()); |
| } |
| |
| TEST_F(AudioDeviceTest, SetSpeakerVolumeActuallySetsVolume) { |
| // The OpenSL ES output audio path does not support volume control. |
| if (!AudioLayerSupportsVolumeControl()) |
| return; |
| const int default_volume = GetSpeakerVolume(); |
| const int max_volume = GetMaxSpeakerVolume(); |
| EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume)); |
| int new_volume = GetSpeakerVolume(); |
| EXPECT_EQ(new_volume, max_volume); |
| EXPECT_EQ(0, audio_device()->SetSpeakerVolume(default_volume)); |
| } |
| |
| // Tests that playout can be initiated, started and stopped. No audio callback |
| // is registered in this test. |
| TEST_F(AudioDeviceTest, StartStopPlayout) { |
| StartPlayout(); |
| StopPlayout(); |
| StartPlayout(); |
| StopPlayout(); |
| } |
| |
| // Tests that recording can be initiated, started and stopped. No audio callback |
| // is registered in this test. |
| TEST_F(AudioDeviceTest, StartStopRecording) { |
| StartRecording(); |
| StopRecording(); |
| StartRecording(); |
| StopRecording(); |
| } |
| |
| // Verify that calling StopPlayout() will leave us in an uninitialized state |
| // which will require a new call to InitPlayout(). This test does not call |
| // StartPlayout() while being uninitialized since doing so will hit a |
| // RTC_DCHECK and death tests are not supported on Android. |
| TEST_F(AudioDeviceTest, StopPlayoutRequiresInitToRestart) { |
| EXPECT_EQ(0, audio_device()->InitPlayout()); |
| EXPECT_EQ(0, audio_device()->StartPlayout()); |
| EXPECT_EQ(0, audio_device()->StopPlayout()); |
| EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); |
| } |
| |
| // Verify that calling StopRecording() will leave us in an uninitialized state |
| // which will require a new call to InitRecording(). This test does not call |
| // StartRecording() while being uninitialized since doing so will hit a |
| // RTC_DCHECK and death tests are not supported on Android. |
| TEST_F(AudioDeviceTest, StopRecordingRequiresInitToRestart) { |
| EXPECT_EQ(0, audio_device()->InitRecording()); |
| EXPECT_EQ(0, audio_device()->StartRecording()); |
| EXPECT_EQ(0, audio_device()->StopRecording()); |
| EXPECT_FALSE(audio_device()->RecordingIsInitialized()); |
| } |
| |
| // Start playout and verify that the native audio layer starts asking for real |
| // audio samples to play out using the NeedMorePlayData callback. |
| TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) { |
| MockAudioTransportAndroid mock(kPlayout); |
| mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks); |
| EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(), |
| kBytesPerSample, playout_channels(), |
| playout_sample_rate(), NotNull(), _, _, _)) |
| .Times(AtLeast(kNumCallbacks)); |
| EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); |
| StartPlayout(); |
| test_is_done_.Wait(kTestTimeOut); |
| StopPlayout(); |
| } |
| |
| // Start recording and verify that the native audio layer starts feeding real |
| // audio samples via the RecordedDataIsAvailable callback. |
| TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) { |
| MockAudioTransportAndroid mock(kRecording); |
| mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks); |
| EXPECT_CALL( |
| mock, RecordedDataIsAvailable(NotNull(), record_frames_per_10ms_buffer(), |
| kBytesPerSample, record_channels(), |
| record_sample_rate(), _, 0, 0, false, _, _)) |
| .Times(AtLeast(kNumCallbacks)); |
| |
| EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); |
| StartRecording(); |
| test_is_done_.Wait(kTestTimeOut); |
| StopRecording(); |
| } |
| |
| // Start playout and recording (full-duplex audio) and verify that audio is |
| // active in both directions. |
| TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) { |
| MockAudioTransportAndroid mock(kPlayout | kRecording); |
| mock.HandleCallbacks(&test_is_done_, nullptr, kNumCallbacks); |
| EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(), |
| kBytesPerSample, playout_channels(), |
| playout_sample_rate(), NotNull(), _, _, _)) |
| .Times(AtLeast(kNumCallbacks)); |
| EXPECT_CALL( |
| mock, RecordedDataIsAvailable(NotNull(), record_frames_per_10ms_buffer(), |
| kBytesPerSample, record_channels(), |
| record_sample_rate(), _, 0, 0, false, _, _)) |
| .Times(AtLeast(kNumCallbacks)); |
| EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); |
| StartPlayout(); |
| StartRecording(); |
| test_is_done_.Wait(kTestTimeOut); |
| StopRecording(); |
| StopPlayout(); |
| } |
| |
| // Start playout and read audio from an external PCM file when the audio layer |
| // asks for data to play out. Real audio is played out in this test but it does |
| // not contain any explicit verification that the audio quality is perfect. |
| TEST_F(AudioDeviceTest, RunPlayoutWithFileAsSource) { |
| // TODO(henrika): extend test when mono output is supported. |
| EXPECT_EQ(1u, playout_channels()); |
| NiceMock<MockAudioTransportAndroid> mock(kPlayout); |
| const int num_callbacks = kFilePlayTimeInSec * kNumCallbacksPerSecond; |
| std::string file_name = GetFileName(playout_sample_rate()); |
| std::unique_ptr<FileAudioStream> file_audio_stream( |
| new FileAudioStream(num_callbacks, file_name, playout_sample_rate())); |
| mock.HandleCallbacks(&test_is_done_, file_audio_stream.get(), num_callbacks); |
| // SetMaxPlayoutVolume(); |
| EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); |
| StartPlayout(); |
| test_is_done_.Wait(kTestTimeOut); |
| StopPlayout(); |
| } |
| |
| // It should be possible to create an OpenSL engine object if OpenSL ES based |
| // audio is requested in any direction. |
| TEST_F(AudioDeviceTest, TestCreateOpenSLEngine) { |
| // Verify that the global (singleton) OpenSL Engine can be acquired. |
| OpenSLEngineManager engine_manager; |
| SLObjectItf engine_object = engine_manager.GetOpenSLEngine(); |
| EXPECT_NE(nullptr, engine_object); |
| // Perform a simple sanity check of the created engine object. |
| ValidateSLEngine(engine_object); |
| } |
| |
| // The audio device module only suppors the same sample rate in both directions. |
| // In addition, in full-duplex low-latency mode (OpenSL ES), both input and |
| // output must use the same native buffer size to allow for usage of the fast |
| // audio track in Android. |
| TEST_F(AudioDeviceTest, VerifyAudioParameters) { |
| EXPECT_EQ(output_parameters_.sample_rate(), input_parameters_.sample_rate()); |
| SetActiveAudioLayer(AudioDeviceModule::kAndroidOpenSLESAudio); |
| EXPECT_EQ(output_parameters_.frames_per_buffer(), |
| input_parameters_.frames_per_buffer()); |
| } |
| |
| TEST_F(AudioDeviceTest, ShowAudioParameterInfo) { |
| const bool low_latency_out = false; |
| const bool low_latency_in = false; |
| PRINT("PLAYOUT:\n"); |
| PRINT("%saudio layer: %s\n", kTag, |
| low_latency_out ? "Low latency OpenSL" : "Java/JNI based AudioTrack"); |
| PRINT("%ssample rate: %d Hz\n", kTag, output_parameters_.sample_rate()); |
| PRINT("%schannels: %zu\n", kTag, output_parameters_.channels()); |
| PRINT("%sframes per buffer: %zu <=> %.2f ms\n", kTag, |
| output_parameters_.frames_per_buffer(), |
| output_parameters_.GetBufferSizeInMilliseconds()); |
| PRINT("RECORD: \n"); |
| PRINT("%saudio layer: %s\n", kTag, |
| low_latency_in ? "Low latency OpenSL" : "Java/JNI based AudioRecord"); |
| PRINT("%ssample rate: %d Hz\n", kTag, input_parameters_.sample_rate()); |
| PRINT("%schannels: %zu\n", kTag, input_parameters_.channels()); |
| PRINT("%sframes per buffer: %zu <=> %.2f ms\n", kTag, |
| input_parameters_.frames_per_buffer(), |
| input_parameters_.GetBufferSizeInMilliseconds()); |
| } |
| |
| // Add device-specific information to the test for logging purposes. |
| TEST_F(AudioDeviceTest, ShowDeviceInfo) { |
| std::string model = |
| JavaToNativeString(jni_, Java_BuildInfo_getDeviceModel(jni_)); |
| std::string brand = JavaToNativeString(jni_, Java_BuildInfo_getBrand(jni_)); |
| std::string manufacturer = |
| JavaToNativeString(jni_, Java_BuildInfo_getDeviceManufacturer(jni_)); |
| |
| PRINT("%smodel: %s\n", kTag, model.c_str()); |
| PRINT("%sbrand: %s\n", kTag, brand.c_str()); |
| PRINT("%smanufacturer: %s\n", kTag, manufacturer.c_str()); |
| } |
| |
| // Add Android build information to the test for logging purposes. |
| TEST_F(AudioDeviceTest, ShowBuildInfo) { |
| std::string release = |
| JavaToNativeString(jni_, Java_BuildInfo_getBuildRelease(jni_)); |
| std::string build_id = |
| JavaToNativeString(jni_, Java_BuildInfo_getAndroidBuildId(jni_)); |
| std::string build_type = |
| JavaToNativeString(jni_, Java_BuildInfo_getBuildType(jni_)); |
| int sdk = Java_BuildInfo_getSdkVersion(jni_); |
| |
| PRINT("%sbuild release: %s\n", kTag, release.c_str()); |
| PRINT("%sbuild id: %s\n", kTag, build_id.c_str()); |
| PRINT("%sbuild type: %s\n", kTag, build_type.c_str()); |
| PRINT("%sSDK version: %d\n", kTag, sdk); |
| } |
| |
| // Basic test of the AudioParameters class using default construction where |
| // all members are set to zero. |
| TEST_F(AudioDeviceTest, AudioParametersWithDefaultConstruction) { |
| AudioParameters params; |
| EXPECT_FALSE(params.is_valid()); |
| EXPECT_EQ(0, params.sample_rate()); |
| EXPECT_EQ(0U, params.channels()); |
| EXPECT_EQ(0U, params.frames_per_buffer()); |
| EXPECT_EQ(0U, params.frames_per_10ms_buffer()); |
| EXPECT_EQ(0U, params.GetBytesPerFrame()); |
| EXPECT_EQ(0U, params.GetBytesPerBuffer()); |
| EXPECT_EQ(0U, params.GetBytesPer10msBuffer()); |
| EXPECT_EQ(0.0f, params.GetBufferSizeInMilliseconds()); |
| } |
| |
| // Basic test of the AudioParameters class using non default construction. |
| TEST_F(AudioDeviceTest, AudioParametersWithNonDefaultConstruction) { |
| const int kSampleRate = 48000; |
| const size_t kChannels = 1; |
| const size_t kFramesPerBuffer = 480; |
| const size_t kFramesPer10msBuffer = 480; |
| const size_t kBytesPerFrame = 2; |
| const float kBufferSizeInMs = 10.0f; |
| AudioParameters params(kSampleRate, kChannels, kFramesPerBuffer); |
| EXPECT_TRUE(params.is_valid()); |
| EXPECT_EQ(kSampleRate, params.sample_rate()); |
| EXPECT_EQ(kChannels, params.channels()); |
| EXPECT_EQ(kFramesPerBuffer, params.frames_per_buffer()); |
| EXPECT_EQ(static_cast<size_t>(kSampleRate / 100), |
| params.frames_per_10ms_buffer()); |
| EXPECT_EQ(kBytesPerFrame, params.GetBytesPerFrame()); |
| EXPECT_EQ(kBytesPerFrame * kFramesPerBuffer, params.GetBytesPerBuffer()); |
| EXPECT_EQ(kBytesPerFrame * kFramesPer10msBuffer, |
| params.GetBytesPer10msBuffer()); |
| EXPECT_EQ(kBufferSizeInMs, params.GetBufferSizeInMilliseconds()); |
| } |
| |
| // Start playout and recording and store recorded data in an intermediate FIFO |
| // buffer from which the playout side then reads its samples in the same order |
| // as they were stored. Under ideal circumstances, a callback sequence would |
| // look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-' |
| // means 'packet played'. Under such conditions, the FIFO would only contain |
| // one packet on average. However, under more realistic conditions, the size |
| // of the FIFO will vary more due to an unbalance between the two sides. |
| // This test tries to verify that the device maintains a balanced callback- |
| // sequence by running in loopback for kFullDuplexTime seconds while |
| // measuring the size (max and average) of the FIFO. The size of the FIFO is |
| // increased by the recording side and decreased by the playout side. |
| // TODO(henrika): tune the final test parameters after running tests on several |
| // different devices. |
| // Disabling this test on bots since it is difficult to come up with a robust |
| // test condition that all worked as intended. The main issue is that, when |
| // swarming is used, an initial latency can be built up when the both sides |
| // starts at different times. Hence, the test can fail even if audio works |
| // as intended. Keeping the test so it can be enabled manually. |
| // http://bugs.webrtc.org/7744 |
| TEST_F(AudioDeviceTest, DISABLED_RunPlayoutAndRecordingInFullDuplex) { |
| EXPECT_EQ(record_channels(), playout_channels()); |
| EXPECT_EQ(record_sample_rate(), playout_sample_rate()); |
| NiceMock<MockAudioTransportAndroid> mock(kPlayout | kRecording); |
| std::unique_ptr<FifoAudioStream> fifo_audio_stream( |
| new FifoAudioStream(playout_frames_per_10ms_buffer())); |
| mock.HandleCallbacks(&test_is_done_, fifo_audio_stream.get(), |
| kFullDuplexTime.seconds() * kNumCallbacksPerSecond); |
| SetMaxPlayoutVolume(); |
| EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); |
| StartRecording(); |
| StartPlayout(); |
| test_is_done_.Wait(std::max(kTestTimeOut, kFullDuplexTime)); |
| StopPlayout(); |
| StopRecording(); |
| |
| // These thresholds are set rather high to accomodate differences in hardware |
| // in several devices, so this test can be used in swarming. |
| // See http://bugs.webrtc.org/6464 |
| EXPECT_LE(fifo_audio_stream->average_size(), 60u); |
| EXPECT_LE(fifo_audio_stream->largest_size(), 70u); |
| } |
| |
| // Measures loopback latency and reports the min, max and average values for |
| // a full duplex audio session. |
| // The latency is measured like so: |
| // - Insert impulses periodically on the output side. |
| // - Detect the impulses on the input side. |
| // - Measure the time difference between the transmit time and receive time. |
| // - Store time differences in a vector and calculate min, max and average. |
| // This test requires a special hardware called Audio Loopback Dongle. |
| // See http://source.android.com/devices/audio/loopback.html for details. |
| TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) { |
| EXPECT_EQ(record_channels(), playout_channels()); |
| EXPECT_EQ(record_sample_rate(), playout_sample_rate()); |
| NiceMock<MockAudioTransportAndroid> mock(kPlayout | kRecording); |
| std::unique_ptr<LatencyMeasuringAudioStream> latency_audio_stream( |
| new LatencyMeasuringAudioStream(playout_frames_per_10ms_buffer())); |
| mock.HandleCallbacks(&test_is_done_, latency_audio_stream.get(), |
| kMeasureLatencyTime.seconds() * kNumCallbacksPerSecond); |
| EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); |
| SetMaxPlayoutVolume(); |
| DisableBuiltInAECIfAvailable(); |
| StartRecording(); |
| StartPlayout(); |
| test_is_done_.Wait(std::max(kTestTimeOut, kMeasureLatencyTime)); |
| StopPlayout(); |
| StopRecording(); |
| // Verify that the correct number of transmitted impulses are detected. |
| EXPECT_EQ(latency_audio_stream->num_latency_values(), |
| static_cast<size_t>( |
| kImpulseFrequencyInHz * kMeasureLatencyTime.seconds() - 1)); |
| latency_audio_stream->PrintResults(); |
| } |
| |
| // TODO(https://crbug.com/webrtc/15537): test randomly fails. |
| TEST(JavaAudioDeviceTest, DISABLED_TestRunningTwoAdmsSimultaneously) { |
| JNIEnv* jni = AttachCurrentThreadIfNeeded(); |
| ScopedJavaLocalRef<jobject> context = GetAppContext(jni); |
| |
| // Create and start the first ADM. |
| rtc::scoped_refptr<AudioDeviceModule> adm_1 = |
| CreateJavaAudioDeviceModule(jni, context.obj()); |
| EXPECT_EQ(0, adm_1->Init()); |
| EXPECT_EQ(0, adm_1->InitRecording()); |
| EXPECT_EQ(0, adm_1->StartRecording()); |
| |
| // Create and start a second ADM. Expect this to fail due to the microphone |
| // already being in use. |
| rtc::scoped_refptr<AudioDeviceModule> adm_2 = |
| CreateJavaAudioDeviceModule(jni, context.obj()); |
| int32_t err = adm_2->Init(); |
| err |= adm_2->InitRecording(); |
| err |= adm_2->StartRecording(); |
| EXPECT_NE(0, err); |
| |
| // Stop and terminate second adm. |
| adm_2->StopRecording(); |
| adm_2->Terminate(); |
| |
| // Stop first ADM. |
| EXPECT_EQ(0, adm_1->StopRecording()); |
| EXPECT_EQ(0, adm_1->Terminate()); |
| } |
| |
| } // namespace jni |
| |
| } // namespace webrtc |