| /* |
| * Copyright 2015 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef API_ARRAY_VIEW_H_ |
| #define API_ARRAY_VIEW_H_ |
| |
| #include <algorithm> |
| #include <array> |
| #include <iterator> |
| #include <type_traits> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/type_traits.h" |
| |
| namespace rtc { |
| |
| // tl;dr: rtc::ArrayView is the same thing as gsl::span from the Guideline |
| // Support Library. |
| // |
| // Many functions read from or write to arrays. The obvious way to do this is |
| // to use two arguments, a pointer to the first element and an element count: |
| // |
| // bool Contains17(const int* arr, size_t size) { |
| // for (size_t i = 0; i < size; ++i) { |
| // if (arr[i] == 17) |
| // return true; |
| // } |
| // return false; |
| // } |
| // |
| // This is flexible, since it doesn't matter how the array is stored (C array, |
| // std::vector, rtc::Buffer, ...), but it's error-prone because the caller has |
| // to correctly specify the array length: |
| // |
| // Contains17(arr, arraysize(arr)); // C array |
| // Contains17(arr.data(), arr.size()); // std::vector |
| // Contains17(arr, size); // pointer + size |
| // ... |
| // |
| // It's also kind of messy to have two separate arguments for what is |
| // conceptually a single thing. |
| // |
| // Enter rtc::ArrayView<T>. It contains a T pointer (to an array it doesn't |
| // own) and a count, and supports the basic things you'd expect, such as |
| // indexing and iteration. It allows us to write our function like this: |
| // |
| // bool Contains17(rtc::ArrayView<const int> arr) { |
| // for (auto e : arr) { |
| // if (e == 17) |
| // return true; |
| // } |
| // return false; |
| // } |
| // |
| // And even better, because a bunch of things will implicitly convert to |
| // ArrayView, we can call it like this: |
| // |
| // Contains17(arr); // C array |
| // Contains17(arr); // std::vector |
| // Contains17(rtc::ArrayView<int>(arr, size)); // pointer + size |
| // Contains17(nullptr); // nullptr -> empty ArrayView |
| // ... |
| // |
| // ArrayView<T> stores both a pointer and a size, but you may also use |
| // ArrayView<T, N>, which has a size that's fixed at compile time (which means |
| // it only has to store the pointer). |
| // |
| // One important point is that ArrayView<T> and ArrayView<const T> are |
| // different types, which allow and don't allow mutation of the array elements, |
| // respectively. The implicit conversions work just like you'd hope, so that |
| // e.g. vector<int> will convert to either ArrayView<int> or ArrayView<const |
| // int>, but const vector<int> will convert only to ArrayView<const int>. |
| // (ArrayView itself can be the source type in such conversions, so |
| // ArrayView<int> will convert to ArrayView<const int>.) |
| // |
| // Note: ArrayView is tiny (just a pointer and a count if variable-sized, just |
| // a pointer if fix-sized) and trivially copyable, so it's probably cheaper to |
| // pass it by value than by const reference. |
| |
| namespace array_view_internal { |
| |
| // Magic constant for indicating that the size of an ArrayView is variable |
| // instead of fixed. |
| enum : std::ptrdiff_t { kArrayViewVarSize = -4711 }; |
| |
| // Base class for ArrayViews of fixed nonzero size. |
| template <typename T, std::ptrdiff_t Size> |
| class ArrayViewBase { |
| static_assert(Size > 0, "ArrayView size must be variable or non-negative"); |
| |
| public: |
| ArrayViewBase(T* data, size_t size) : data_(data) {} |
| |
| static constexpr size_t size() { return Size; } |
| static constexpr bool empty() { return false; } |
| T* data() const { return data_; } |
| |
| protected: |
| static constexpr bool fixed_size() { return true; } |
| |
| private: |
| T* data_; |
| }; |
| |
| // Specialized base class for ArrayViews of fixed zero size. |
| template <typename T> |
| class ArrayViewBase<T, 0> { |
| public: |
| explicit ArrayViewBase(T* data, size_t size) {} |
| |
| static constexpr size_t size() { return 0; } |
| static constexpr bool empty() { return true; } |
| T* data() const { return nullptr; } |
| |
| protected: |
| static constexpr bool fixed_size() { return true; } |
| }; |
| |
| // Specialized base class for ArrayViews of variable size. |
| template <typename T> |
| class ArrayViewBase<T, array_view_internal::kArrayViewVarSize> { |
| public: |
| ArrayViewBase(T* data, size_t size) |
| : data_(size == 0 ? nullptr : data), size_(size) {} |
| |
| size_t size() const { return size_; } |
| bool empty() const { return size_ == 0; } |
| T* data() const { return data_; } |
| |
| protected: |
| static constexpr bool fixed_size() { return false; } |
| |
| private: |
| T* data_; |
| size_t size_; |
| }; |
| |
| } // namespace array_view_internal |
| |
| template <typename T, |
| std::ptrdiff_t Size = array_view_internal::kArrayViewVarSize> |
| class ArrayView final : public array_view_internal::ArrayViewBase<T, Size> { |
| public: |
| using value_type = T; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using pointer = value_type*; |
| using const_pointer = const value_type*; |
| using const_iterator = const T*; |
| |
| // Construct an ArrayView from a pointer and a length. |
| template <typename U> |
| ArrayView(U* data, size_t size) |
| : array_view_internal::ArrayViewBase<T, Size>::ArrayViewBase(data, size) { |
| RTC_DCHECK_EQ(size == 0 ? nullptr : data, this->data()); |
| RTC_DCHECK_EQ(size, this->size()); |
| RTC_DCHECK_EQ(!this->data(), |
| this->size() == 0); // data is null iff size == 0. |
| } |
| |
| // Construct an empty ArrayView. Note that fixed-size ArrayViews of size > 0 |
| // cannot be empty. |
| ArrayView() : ArrayView(nullptr, 0) {} |
| ArrayView(std::nullptr_t) // NOLINT |
| : ArrayView() {} |
| ArrayView(std::nullptr_t, size_t size) |
| : ArrayView(static_cast<T*>(nullptr), size) { |
| static_assert(Size == 0 || Size == array_view_internal::kArrayViewVarSize, |
| ""); |
| RTC_DCHECK_EQ(0, size); |
| } |
| |
| // Construct an ArrayView from a C-style array. |
| template <typename U, size_t N> |
| ArrayView(U (&array)[N]) // NOLINT |
| : ArrayView(array, N) { |
| static_assert(Size == N || Size == array_view_internal::kArrayViewVarSize, |
| "Array size must match ArrayView size"); |
| } |
| |
| // (Only if size is fixed.) Construct a fixed size ArrayView<T, N> from a |
| // non-const std::array instance. For an ArrayView with variable size, the |
| // used ctor is ArrayView(U& u) instead. |
| template <typename U, |
| size_t N, |
| typename std::enable_if< |
| Size == static_cast<std::ptrdiff_t>(N)>::type* = nullptr> |
| ArrayView(std::array<U, N>& u) // NOLINT |
| : ArrayView(u.data(), u.size()) {} |
| |
| // (Only if size is fixed.) Construct a fixed size ArrayView<T, N> where T is |
| // const from a const(expr) std::array instance. For an ArrayView with |
| // variable size, the used ctor is ArrayView(U& u) instead. |
| template <typename U, |
| size_t N, |
| typename std::enable_if< |
| Size == static_cast<std::ptrdiff_t>(N)>::type* = nullptr> |
| ArrayView(const std::array<U, N>& u) // NOLINT |
| : ArrayView(u.data(), u.size()) {} |
| |
| // (Only if size is fixed.) Construct an ArrayView from any type U that has a |
| // static constexpr size() method whose return value is equal to Size, and a |
| // data() method whose return value converts implicitly to T*. In particular, |
| // this means we allow conversion from ArrayView<T, N> to ArrayView<const T, |
| // N>, but not the other way around. We also don't allow conversion from |
| // ArrayView<T> to ArrayView<T, N>, or from ArrayView<T, M> to ArrayView<T, |
| // N> when M != N. |
| template < |
| typename U, |
| typename std::enable_if<Size != array_view_internal::kArrayViewVarSize && |
| HasDataAndSize<U, T>::value>::type* = nullptr> |
| ArrayView(U& u) // NOLINT |
| : ArrayView(u.data(), u.size()) { |
| static_assert(U::size() == Size, "Sizes must match exactly"); |
| } |
| template < |
| typename U, |
| typename std::enable_if<Size != array_view_internal::kArrayViewVarSize && |
| HasDataAndSize<U, T>::value>::type* = nullptr> |
| ArrayView(const U& u) // NOLINT(runtime/explicit) |
| : ArrayView(u.data(), u.size()) { |
| static_assert(U::size() == Size, "Sizes must match exactly"); |
| } |
| |
| // (Only if size is variable.) Construct an ArrayView from any type U that |
| // has a size() method whose return value converts implicitly to size_t, and |
| // a data() method whose return value converts implicitly to T*. In |
| // particular, this means we allow conversion from ArrayView<T> to |
| // ArrayView<const T>, but not the other way around. Other allowed |
| // conversions include |
| // ArrayView<T, N> to ArrayView<T> or ArrayView<const T>, |
| // std::vector<T> to ArrayView<T> or ArrayView<const T>, |
| // const std::vector<T> to ArrayView<const T>, |
| // rtc::Buffer to ArrayView<uint8_t> or ArrayView<const uint8_t>, and |
| // const rtc::Buffer to ArrayView<const uint8_t>. |
| template < |
| typename U, |
| typename std::enable_if<Size == array_view_internal::kArrayViewVarSize && |
| HasDataAndSize<U, T>::value>::type* = nullptr> |
| ArrayView(U& u) // NOLINT |
| : ArrayView(u.data(), u.size()) {} |
| template < |
| typename U, |
| typename std::enable_if<Size == array_view_internal::kArrayViewVarSize && |
| HasDataAndSize<U, T>::value>::type* = nullptr> |
| ArrayView(const U& u) // NOLINT(runtime/explicit) |
| : ArrayView(u.data(), u.size()) {} |
| |
| // Indexing and iteration. These allow mutation even if the ArrayView is |
| // const, because the ArrayView doesn't own the array. (To prevent mutation, |
| // use a const element type.) |
| T& operator[](size_t idx) const { |
| RTC_DCHECK_LT(idx, this->size()); |
| RTC_DCHECK(this->data()); |
| return this->data()[idx]; |
| } |
| T* begin() const { return this->data(); } |
| T* end() const { return this->data() + this->size(); } |
| const T* cbegin() const { return this->data(); } |
| const T* cend() const { return this->data() + this->size(); } |
| std::reverse_iterator<T*> rbegin() const { |
| return std::make_reverse_iterator(end()); |
| } |
| std::reverse_iterator<T*> rend() const { |
| return std::make_reverse_iterator(begin()); |
| } |
| std::reverse_iterator<const T*> crbegin() const { |
| return std::make_reverse_iterator(cend()); |
| } |
| std::reverse_iterator<const T*> crend() const { |
| return std::make_reverse_iterator(cbegin()); |
| } |
| |
| ArrayView<T> subview(size_t offset, size_t size) const { |
| return offset < this->size() |
| ? ArrayView<T>(this->data() + offset, |
| std::min(size, this->size() - offset)) |
| : ArrayView<T>(); |
| } |
| ArrayView<T> subview(size_t offset) const { |
| return subview(offset, this->size()); |
| } |
| }; |
| |
| // Comparing two ArrayViews compares their (pointer,size) pairs; it does *not* |
| // dereference the pointers. |
| template <typename T, std::ptrdiff_t Size1, std::ptrdiff_t Size2> |
| bool operator==(const ArrayView<T, Size1>& a, const ArrayView<T, Size2>& b) { |
| return a.data() == b.data() && a.size() == b.size(); |
| } |
| template <typename T, std::ptrdiff_t Size1, std::ptrdiff_t Size2> |
| bool operator!=(const ArrayView<T, Size1>& a, const ArrayView<T, Size2>& b) { |
| return !(a == b); |
| } |
| |
| // Variable-size ArrayViews are the size of two pointers; fixed-size ArrayViews |
| // are the size of one pointer. (And as a special case, fixed-size ArrayViews |
| // of size 0 require no storage.) |
| static_assert(sizeof(ArrayView<int>) == 2 * sizeof(int*), ""); |
| static_assert(sizeof(ArrayView<int, 17>) == sizeof(int*), ""); |
| static_assert(std::is_empty<ArrayView<int, 0>>::value, ""); |
| |
| template <typename T> |
| inline ArrayView<T> MakeArrayView(T* data, size_t size) { |
| return ArrayView<T>(data, size); |
| } |
| |
| // Only for primitive types that have the same size and aligment. |
| // Allow reinterpret cast of the array view to another primitive type of the |
| // same size. |
| // Template arguments order is (U, T, Size) to allow deduction of the template |
| // arguments in client calls: reinterpret_array_view<target_type>(array_view). |
| template <typename U, typename T, std::ptrdiff_t Size> |
| inline ArrayView<U, Size> reinterpret_array_view(ArrayView<T, Size> view) { |
| static_assert(sizeof(U) == sizeof(T) && alignof(U) == alignof(T), |
| "ArrayView reinterpret_cast is only supported for casting " |
| "between views that represent the same chunk of memory."); |
| static_assert( |
| std::is_fundamental<T>::value && std::is_fundamental<U>::value, |
| "ArrayView reinterpret_cast is only supported for casting between " |
| "fundamental types."); |
| return ArrayView<U, Size>(reinterpret_cast<U*>(view.data()), view.size()); |
| } |
| |
| } // namespace rtc |
| |
| #endif // API_ARRAY_VIEW_H_ |