| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * This header file includes all of the fix point signal processing library |
| * (SPL) function descriptions and declarations. For specific function calls, |
| * see bottom of file. |
| */ |
| |
| #ifndef COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_ |
| #define COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_ |
| |
| #include <string.h> |
| |
| #include "common_audio/signal_processing/dot_product_with_scale.h" |
| |
| // Macros specific for the fixed point implementation |
| #define WEBRTC_SPL_WORD16_MAX 32767 |
| #define WEBRTC_SPL_WORD16_MIN -32768 |
| #define WEBRTC_SPL_WORD32_MAX (int32_t)0x7fffffff |
| #define WEBRTC_SPL_WORD32_MIN (int32_t)0x80000000 |
| #define WEBRTC_SPL_MAX_LPC_ORDER 14 |
| #define WEBRTC_SPL_MIN(A, B) (A < B ? A : B) // Get min value |
| #define WEBRTC_SPL_MAX(A, B) (A > B ? A : B) // Get max value |
| // TODO(kma/bjorn): For the next two macros, investigate how to correct the code |
| // for inputs of a = WEBRTC_SPL_WORD16_MIN or WEBRTC_SPL_WORD32_MIN. |
| #define WEBRTC_SPL_ABS_W16(a) (((int16_t)a >= 0) ? ((int16_t)a) : -((int16_t)a)) |
| #define WEBRTC_SPL_ABS_W32(a) (((int32_t)a >= 0) ? ((int32_t)a) : -((int32_t)a)) |
| |
| #define WEBRTC_SPL_MUL(a, b) ((int32_t)((int32_t)(a) * (int32_t)(b))) |
| #define WEBRTC_SPL_UMUL(a, b) ((uint32_t)((uint32_t)(a) * (uint32_t)(b))) |
| #define WEBRTC_SPL_UMUL_32_16(a, b) ((uint32_t)((uint32_t)(a) * (uint16_t)(b))) |
| #define WEBRTC_SPL_MUL_16_U16(a, b) ((int32_t)(int16_t)(a) * (uint16_t)(b)) |
| |
| // clang-format off |
| // clang-format would choose some identation |
| // leading to presubmit error (cpplint.py) |
| #ifndef WEBRTC_ARCH_ARM_V7 |
| // For ARMv7 platforms, these are inline functions in spl_inl_armv7.h |
| #ifndef MIPS32_LE |
| // For MIPS platforms, these are inline functions in spl_inl_mips.h |
| #define WEBRTC_SPL_MUL_16_16(a, b) ((int32_t)(((int16_t)(a)) * ((int16_t)(b)))) |
| #define WEBRTC_SPL_MUL_16_32_RSFT16(a, b) \ |
| (WEBRTC_SPL_MUL_16_16(a, b >> 16) + \ |
| ((WEBRTC_SPL_MUL_16_16(a, (b & 0xffff) >> 1) + 0x4000) >> 15)) |
| #endif |
| #endif |
| |
| #define WEBRTC_SPL_MUL_16_32_RSFT11(a, b) \ |
| (WEBRTC_SPL_MUL_16_16(a, (b) >> 16) * (1 << 5) + \ |
| (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x0200) >> 10)) |
| #define WEBRTC_SPL_MUL_16_32_RSFT14(a, b) \ |
| (WEBRTC_SPL_MUL_16_16(a, (b) >> 16) * (1 << 2) + \ |
| (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x1000) >> 13)) |
| #define WEBRTC_SPL_MUL_16_32_RSFT15(a, b) \ |
| ((WEBRTC_SPL_MUL_16_16(a, (b) >> 16) * (1 << 1)) + \ |
| (((WEBRTC_SPL_MUL_16_U16(a, (uint16_t)(b)) >> 1) + 0x2000) >> 14)) |
| // clang-format on |
| |
| #define WEBRTC_SPL_MUL_16_16_RSFT(a, b, c) (WEBRTC_SPL_MUL_16_16(a, b) >> (c)) |
| |
| #define WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(a, b, c) \ |
| ((WEBRTC_SPL_MUL_16_16(a, b) + ((int32_t)(((int32_t)1) << ((c)-1)))) >> (c)) |
| |
| // C + the 32 most significant bits of A * B |
| #define WEBRTC_SPL_SCALEDIFF32(A, B, C) \ |
| (C + (B >> 16) * A + (((uint32_t)(B & 0x0000FFFF) * A) >> 16)) |
| |
| #define WEBRTC_SPL_SAT(a, b, c) (b > a ? a : b < c ? c : b) |
| |
| // Shifting with negative numbers allowed |
| // Positive means left shift |
| #define WEBRTC_SPL_SHIFT_W32(x, c) ((c) >= 0 ? (x) * (1 << (c)) : (x) >> -(c)) |
| |
| // Shifting with negative numbers not allowed |
| // We cannot do casting here due to signed/unsigned problem |
| #define WEBRTC_SPL_LSHIFT_W32(x, c) ((x) << (c)) |
| |
| #define WEBRTC_SPL_RSHIFT_U32(x, c) ((uint32_t)(x) >> (c)) |
| |
| #define WEBRTC_SPL_RAND(a) ((int16_t)((((int16_t)a * 18816) >> 7) & 0x00007fff)) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define WEBRTC_SPL_MEMCPY_W16(v1, v2, length) \ |
| memcpy(v1, v2, (length) * sizeof(int16_t)) |
| |
| // inline functions: |
| #include "common_audio/signal_processing/include/spl_inl.h" |
| |
| // third party math functions |
| #include "common_audio/third_party/spl_sqrt_floor/spl_sqrt_floor.h" |
| |
| int16_t WebRtcSpl_GetScalingSquare(int16_t* in_vector, |
| size_t in_vector_length, |
| size_t times); |
| |
| // Copy and set operations. Implementation in copy_set_operations.c. |
| // Descriptions at bottom of file. |
| void WebRtcSpl_MemSetW16(int16_t* vector, |
| int16_t set_value, |
| size_t vector_length); |
| void WebRtcSpl_MemSetW32(int32_t* vector, |
| int32_t set_value, |
| size_t vector_length); |
| void WebRtcSpl_MemCpyReversedOrder(int16_t* out_vector, |
| int16_t* in_vector, |
| size_t vector_length); |
| void WebRtcSpl_CopyFromEndW16(const int16_t* in_vector, |
| size_t in_vector_length, |
| size_t samples, |
| int16_t* out_vector); |
| void WebRtcSpl_ZerosArrayW16(int16_t* vector, size_t vector_length); |
| void WebRtcSpl_ZerosArrayW32(int32_t* vector, size_t vector_length); |
| // End: Copy and set operations. |
| |
| // Minimum and maximum operation functions and their pointers. |
| // Implementation in min_max_operations.c. |
| |
| // Returns the largest absolute value in a signed 16-bit vector. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Maximum absolute value in vector. |
| typedef int16_t (*MaxAbsValueW16)(const int16_t* vector, size_t length); |
| extern const MaxAbsValueW16 WebRtcSpl_MaxAbsValueW16; |
| int16_t WebRtcSpl_MaxAbsValueW16C(const int16_t* vector, size_t length); |
| #if defined(WEBRTC_HAS_NEON) |
| int16_t WebRtcSpl_MaxAbsValueW16Neon(const int16_t* vector, size_t length); |
| #endif |
| #if defined(MIPS32_LE) |
| int16_t WebRtcSpl_MaxAbsValueW16_mips(const int16_t* vector, size_t length); |
| #endif |
| |
| // Returns the largest absolute value in a signed 32-bit vector. |
| // |
| // Input: |
| // - vector : 32-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Maximum absolute value in vector. |
| typedef int32_t (*MaxAbsValueW32)(const int32_t* vector, size_t length); |
| extern const MaxAbsValueW32 WebRtcSpl_MaxAbsValueW32; |
| int32_t WebRtcSpl_MaxAbsValueW32C(const int32_t* vector, size_t length); |
| #if defined(WEBRTC_HAS_NEON) |
| int32_t WebRtcSpl_MaxAbsValueW32Neon(const int32_t* vector, size_t length); |
| #endif |
| #if defined(MIPS_DSP_R1_LE) |
| int32_t WebRtcSpl_MaxAbsValueW32_mips(const int32_t* vector, size_t length); |
| #endif |
| |
| // Returns the maximum value of a 16-bit vector. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Maximum sample value in `vector`. |
| typedef int16_t (*MaxValueW16)(const int16_t* vector, size_t length); |
| extern const MaxValueW16 WebRtcSpl_MaxValueW16; |
| int16_t WebRtcSpl_MaxValueW16C(const int16_t* vector, size_t length); |
| #if defined(WEBRTC_HAS_NEON) |
| int16_t WebRtcSpl_MaxValueW16Neon(const int16_t* vector, size_t length); |
| #endif |
| #if defined(MIPS32_LE) |
| int16_t WebRtcSpl_MaxValueW16_mips(const int16_t* vector, size_t length); |
| #endif |
| |
| // Returns the maximum value of a 32-bit vector. |
| // |
| // Input: |
| // - vector : 32-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Maximum sample value in `vector`. |
| typedef int32_t (*MaxValueW32)(const int32_t* vector, size_t length); |
| extern const MaxValueW32 WebRtcSpl_MaxValueW32; |
| int32_t WebRtcSpl_MaxValueW32C(const int32_t* vector, size_t length); |
| #if defined(WEBRTC_HAS_NEON) |
| int32_t WebRtcSpl_MaxValueW32Neon(const int32_t* vector, size_t length); |
| #endif |
| #if defined(MIPS32_LE) |
| int32_t WebRtcSpl_MaxValueW32_mips(const int32_t* vector, size_t length); |
| #endif |
| |
| // Returns the minimum value of a 16-bit vector. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Minimum sample value in `vector`. |
| typedef int16_t (*MinValueW16)(const int16_t* vector, size_t length); |
| extern const MinValueW16 WebRtcSpl_MinValueW16; |
| int16_t WebRtcSpl_MinValueW16C(const int16_t* vector, size_t length); |
| #if defined(WEBRTC_HAS_NEON) |
| int16_t WebRtcSpl_MinValueW16Neon(const int16_t* vector, size_t length); |
| #endif |
| #if defined(MIPS32_LE) |
| int16_t WebRtcSpl_MinValueW16_mips(const int16_t* vector, size_t length); |
| #endif |
| |
| // Returns the minimum value of a 32-bit vector. |
| // |
| // Input: |
| // - vector : 32-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Minimum sample value in `vector`. |
| typedef int32_t (*MinValueW32)(const int32_t* vector, size_t length); |
| extern const MinValueW32 WebRtcSpl_MinValueW32; |
| int32_t WebRtcSpl_MinValueW32C(const int32_t* vector, size_t length); |
| #if defined(WEBRTC_HAS_NEON) |
| int32_t WebRtcSpl_MinValueW32Neon(const int32_t* vector, size_t length); |
| #endif |
| #if defined(MIPS32_LE) |
| int32_t WebRtcSpl_MinValueW32_mips(const int32_t* vector, size_t length); |
| #endif |
| |
| // Returns both the minimum and maximum values of a 16-bit vector. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // Ouput: |
| // - max_val : Maximum sample value in `vector`. |
| // - min_val : Minimum sample value in `vector`. |
| void WebRtcSpl_MinMaxW16(const int16_t* vector, |
| size_t length, |
| int16_t* min_val, |
| int16_t* max_val); |
| #if defined(WEBRTC_HAS_NEON) |
| void WebRtcSpl_MinMaxW16Neon(const int16_t* vector, |
| size_t length, |
| int16_t* min_val, |
| int16_t* max_val); |
| #endif |
| |
| // Returns the vector index to the largest absolute value of a 16-bit vector. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Index to the maximum absolute value in vector. |
| // If there are multiple equal maxima, return the index of the |
| // first. -32768 will always have precedence over 32767 (despite |
| // -32768 presenting an int16 absolute value of 32767). |
| size_t WebRtcSpl_MaxAbsIndexW16(const int16_t* vector, size_t length); |
| |
| // Returns the element with the largest absolute value of a 16-bit vector. Note |
| // that this function can return a negative value. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : The element with the largest absolute value. Note that this |
| // may be a negative value. |
| int16_t WebRtcSpl_MaxAbsElementW16(const int16_t* vector, size_t length); |
| |
| // Returns the vector index to the maximum sample value of a 16-bit vector. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Index to the maximum value in vector (if multiple |
| // indexes have the maximum, return the first). |
| size_t WebRtcSpl_MaxIndexW16(const int16_t* vector, size_t length); |
| |
| // Returns the vector index to the maximum sample value of a 32-bit vector. |
| // |
| // Input: |
| // - vector : 32-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Index to the maximum value in vector (if multiple |
| // indexes have the maximum, return the first). |
| size_t WebRtcSpl_MaxIndexW32(const int32_t* vector, size_t length); |
| |
| // Returns the vector index to the minimum sample value of a 16-bit vector. |
| // |
| // Input: |
| // - vector : 16-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Index to the mimimum value in vector (if multiple |
| // indexes have the minimum, return the first). |
| size_t WebRtcSpl_MinIndexW16(const int16_t* vector, size_t length); |
| |
| // Returns the vector index to the minimum sample value of a 32-bit vector. |
| // |
| // Input: |
| // - vector : 32-bit input vector. |
| // - length : Number of samples in vector. |
| // |
| // Return value : Index to the mimimum value in vector (if multiple |
| // indexes have the minimum, return the first). |
| size_t WebRtcSpl_MinIndexW32(const int32_t* vector, size_t length); |
| |
| // End: Minimum and maximum operations. |
| |
| // Vector scaling operations. Implementation in vector_scaling_operations.c. |
| // Description at bottom of file. |
| void WebRtcSpl_VectorBitShiftW16(int16_t* out_vector, |
| size_t vector_length, |
| const int16_t* in_vector, |
| int16_t right_shifts); |
| void WebRtcSpl_VectorBitShiftW32(int32_t* out_vector, |
| size_t vector_length, |
| const int32_t* in_vector, |
| int16_t right_shifts); |
| void WebRtcSpl_VectorBitShiftW32ToW16(int16_t* out_vector, |
| size_t vector_length, |
| const int32_t* in_vector, |
| int right_shifts); |
| void WebRtcSpl_ScaleVector(const int16_t* in_vector, |
| int16_t* out_vector, |
| int16_t gain, |
| size_t vector_length, |
| int16_t right_shifts); |
| void WebRtcSpl_ScaleVectorWithSat(const int16_t* in_vector, |
| int16_t* out_vector, |
| int16_t gain, |
| size_t vector_length, |
| int16_t right_shifts); |
| void WebRtcSpl_ScaleAndAddVectors(const int16_t* in_vector1, |
| int16_t gain1, |
| int right_shifts1, |
| const int16_t* in_vector2, |
| int16_t gain2, |
| int right_shifts2, |
| int16_t* out_vector, |
| size_t vector_length); |
| |
| // The functions (with related pointer) perform the vector operation: |
| // out_vector[k] = ((scale1 * in_vector1[k]) + (scale2 * in_vector2[k]) |
| // + round_value) >> right_shifts, |
| // where round_value = (1 << right_shifts) >> 1. |
| // |
| // Input: |
| // - in_vector1 : Input vector 1 |
| // - in_vector1_scale : Gain to be used for vector 1 |
| // - in_vector2 : Input vector 2 |
| // - in_vector2_scale : Gain to be used for vector 2 |
| // - right_shifts : Number of right bit shifts to be applied |
| // - length : Number of elements in the input vectors |
| // |
| // Output: |
| // - out_vector : Output vector |
| // Return value : 0 if OK, -1 if (in_vector1 == null |
| // || in_vector2 == null || out_vector == null |
| // || length <= 0 || right_shift < 0). |
| typedef int (*ScaleAndAddVectorsWithRound)(const int16_t* in_vector1, |
| int16_t in_vector1_scale, |
| const int16_t* in_vector2, |
| int16_t in_vector2_scale, |
| int right_shifts, |
| int16_t* out_vector, |
| size_t length); |
| extern const ScaleAndAddVectorsWithRound WebRtcSpl_ScaleAndAddVectorsWithRound; |
| int WebRtcSpl_ScaleAndAddVectorsWithRoundC(const int16_t* in_vector1, |
| int16_t in_vector1_scale, |
| const int16_t* in_vector2, |
| int16_t in_vector2_scale, |
| int right_shifts, |
| int16_t* out_vector, |
| size_t length); |
| #if defined(MIPS_DSP_R1_LE) |
| int WebRtcSpl_ScaleAndAddVectorsWithRound_mips(const int16_t* in_vector1, |
| int16_t in_vector1_scale, |
| const int16_t* in_vector2, |
| int16_t in_vector2_scale, |
| int right_shifts, |
| int16_t* out_vector, |
| size_t length); |
| #endif |
| // End: Vector scaling operations. |
| |
| // iLBC specific functions. Implementations in ilbc_specific_functions.c. |
| // Description at bottom of file. |
| void WebRtcSpl_ReverseOrderMultArrayElements(int16_t* out_vector, |
| const int16_t* in_vector, |
| const int16_t* window, |
| size_t vector_length, |
| int16_t right_shifts); |
| void WebRtcSpl_ElementwiseVectorMult(int16_t* out_vector, |
| const int16_t* in_vector, |
| const int16_t* window, |
| size_t vector_length, |
| int16_t right_shifts); |
| void WebRtcSpl_AddVectorsAndShift(int16_t* out_vector, |
| const int16_t* in_vector1, |
| const int16_t* in_vector2, |
| size_t vector_length, |
| int16_t right_shifts); |
| void WebRtcSpl_AddAffineVectorToVector(int16_t* out_vector, |
| const int16_t* in_vector, |
| int16_t gain, |
| int32_t add_constant, |
| int16_t right_shifts, |
| size_t vector_length); |
| void WebRtcSpl_AffineTransformVector(int16_t* out_vector, |
| const int16_t* in_vector, |
| int16_t gain, |
| int32_t add_constant, |
| int16_t right_shifts, |
| size_t vector_length); |
| // End: iLBC specific functions. |
| |
| // Signal processing operations. |
| |
| // A 32-bit fix-point implementation of auto-correlation computation |
| // |
| // Input: |
| // - in_vector : Vector to calculate autocorrelation upon |
| // - in_vector_length : Length (in samples) of `vector` |
| // - order : The order up to which the autocorrelation should be |
| // calculated |
| // |
| // Output: |
| // - result : auto-correlation values (values should be seen |
| // relative to each other since the absolute values |
| // might have been down shifted to avoid overflow) |
| // |
| // - scale : The number of left shifts required to obtain the |
| // auto-correlation in Q0 |
| // |
| // Return value : Number of samples in `result`, i.e. (order+1) |
| size_t WebRtcSpl_AutoCorrelation(const int16_t* in_vector, |
| size_t in_vector_length, |
| size_t order, |
| int32_t* result, |
| int* scale); |
| |
| // A 32-bit fix-point implementation of the Levinson-Durbin algorithm that |
| // does NOT use the 64 bit class |
| // |
| // Input: |
| // - auto_corr : Vector with autocorrelation values of length >= `order`+1 |
| // - order : The LPC filter order (support up to order 20) |
| // |
| // Output: |
| // - lpc_coef : lpc_coef[0..order] LPC coefficients in Q12 |
| // - refl_coef : refl_coef[0...order-1]| Reflection coefficients in Q15 |
| // |
| // Return value : 1 for stable 0 for unstable |
| int16_t WebRtcSpl_LevinsonDurbin(const int32_t* auto_corr, |
| int16_t* lpc_coef, |
| int16_t* refl_coef, |
| size_t order); |
| |
| // Converts reflection coefficients `refl_coef` to LPC coefficients `lpc_coef`. |
| // This version is a 16 bit operation. |
| // |
| // NOTE: The 16 bit refl_coef -> lpc_coef conversion might result in a |
| // "slightly unstable" filter (i.e., a pole just outside the unit circle) in |
| // "rare" cases even if the reflection coefficients are stable. |
| // |
| // Input: |
| // - refl_coef : Reflection coefficients in Q15 that should be converted |
| // to LPC coefficients |
| // - use_order : Number of coefficients in `refl_coef` |
| // |
| // Output: |
| // - lpc_coef : LPC coefficients in Q12 |
| void WebRtcSpl_ReflCoefToLpc(const int16_t* refl_coef, |
| int use_order, |
| int16_t* lpc_coef); |
| |
| // Converts LPC coefficients `lpc_coef` to reflection coefficients `refl_coef`. |
| // This version is a 16 bit operation. |
| // The conversion is implemented by the step-down algorithm. |
| // |
| // Input: |
| // - lpc_coef : LPC coefficients in Q12, that should be converted to |
| // reflection coefficients |
| // - use_order : Number of coefficients in `lpc_coef` |
| // |
| // Output: |
| // - refl_coef : Reflection coefficients in Q15. |
| void WebRtcSpl_LpcToReflCoef(int16_t* lpc_coef, |
| int use_order, |
| int16_t* refl_coef); |
| |
| // Calculates reflection coefficients (16 bit) from auto-correlation values |
| // |
| // Input: |
| // - auto_corr : Auto-correlation values |
| // - use_order : Number of coefficients wanted be calculated |
| // |
| // Output: |
| // - refl_coef : Reflection coefficients in Q15. |
| void WebRtcSpl_AutoCorrToReflCoef(const int32_t* auto_corr, |
| int use_order, |
| int16_t* refl_coef); |
| |
| // The functions (with related pointer) calculate the cross-correlation between |
| // two sequences `seq1` and `seq2`. |
| // `seq1` is fixed and `seq2` slides as the pointer is increased with the |
| // amount `step_seq2`. Note the arguments should obey the relationship: |
| // `dim_seq` - 1 + `step_seq2` * (`dim_cross_correlation` - 1) < |
| // buffer size of `seq2` |
| // |
| // Input: |
| // - seq1 : First sequence (fixed throughout the correlation) |
| // - seq2 : Second sequence (slides `step_vector2` for each |
| // new correlation) |
| // - dim_seq : Number of samples to use in the cross-correlation |
| // - dim_cross_correlation : Number of cross-correlations to calculate (the |
| // start position for `vector2` is updated for each |
| // new one) |
| // - right_shifts : Number of right bit shifts to use. This will |
| // become the output Q-domain. |
| // - step_seq2 : How many (positive or negative) steps the |
| // `vector2` pointer should be updated for each new |
| // cross-correlation value. |
| // |
| // Output: |
| // - cross_correlation : The cross-correlation in Q(-right_shifts) |
| typedef void (*CrossCorrelation)(int32_t* cross_correlation, |
| const int16_t* seq1, |
| const int16_t* seq2, |
| size_t dim_seq, |
| size_t dim_cross_correlation, |
| int right_shifts, |
| int step_seq2); |
| extern const CrossCorrelation WebRtcSpl_CrossCorrelation; |
| void WebRtcSpl_CrossCorrelationC(int32_t* cross_correlation, |
| const int16_t* seq1, |
| const int16_t* seq2, |
| size_t dim_seq, |
| size_t dim_cross_correlation, |
| int right_shifts, |
| int step_seq2); |
| #if defined(WEBRTC_HAS_NEON) |
| void WebRtcSpl_CrossCorrelationNeon(int32_t* cross_correlation, |
| const int16_t* seq1, |
| const int16_t* seq2, |
| size_t dim_seq, |
| size_t dim_cross_correlation, |
| int right_shifts, |
| int step_seq2); |
| #endif |
| #if defined(MIPS32_LE) |
| void WebRtcSpl_CrossCorrelation_mips(int32_t* cross_correlation, |
| const int16_t* seq1, |
| const int16_t* seq2, |
| size_t dim_seq, |
| size_t dim_cross_correlation, |
| int right_shifts, |
| int step_seq2); |
| #endif |
| |
| // Creates (the first half of) a Hanning window. Size must be at least 1 and |
| // at most 512. |
| // |
| // Input: |
| // - size : Length of the requested Hanning window (1 to 512) |
| // |
| // Output: |
| // - window : Hanning vector in Q14. |
| void WebRtcSpl_GetHanningWindow(int16_t* window, size_t size); |
| |
| // Calculates y[k] = sqrt(1 - x[k]^2) for each element of the input vector |
| // `in_vector`. Input and output values are in Q15. |
| // |
| // Inputs: |
| // - in_vector : Values to calculate sqrt(1 - x^2) of |
| // - vector_length : Length of vector `in_vector` |
| // |
| // Output: |
| // - out_vector : Output values in Q15 |
| void WebRtcSpl_SqrtOfOneMinusXSquared(int16_t* in_vector, |
| size_t vector_length, |
| int16_t* out_vector); |
| // End: Signal processing operations. |
| |
| // Randomization functions. Implementations collected in |
| // randomization_functions.c and descriptions at bottom of this file. |
| int16_t WebRtcSpl_RandU(uint32_t* seed); |
| int16_t WebRtcSpl_RandN(uint32_t* seed); |
| int16_t WebRtcSpl_RandUArray(int16_t* vector, |
| int16_t vector_length, |
| uint32_t* seed); |
| // End: Randomization functions. |
| |
| // Math functions |
| int32_t WebRtcSpl_Sqrt(int32_t value); |
| |
| // Divisions. Implementations collected in division_operations.c and |
| // descriptions at bottom of this file. |
| uint32_t WebRtcSpl_DivU32U16(uint32_t num, uint16_t den); |
| int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den); |
| int16_t WebRtcSpl_DivW32W16ResW16(int32_t num, int16_t den); |
| int32_t WebRtcSpl_DivResultInQ31(int32_t num, int32_t den); |
| int32_t WebRtcSpl_DivW32HiLow(int32_t num, int16_t den_hi, int16_t den_low); |
| // End: Divisions. |
| |
| int32_t WebRtcSpl_Energy(int16_t* vector, |
| size_t vector_length, |
| int* scale_factor); |
| |
| // Filter operations. |
| size_t WebRtcSpl_FilterAR(const int16_t* ar_coef, |
| size_t ar_coef_length, |
| const int16_t* in_vector, |
| size_t in_vector_length, |
| int16_t* filter_state, |
| size_t filter_state_length, |
| int16_t* filter_state_low, |
| size_t filter_state_low_length, |
| int16_t* out_vector, |
| int16_t* out_vector_low, |
| size_t out_vector_low_length); |
| |
| // WebRtcSpl_FilterMAFastQ12(...) |
| // |
| // Performs a MA filtering on a vector in Q12 |
| // |
| // Input: |
| // - in_vector : Input samples (state in positions |
| // in_vector[-order] .. in_vector[-1]) |
| // - ma_coef : Filter coefficients (in Q12) |
| // - ma_coef_length : Number of B coefficients (order+1) |
| // - vector_length : Number of samples to be filtered |
| // |
| // Output: |
| // - out_vector : Filtered samples |
| // |
| void WebRtcSpl_FilterMAFastQ12(const int16_t* in_vector, |
| int16_t* out_vector, |
| const int16_t* ma_coef, |
| size_t ma_coef_length, |
| size_t vector_length); |
| |
| // Performs a AR filtering on a vector in Q12 |
| // Input: |
| // - data_in : Input samples |
| // - data_out : State information in positions |
| // data_out[-order] .. data_out[-1] |
| // - coefficients : Filter coefficients (in Q12) |
| // - coefficients_length: Number of coefficients (order+1) |
| // - data_length : Number of samples to be filtered |
| // Output: |
| // - data_out : Filtered samples |
| void WebRtcSpl_FilterARFastQ12(const int16_t* data_in, |
| int16_t* data_out, |
| const int16_t* __restrict coefficients, |
| size_t coefficients_length, |
| size_t data_length); |
| |
| // The functions (with related pointer) perform a MA down sampling filter |
| // on a vector. |
| // Input: |
| // - data_in : Input samples (state in positions |
| // data_in[-order] .. data_in[-1]) |
| // - data_in_length : Number of samples in `data_in` to be filtered. |
| // This must be at least |
| // `delay` + `factor`*(`out_vector_length`-1) + 1) |
| // - data_out_length : Number of down sampled samples desired |
| // - coefficients : Filter coefficients (in Q12) |
| // - coefficients_length: Number of coefficients (order+1) |
| // - factor : Decimation factor |
| // - delay : Delay of filter (compensated for in out_vector) |
| // Output: |
| // - data_out : Filtered samples |
| // Return value : 0 if OK, -1 if `in_vector` is too short |
| typedef int (*DownsampleFast)(const int16_t* data_in, |
| size_t data_in_length, |
| int16_t* data_out, |
| size_t data_out_length, |
| const int16_t* __restrict coefficients, |
| size_t coefficients_length, |
| int factor, |
| size_t delay); |
| extern const DownsampleFast WebRtcSpl_DownsampleFast; |
| int WebRtcSpl_DownsampleFastC(const int16_t* data_in, |
| size_t data_in_length, |
| int16_t* data_out, |
| size_t data_out_length, |
| const int16_t* __restrict coefficients, |
| size_t coefficients_length, |
| int factor, |
| size_t delay); |
| #if defined(WEBRTC_HAS_NEON) |
| int WebRtcSpl_DownsampleFastNeon(const int16_t* data_in, |
| size_t data_in_length, |
| int16_t* data_out, |
| size_t data_out_length, |
| const int16_t* __restrict coefficients, |
| size_t coefficients_length, |
| int factor, |
| size_t delay); |
| #endif |
| #if defined(MIPS32_LE) |
| int WebRtcSpl_DownsampleFast_mips(const int16_t* data_in, |
| size_t data_in_length, |
| int16_t* data_out, |
| size_t data_out_length, |
| const int16_t* __restrict coefficients, |
| size_t coefficients_length, |
| int factor, |
| size_t delay); |
| #endif |
| |
| // End: Filter operations. |
| |
| // FFT operations |
| |
| int WebRtcSpl_ComplexFFT(int16_t vector[], int stages, int mode); |
| int WebRtcSpl_ComplexIFFT(int16_t vector[], int stages, int mode); |
| |
| // Treat a 16-bit complex data buffer `complex_data` as an array of 32-bit |
| // values, and swap elements whose indexes are bit-reverses of each other. |
| // |
| // Input: |
| // - complex_data : Complex data buffer containing 2^`stages` real |
| // elements interleaved with 2^`stages` imaginary |
| // elements: [Re Im Re Im Re Im....] |
| // - stages : Number of FFT stages. Must be at least 3 and at most |
| // 10, since the table WebRtcSpl_kSinTable1024[] is 1024 |
| // elements long. |
| // |
| // Output: |
| // - complex_data : The complex data buffer. |
| |
| void WebRtcSpl_ComplexBitReverse(int16_t* __restrict complex_data, int stages); |
| |
| // End: FFT operations |
| |
| /************************************************************ |
| * |
| * RESAMPLING FUNCTIONS AND THEIR STRUCTS ARE DEFINED BELOW |
| * |
| ************************************************************/ |
| |
| /******************************************************************* |
| * resample.c |
| * |
| * Includes the following resampling combinations |
| * 22 kHz -> 16 kHz |
| * 16 kHz -> 22 kHz |
| * 22 kHz -> 8 kHz |
| * 8 kHz -> 22 kHz |
| * |
| ******************************************************************/ |
| |
| // state structure for 22 -> 16 resampler |
| typedef struct { |
| int32_t S_22_44[8]; |
| int32_t S_44_32[8]; |
| int32_t S_32_16[8]; |
| } WebRtcSpl_State22khzTo16khz; |
| |
| void WebRtcSpl_Resample22khzTo16khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State22khzTo16khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state); |
| |
| // state structure for 16 -> 22 resampler |
| typedef struct { |
| int32_t S_16_32[8]; |
| int32_t S_32_22[8]; |
| } WebRtcSpl_State16khzTo22khz; |
| |
| void WebRtcSpl_Resample16khzTo22khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State16khzTo22khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state); |
| |
| // state structure for 22 -> 8 resampler |
| typedef struct { |
| int32_t S_22_22[16]; |
| int32_t S_22_16[8]; |
| int32_t S_16_8[8]; |
| } WebRtcSpl_State22khzTo8khz; |
| |
| void WebRtcSpl_Resample22khzTo8khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State22khzTo8khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state); |
| |
| // state structure for 8 -> 22 resampler |
| typedef struct { |
| int32_t S_8_16[8]; |
| int32_t S_16_11[8]; |
| int32_t S_11_22[8]; |
| } WebRtcSpl_State8khzTo22khz; |
| |
| void WebRtcSpl_Resample8khzTo22khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State8khzTo22khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state); |
| |
| /******************************************************************* |
| * resample_fractional.c |
| * Functions for internal use in the other resample functions |
| * |
| * Includes the following resampling combinations |
| * 48 kHz -> 32 kHz |
| * 32 kHz -> 24 kHz |
| * 44 kHz -> 32 kHz |
| * |
| ******************************************************************/ |
| |
| void WebRtcSpl_Resample48khzTo32khz(const int32_t* In, int32_t* Out, size_t K); |
| |
| void WebRtcSpl_Resample32khzTo24khz(const int32_t* In, int32_t* Out, size_t K); |
| |
| void WebRtcSpl_Resample44khzTo32khz(const int32_t* In, int32_t* Out, size_t K); |
| |
| /******************************************************************* |
| * resample_48khz.c |
| * |
| * Includes the following resampling combinations |
| * 48 kHz -> 16 kHz |
| * 16 kHz -> 48 kHz |
| * 48 kHz -> 8 kHz |
| * 8 kHz -> 48 kHz |
| * |
| ******************************************************************/ |
| |
| typedef struct { |
| int32_t S_48_48[16]; |
| int32_t S_48_32[8]; |
| int32_t S_32_16[8]; |
| } WebRtcSpl_State48khzTo16khz; |
| |
| void WebRtcSpl_Resample48khzTo16khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State48khzTo16khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample48khzTo16khz(WebRtcSpl_State48khzTo16khz* state); |
| |
| typedef struct { |
| int32_t S_16_32[8]; |
| int32_t S_32_24[8]; |
| int32_t S_24_48[8]; |
| } WebRtcSpl_State16khzTo48khz; |
| |
| void WebRtcSpl_Resample16khzTo48khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State16khzTo48khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample16khzTo48khz(WebRtcSpl_State16khzTo48khz* state); |
| |
| typedef struct { |
| int32_t S_48_24[8]; |
| int32_t S_24_24[16]; |
| int32_t S_24_16[8]; |
| int32_t S_16_8[8]; |
| } WebRtcSpl_State48khzTo8khz; |
| |
| void WebRtcSpl_Resample48khzTo8khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State48khzTo8khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample48khzTo8khz(WebRtcSpl_State48khzTo8khz* state); |
| |
| typedef struct { |
| int32_t S_8_16[8]; |
| int32_t S_16_12[8]; |
| int32_t S_12_24[8]; |
| int32_t S_24_48[8]; |
| } WebRtcSpl_State8khzTo48khz; |
| |
| void WebRtcSpl_Resample8khzTo48khz(const int16_t* in, |
| int16_t* out, |
| WebRtcSpl_State8khzTo48khz* state, |
| int32_t* tmpmem); |
| |
| void WebRtcSpl_ResetResample8khzTo48khz(WebRtcSpl_State8khzTo48khz* state); |
| |
| /******************************************************************* |
| * resample_by_2.c |
| * |
| * Includes down and up sampling by a factor of two. |
| * |
| ******************************************************************/ |
| |
| void WebRtcSpl_DownsampleBy2(const int16_t* in, |
| size_t len, |
| int16_t* out, |
| int32_t* filtState); |
| |
| void WebRtcSpl_UpsampleBy2(const int16_t* in, |
| size_t len, |
| int16_t* out, |
| int32_t* filtState); |
| |
| /************************************************************ |
| * END OF RESAMPLING FUNCTIONS |
| ************************************************************/ |
| void WebRtcSpl_AnalysisQMF(const int16_t* in_data, |
| size_t in_data_length, |
| int16_t* low_band, |
| int16_t* high_band, |
| int32_t* filter_state1, |
| int32_t* filter_state2); |
| void WebRtcSpl_SynthesisQMF(const int16_t* low_band, |
| const int16_t* high_band, |
| size_t band_length, |
| int16_t* out_data, |
| int32_t* filter_state1, |
| int32_t* filter_state2); |
| |
| #ifdef __cplusplus |
| } |
| #endif // __cplusplus |
| #endif // COMMON_AUDIO_SIGNAL_PROCESSING_INCLUDE_SIGNAL_PROCESSING_LIBRARY_H_ |
| |
| // |
| // WebRtcSpl_AddSatW16(...) |
| // WebRtcSpl_AddSatW32(...) |
| // |
| // Returns the result of a saturated 16-bit, respectively 32-bit, addition of |
| // the numbers specified by the `var1` and `var2` parameters. |
| // |
| // Input: |
| // - var1 : Input variable 1 |
| // - var2 : Input variable 2 |
| // |
| // Return value : Added and saturated value |
| // |
| |
| // |
| // WebRtcSpl_SubSatW16(...) |
| // WebRtcSpl_SubSatW32(...) |
| // |
| // Returns the result of a saturated 16-bit, respectively 32-bit, subtraction |
| // of the numbers specified by the `var1` and `var2` parameters. |
| // |
| // Input: |
| // - var1 : Input variable 1 |
| // - var2 : Input variable 2 |
| // |
| // Returned value : Subtracted and saturated value |
| // |
| |
| // |
| // WebRtcSpl_GetSizeInBits(...) |
| // |
| // Returns the # of bits that are needed at the most to represent the number |
| // specified by the `value` parameter. |
| // |
| // Input: |
| // - value : Input value |
| // |
| // Return value : Number of bits needed to represent `value` |
| // |
| |
| // |
| // WebRtcSpl_NormW32(...) |
| // |
| // Norm returns the # of left shifts required to 32-bit normalize the 32-bit |
| // signed number specified by the `value` parameter. |
| // |
| // Input: |
| // - value : Input value |
| // |
| // Return value : Number of bit shifts needed to 32-bit normalize `value` |
| // |
| |
| // |
| // WebRtcSpl_NormW16(...) |
| // |
| // Norm returns the # of left shifts required to 16-bit normalize the 16-bit |
| // signed number specified by the `value` parameter. |
| // |
| // Input: |
| // - value : Input value |
| // |
| // Return value : Number of bit shifts needed to 32-bit normalize `value` |
| // |
| |
| // |
| // WebRtcSpl_NormU32(...) |
| // |
| // Norm returns the # of left shifts required to 32-bit normalize the unsigned |
| // 32-bit number specified by the `value` parameter. |
| // |
| // Input: |
| // - value : Input value |
| // |
| // Return value : Number of bit shifts needed to 32-bit normalize `value` |
| // |
| |
| // |
| // WebRtcSpl_GetScalingSquare(...) |
| // |
| // Returns the # of bits required to scale the samples specified in the |
| // `in_vector` parameter so that, if the squares of the samples are added the |
| // # of times specified by the `times` parameter, the 32-bit addition will not |
| // overflow (result in int32_t). |
| // |
| // Input: |
| // - in_vector : Input vector to check scaling on |
| // - in_vector_length : Samples in `in_vector` |
| // - times : Number of additions to be performed |
| // |
| // Return value : Number of right bit shifts needed to avoid |
| // overflow in the addition calculation |
| // |
| |
| // |
| // WebRtcSpl_MemSetW16(...) |
| // |
| // Sets all the values in the int16_t vector `vector` of length |
| // `vector_length` to the specified value `set_value` |
| // |
| // Input: |
| // - vector : Pointer to the int16_t vector |
| // - set_value : Value specified |
| // - vector_length : Length of vector |
| // |
| |
| // |
| // WebRtcSpl_MemSetW32(...) |
| // |
| // Sets all the values in the int32_t vector `vector` of length |
| // `vector_length` to the specified value `set_value` |
| // |
| // Input: |
| // - vector : Pointer to the int16_t vector |
| // - set_value : Value specified |
| // - vector_length : Length of vector |
| // |
| |
| // |
| // WebRtcSpl_MemCpyReversedOrder(...) |
| // |
| // Copies all the values from the source int16_t vector `in_vector` to a |
| // destination int16_t vector `out_vector`. It is done in reversed order, |
| // meaning that the first sample of `in_vector` is copied to the last sample of |
| // the `out_vector`. The procedure continues until the last sample of |
| // `in_vector` has been copied to the first sample of `out_vector`. This |
| // creates a reversed vector. Used in e.g. prediction in iLBC. |
| // |
| // Input: |
| // - in_vector : Pointer to the first sample in a int16_t vector |
| // of length `length` |
| // - vector_length : Number of elements to copy |
| // |
| // Output: |
| // - out_vector : Pointer to the last sample in a int16_t vector |
| // of length `length` |
| // |
| |
| // |
| // WebRtcSpl_CopyFromEndW16(...) |
| // |
| // Copies the rightmost `samples` of `in_vector` (of length `in_vector_length`) |
| // to the vector `out_vector`. |
| // |
| // Input: |
| // - in_vector : Input vector |
| // - in_vector_length : Number of samples in `in_vector` |
| // - samples : Number of samples to extract (from right side) |
| // from `in_vector` |
| // |
| // Output: |
| // - out_vector : Vector with the requested samples |
| // |
| |
| // |
| // WebRtcSpl_ZerosArrayW16(...) |
| // WebRtcSpl_ZerosArrayW32(...) |
| // |
| // Inserts the value "zero" in all positions of a w16 and a w32 vector |
| // respectively. |
| // |
| // Input: |
| // - vector_length : Number of samples in vector |
| // |
| // Output: |
| // - vector : Vector containing all zeros |
| // |
| |
| // |
| // WebRtcSpl_VectorBitShiftW16(...) |
| // WebRtcSpl_VectorBitShiftW32(...) |
| // |
| // Bit shifts all the values in a vector up or downwards. Different calls for |
| // int16_t and int32_t vectors respectively. |
| // |
| // Input: |
| // - vector_length : Length of vector |
| // - in_vector : Pointer to the vector that should be bit shifted |
| // - right_shifts : Number of right bit shifts (negative value gives left |
| // shifts) |
| // |
| // Output: |
| // - out_vector : Pointer to the result vector (can be the same as |
| // `in_vector`) |
| // |
| |
| // |
| // WebRtcSpl_VectorBitShiftW32ToW16(...) |
| // |
| // Bit shifts all the values in a int32_t vector up or downwards and |
| // stores the result as an int16_t vector. The function will saturate the |
| // signal if needed, before storing in the output vector. |
| // |
| // Input: |
| // - vector_length : Length of vector |
| // - in_vector : Pointer to the vector that should be bit shifted |
| // - right_shifts : Number of right bit shifts (negative value gives left |
| // shifts) |
| // |
| // Output: |
| // - out_vector : Pointer to the result vector (can be the same as |
| // `in_vector`) |
| // |
| |
| // |
| // WebRtcSpl_ScaleVector(...) |
| // |
| // Performs the vector operation: |
| // out_vector[k] = (gain*in_vector[k])>>right_shifts |
| // |
| // Input: |
| // - in_vector : Input vector |
| // - gain : Scaling gain |
| // - vector_length : Elements in the `in_vector` |
| // - right_shifts : Number of right bit shifts applied |
| // |
| // Output: |
| // - out_vector : Output vector (can be the same as `in_vector`) |
| // |
| |
| // |
| // WebRtcSpl_ScaleVectorWithSat(...) |
| // |
| // Performs the vector operation: |
| // out_vector[k] = SATURATE( (gain*in_vector[k])>>right_shifts ) |
| // |
| // Input: |
| // - in_vector : Input vector |
| // - gain : Scaling gain |
| // - vector_length : Elements in the `in_vector` |
| // - right_shifts : Number of right bit shifts applied |
| // |
| // Output: |
| // - out_vector : Output vector (can be the same as `in_vector`) |
| // |
| |
| // |
| // WebRtcSpl_ScaleAndAddVectors(...) |
| // |
| // Performs the vector operation: |
| // out_vector[k] = (gain1*in_vector1[k])>>right_shifts1 |
| // + (gain2*in_vector2[k])>>right_shifts2 |
| // |
| // Input: |
| // - in_vector1 : Input vector 1 |
| // - gain1 : Gain to be used for vector 1 |
| // - right_shifts1 : Right bit shift to be used for vector 1 |
| // - in_vector2 : Input vector 2 |
| // - gain2 : Gain to be used for vector 2 |
| // - right_shifts2 : Right bit shift to be used for vector 2 |
| // - vector_length : Elements in the input vectors |
| // |
| // Output: |
| // - out_vector : Output vector |
| // |
| |
| // |
| // WebRtcSpl_ReverseOrderMultArrayElements(...) |
| // |
| // Performs the vector operation: |
| // out_vector[n] = (in_vector[n]*window[-n])>>right_shifts |
| // |
| // Input: |
| // - in_vector : Input vector |
| // - window : Window vector (should be reversed). The pointer |
| // should be set to the last value in the vector |
| // - right_shifts : Number of right bit shift to be applied after the |
| // multiplication |
| // - vector_length : Number of elements in `in_vector` |
| // |
| // Output: |
| // - out_vector : Output vector (can be same as `in_vector`) |
| // |
| |
| // |
| // WebRtcSpl_ElementwiseVectorMult(...) |
| // |
| // Performs the vector operation: |
| // out_vector[n] = (in_vector[n]*window[n])>>right_shifts |
| // |
| // Input: |
| // - in_vector : Input vector |
| // - window : Window vector. |
| // - right_shifts : Number of right bit shift to be applied after the |
| // multiplication |
| // - vector_length : Number of elements in `in_vector` |
| // |
| // Output: |
| // - out_vector : Output vector (can be same as `in_vector`) |
| // |
| |
| // |
| // WebRtcSpl_AddVectorsAndShift(...) |
| // |
| // Performs the vector operation: |
| // out_vector[k] = (in_vector1[k] + in_vector2[k])>>right_shifts |
| // |
| // Input: |
| // - in_vector1 : Input vector 1 |
| // - in_vector2 : Input vector 2 |
| // - right_shifts : Number of right bit shift to be applied after the |
| // multiplication |
| // - vector_length : Number of elements in `in_vector1` and `in_vector2` |
| // |
| // Output: |
| // - out_vector : Output vector (can be same as `in_vector1`) |
| // |
| |
| // |
| // WebRtcSpl_AddAffineVectorToVector(...) |
| // |
| // Adds an affine transformed vector to another vector `out_vector`, i.e, |
| // performs |
| // out_vector[k] += (in_vector[k]*gain+add_constant)>>right_shifts |
| // |
| // Input: |
| // - in_vector : Input vector |
| // - gain : Gain value, used to multiply the in vector with |
| // - add_constant : Constant value to add (usually 1<<(right_shifts-1), |
| // but others can be used as well |
| // - right_shifts : Number of right bit shifts (0-16) |
| // - vector_length : Number of samples in `in_vector` and `out_vector` |
| // |
| // Output: |
| // - out_vector : Vector with the output |
| // |
| |
| // |
| // WebRtcSpl_AffineTransformVector(...) |
| // |
| // Affine transforms a vector, i.e, performs |
| // out_vector[k] = (in_vector[k]*gain+add_constant)>>right_shifts |
| // |
| // Input: |
| // - in_vector : Input vector |
| // - gain : Gain value, used to multiply the in vector with |
| // - add_constant : Constant value to add (usually 1<<(right_shifts-1), |
| // but others can be used as well |
| // - right_shifts : Number of right bit shifts (0-16) |
| // - vector_length : Number of samples in `in_vector` and `out_vector` |
| // |
| // Output: |
| // - out_vector : Vector with the output |
| // |
| |
| // |
| // WebRtcSpl_IncreaseSeed(...) |
| // |
| // Increases the seed (and returns the new value) |
| // |
| // Input: |
| // - seed : Seed for random calculation |
| // |
| // Output: |
| // - seed : Updated seed value |
| // |
| // Return value : The new seed value |
| // |
| |
| // |
| // WebRtcSpl_RandU(...) |
| // |
| // Produces a uniformly distributed value in the int16_t range |
| // |
| // Input: |
| // - seed : Seed for random calculation |
| // |
| // Output: |
| // - seed : Updated seed value |
| // |
| // Return value : Uniformly distributed value in the range |
| // [Word16_MIN...Word16_MAX] |
| // |
| |
| // |
| // WebRtcSpl_RandN(...) |
| // |
| // Produces a normal distributed value in the int16_t range |
| // |
| // Input: |
| // - seed : Seed for random calculation |
| // |
| // Output: |
| // - seed : Updated seed value |
| // |
| // Return value : N(0,1) value in the Q13 domain |
| // |
| |
| // |
| // WebRtcSpl_RandUArray(...) |
| // |
| // Produces a uniformly distributed vector with elements in the int16_t |
| // range |
| // |
| // Input: |
| // - vector_length : Samples wanted in the vector |
| // - seed : Seed for random calculation |
| // |
| // Output: |
| // - vector : Vector with the uniform values |
| // - seed : Updated seed value |
| // |
| // Return value : Number of samples in vector, i.e., `vector_length` |
| // |
| |
| // |
| // WebRtcSpl_Sqrt(...) |
| // |
| // Returns the square root of the input value `value`. The precision of this |
| // function is integer precision, i.e., sqrt(8) gives 2 as answer. |
| // If `value` is a negative number then 0 is returned. |
| // |
| // Algorithm: |
| // |
| // A sixth order Taylor Series expansion is used here to compute the square |
| // root of a number y^0.5 = (1+x)^0.5 |
| // where |
| // x = y-1 |
| // = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5) |
| // 0.5 <= x < 1 |
| // |
| // Input: |
| // - value : Value to calculate sqrt of |
| // |
| // Return value : Result of the sqrt calculation |
| // |
| |
| // |
| // WebRtcSpl_DivU32U16(...) |
| // |
| // Divides a uint32_t `num` by a uint16_t `den`. |
| // |
| // If `den`==0, (uint32_t)0xFFFFFFFF is returned. |
| // |
| // Input: |
| // - num : Numerator |
| // - den : Denominator |
| // |
| // Return value : Result of the division (as a uint32_t), i.e., the |
| // integer part of num/den. |
| // |
| |
| // |
| // WebRtcSpl_DivW32W16(...) |
| // |
| // Divides a int32_t `num` by a int16_t `den`. |
| // |
| // If `den`==0, (int32_t)0x7FFFFFFF is returned. |
| // |
| // Input: |
| // - num : Numerator |
| // - den : Denominator |
| // |
| // Return value : Result of the division (as a int32_t), i.e., the |
| // integer part of num/den. |
| // |
| |
| // |
| // WebRtcSpl_DivW32W16ResW16(...) |
| // |
| // Divides a int32_t `num` by a int16_t `den`, assuming that the |
| // result is less than 32768, otherwise an unpredictable result will occur. |
| // |
| // If `den`==0, (int16_t)0x7FFF is returned. |
| // |
| // Input: |
| // - num : Numerator |
| // - den : Denominator |
| // |
| // Return value : Result of the division (as a int16_t), i.e., the |
| // integer part of num/den. |
| // |
| |
| // |
| // WebRtcSpl_DivResultInQ31(...) |
| // |
| // Divides a int32_t `num` by a int16_t `den`, assuming that the |
| // absolute value of the denominator is larger than the numerator, otherwise |
| // an unpredictable result will occur. |
| // |
| // Input: |
| // - num : Numerator |
| // - den : Denominator |
| // |
| // Return value : Result of the division in Q31. |
| // |
| |
| // |
| // WebRtcSpl_DivW32HiLow(...) |
| // |
| // Divides a int32_t `num` by a denominator in hi, low format. The |
| // absolute value of the denominator has to be larger (or equal to) the |
| // numerator. |
| // |
| // Input: |
| // - num : Numerator |
| // - den_hi : High part of denominator |
| // - den_low : Low part of denominator |
| // |
| // Return value : Divided value in Q31 |
| // |
| |
| // |
| // WebRtcSpl_Energy(...) |
| // |
| // Calculates the energy of a vector |
| // |
| // Input: |
| // - vector : Vector which the energy should be calculated on |
| // - vector_length : Number of samples in vector |
| // |
| // Output: |
| // - scale_factor : Number of left bit shifts needed to get the physical |
| // energy value, i.e, to get the Q0 value |
| // |
| // Return value : Energy value in Q(-`scale_factor`) |
| // |
| |
| // |
| // WebRtcSpl_FilterAR(...) |
| // |
| // Performs a 32-bit AR filtering on a vector in Q12 |
| // |
| // Input: |
| // - ar_coef : AR-coefficient vector (values in Q12), |
| // ar_coef[0] must be 4096. |
| // - ar_coef_length : Number of coefficients in `ar_coef`. |
| // - in_vector : Vector to be filtered. |
| // - in_vector_length : Number of samples in `in_vector`. |
| // - filter_state : Current state (higher part) of the filter. |
| // - filter_state_length : Length (in samples) of `filter_state`. |
| // - filter_state_low : Current state (lower part) of the filter. |
| // - filter_state_low_length : Length (in samples) of `filter_state_low`. |
| // - out_vector_low_length : Maximum length (in samples) of |
| // `out_vector_low`. |
| // |
| // Output: |
| // - filter_state : Updated state (upper part) vector. |
| // - filter_state_low : Updated state (lower part) vector. |
| // - out_vector : Vector containing the upper part of the |
| // filtered values. |
| // - out_vector_low : Vector containing the lower part of the |
| // filtered values. |
| // |
| // Return value : Number of samples in the `out_vector`. |
| // |
| |
| // |
| // WebRtcSpl_ComplexIFFT(...) |
| // |
| // Complex Inverse FFT |
| // |
| // Computes an inverse complex 2^`stages`-point FFT on the input vector, which |
| // is in bit-reversed order. The original content of the vector is destroyed in |
| // the process, since the input is overwritten by the output, normal-ordered, |
| // FFT vector. With X as the input complex vector, y as the output complex |
| // vector and with M = 2^`stages`, the following is computed: |
| // |
| // M-1 |
| // y(k) = sum[X(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] |
| // i=0 |
| // |
| // The implementations are optimized for speed, not for code size. It uses the |
| // decimation-in-time algorithm with radix-2 butterfly technique. |
| // |
| // Input: |
| // - vector : In pointer to complex vector containing 2^`stages` |
| // real elements interleaved with 2^`stages` imaginary |
| // elements. |
| // [ReImReImReIm....] |
| // The elements are in Q(-scale) domain, see more on Return |
| // Value below. |
| // |
| // - stages : Number of FFT stages. Must be at least 3 and at most 10, |
| // since the table WebRtcSpl_kSinTable1024[] is 1024 |
| // elements long. |
| // |
| // - mode : This parameter gives the user to choose how the FFT |
| // should work. |
| // mode==0: Low-complexity and Low-accuracy mode |
| // mode==1: High-complexity and High-accuracy mode |
| // |
| // Output: |
| // - vector : Out pointer to the FFT vector (the same as input). |
| // |
| // Return Value : The scale value that tells the number of left bit shifts |
| // that the elements in the `vector` should be shifted with |
| // in order to get Q0 values, i.e. the physically correct |
| // values. The scale parameter is always 0 or positive, |
| // except if N>1024 (`stages`>10), which returns a scale |
| // value of -1, indicating error. |
| // |
| |
| // |
| // WebRtcSpl_ComplexFFT(...) |
| // |
| // Complex FFT |
| // |
| // Computes a complex 2^`stages`-point FFT on the input vector, which is in |
| // bit-reversed order. The original content of the vector is destroyed in |
| // the process, since the input is overwritten by the output, normal-ordered, |
| // FFT vector. With x as the input complex vector, Y as the output complex |
| // vector and with M = 2^`stages`, the following is computed: |
| // |
| // M-1 |
| // Y(k) = 1/M * sum[x(i)*[cos(2*pi*i*k/M) + j*sin(2*pi*i*k/M)]] |
| // i=0 |
| // |
| // The implementations are optimized for speed, not for code size. It uses the |
| // decimation-in-time algorithm with radix-2 butterfly technique. |
| // |
| // This routine prevents overflow by scaling by 2 before each FFT stage. This is |
| // a fixed scaling, for proper normalization - there will be log2(n) passes, so |
| // this results in an overall factor of 1/n, distributed to maximize arithmetic |
| // accuracy. |
| // |
| // Input: |
| // - vector : In pointer to complex vector containing 2^`stages` real |
| // elements interleaved with 2^`stages` imaginary elements. |
| // [ReImReImReIm....] |
| // The output is in the Q0 domain. |
| // |
| // - stages : Number of FFT stages. Must be at least 3 and at most 10, |
| // since the table WebRtcSpl_kSinTable1024[] is 1024 |
| // elements long. |
| // |
| // - mode : This parameter gives the user to choose how the FFT |
| // should work. |
| // mode==0: Low-complexity and Low-accuracy mode |
| // mode==1: High-complexity and High-accuracy mode |
| // |
| // Output: |
| // - vector : The output FFT vector is in the Q0 domain. |
| // |
| // Return value : The scale parameter is always 0, except if N>1024, |
| // which returns a scale value of -1, indicating error. |
| // |
| |
| // |
| // WebRtcSpl_AnalysisQMF(...) |
| // |
| // Splits a 0-2*F Hz signal into two sub bands: 0-F Hz and F-2*F Hz. The |
| // current version has F = 8000, therefore, a super-wideband audio signal is |
| // split to lower-band 0-8 kHz and upper-band 8-16 kHz. |
| // |
| // Input: |
| // - in_data : Wide band speech signal, 320 samples (10 ms) |
| // |
| // Input & Output: |
| // - filter_state1 : Filter state for first All-pass filter |
| // - filter_state2 : Filter state for second All-pass filter |
| // |
| // Output: |
| // - low_band : Lower-band signal 0-8 kHz band, 160 samples (10 ms) |
| // - high_band : Upper-band signal 8-16 kHz band (flipped in frequency |
| // domain), 160 samples (10 ms) |
| // |
| |
| // |
| // WebRtcSpl_SynthesisQMF(...) |
| // |
| // Combines the two sub bands (0-F and F-2*F Hz) into a signal of 0-2*F |
| // Hz, (current version has F = 8000 Hz). So the filter combines lower-band |
| // (0-8 kHz) and upper-band (8-16 kHz) channels to obtain super-wideband 0-16 |
| // kHz audio. |
| // |
| // Input: |
| // - low_band : The signal with the 0-8 kHz band, 160 samples (10 ms) |
| // - high_band : The signal with the 8-16 kHz band, 160 samples (10 ms) |
| // |
| // Input & Output: |
| // - filter_state1 : Filter state for first All-pass filter |
| // - filter_state2 : Filter state for second All-pass filter |
| // |
| // Output: |
| // - out_data : Super-wideband speech signal, 0-16 kHz |
| // |
| |
| // int16_t WebRtcSpl_SatW32ToW16(...) |
| // |
| // This function saturates a 32-bit word into a 16-bit word. |
| // |
| // Input: |
| // - value32 : The value of a 32-bit word. |
| // |
| // Output: |
| // - out16 : the saturated 16-bit word. |
| // |
| |
| // int32_t WebRtc_MulAccumW16(...) |
| // |
| // This function multiply a 16-bit word by a 16-bit word, and accumulate this |
| // value to a 32-bit integer. |
| // |
| // Input: |
| // - a : The value of the first 16-bit word. |
| // - b : The value of the second 16-bit word. |
| // - c : The value of an 32-bit integer. |
| // |
| // Return Value: The value of a * b + c. |
| // |