| /* |
| * Copyright (c) 2020 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| * |
| */ |
| |
| #include <memory> |
| |
| #ifdef RTC_ENABLE_VP9 |
| |
| #include <algorithm> |
| #include <limits> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/algorithm/container.h" |
| #include "absl/memory/memory.h" |
| #include "absl/strings/match.h" |
| #include "absl/types/optional.h" |
| #include "api/video/color_space.h" |
| #include "api/video/i010_buffer.h" |
| #include "api/video_codecs/scalability_mode.h" |
| #include "common_video/include/video_frame_buffer.h" |
| #include "common_video/libyuv/include/webrtc_libyuv.h" |
| #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" |
| #include "modules/video_coding/codecs/vp9/libvpx_vp9_encoder.h" |
| #include "modules/video_coding/svc/create_scalability_structure.h" |
| #include "modules/video_coding/svc/scalability_mode_util.h" |
| #include "modules/video_coding/svc/scalable_video_controller.h" |
| #include "modules/video_coding/svc/scalable_video_controller_no_layering.h" |
| #include "modules/video_coding/svc/svc_rate_allocator.h" |
| #include "modules/video_coding/utility/vp9_uncompressed_header_parser.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/experiments/field_trial_list.h" |
| #include "rtc_base/experiments/field_trial_parser.h" |
| #include "rtc_base/experiments/rate_control_settings.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "rtc_base/time_utils.h" |
| #include "rtc_base/trace_event.h" |
| #include "third_party/libyuv/include/libyuv/convert.h" |
| #include "vpx/vp8cx.h" |
| #include "vpx/vpx_encoder.h" |
| |
| #if (defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64)) && \ |
| (defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)) |
| #define MOBILE_ARM |
| #endif |
| |
| namespace webrtc { |
| |
| namespace { |
| // Maps from gof_idx to encoder internal reference frame buffer index. These |
| // maps work for 1,2 and 3 temporal layers with GOF length of 1,2 and 4 frames. |
| uint8_t kRefBufIdx[4] = {0, 0, 0, 1}; |
| uint8_t kUpdBufIdx[4] = {0, 0, 1, 0}; |
| |
| // Maximum allowed PID difference for differnet per-layer frame-rate case. |
| const int kMaxAllowedPidDiff = 30; |
| |
| // TODO(ilink): Tune these thresholds further. |
| // Selected using ConverenceMotion_1280_720_50.yuv clip. |
| // No toggling observed on any link capacity from 100-2000kbps. |
| // HD was reached consistently when link capacity was 1500kbps. |
| // Set resolutions are a bit more conservative than svc_config.cc sets, e.g. |
| // for 300kbps resolution converged to 270p instead of 360p. |
| constexpr int kLowVp9QpThreshold = 149; |
| constexpr int kHighVp9QpThreshold = 205; |
| |
| std::pair<size_t, size_t> GetActiveLayers( |
| const VideoBitrateAllocation& allocation) { |
| for (size_t sl_idx = 0; sl_idx < kMaxSpatialLayers; ++sl_idx) { |
| if (allocation.GetSpatialLayerSum(sl_idx) > 0) { |
| size_t last_layer = sl_idx + 1; |
| while (last_layer < kMaxSpatialLayers && |
| allocation.GetSpatialLayerSum(last_layer) > 0) { |
| ++last_layer; |
| } |
| return std::make_pair(sl_idx, last_layer); |
| } |
| } |
| return {0, 0}; |
| } |
| |
| std::unique_ptr<ScalableVideoController> CreateVp9ScalabilityStructure( |
| const VideoCodec& codec) { |
| int num_spatial_layers = codec.VP9().numberOfSpatialLayers; |
| int num_temporal_layers = |
| std::max(1, int{codec.VP9().numberOfTemporalLayers}); |
| if (num_spatial_layers == 1 && num_temporal_layers == 1) { |
| return std::make_unique<ScalableVideoControllerNoLayering>(); |
| } |
| |
| char name[20]; |
| rtc::SimpleStringBuilder ss(name); |
| if (codec.mode == VideoCodecMode::kScreensharing) { |
| // TODO(bugs.webrtc.org/11999): Compose names of the structures when they |
| // are implemented. |
| return nullptr; |
| } else if (codec.VP9().interLayerPred == InterLayerPredMode::kOn || |
| num_spatial_layers == 1) { |
| ss << "L" << num_spatial_layers << "T" << num_temporal_layers; |
| } else if (codec.VP9().interLayerPred == InterLayerPredMode::kOnKeyPic) { |
| ss << "L" << num_spatial_layers << "T" << num_temporal_layers << "_KEY"; |
| } else { |
| RTC_DCHECK_EQ(codec.VP9().interLayerPred, InterLayerPredMode::kOff); |
| ss << "S" << num_spatial_layers << "T" << num_temporal_layers; |
| } |
| |
| // Check spatial ratio. |
| if (num_spatial_layers > 1 && codec.spatialLayers[0].targetBitrate > 0) { |
| if (codec.width != codec.spatialLayers[num_spatial_layers - 1].width || |
| codec.height != codec.spatialLayers[num_spatial_layers - 1].height) { |
| RTC_LOG(LS_WARNING) |
| << "Top layer resolution expected to match overall resolution"; |
| return nullptr; |
| } |
| // Check if the ratio is one of the supported. |
| int numerator; |
| int denominator; |
| if (codec.spatialLayers[1].width == 2 * codec.spatialLayers[0].width) { |
| numerator = 1; |
| denominator = 2; |
| // no suffix for 1:2 ratio. |
| } else if (2 * codec.spatialLayers[1].width == |
| 3 * codec.spatialLayers[0].width) { |
| numerator = 2; |
| denominator = 3; |
| ss << "h"; |
| } else { |
| RTC_LOG(LS_WARNING) << "Unsupported scalability ratio " |
| << codec.spatialLayers[0].width << ":" |
| << codec.spatialLayers[1].width; |
| return nullptr; |
| } |
| // Validate ratio is consistent for all spatial layer transitions. |
| for (int sid = 1; sid < num_spatial_layers; ++sid) { |
| if (codec.spatialLayers[sid].width * numerator != |
| codec.spatialLayers[sid - 1].width * denominator || |
| codec.spatialLayers[sid].height * numerator != |
| codec.spatialLayers[sid - 1].height * denominator) { |
| RTC_LOG(LS_WARNING) << "Inconsistent scalability ratio " << numerator |
| << ":" << denominator; |
| return nullptr; |
| } |
| } |
| } |
| |
| absl::optional<ScalabilityMode> scalability_mode = |
| ScalabilityModeFromString(name); |
| if (!scalability_mode.has_value()) { |
| RTC_LOG(LS_WARNING) << "Invalid scalability mode " << name; |
| return nullptr; |
| } |
| auto scalability_structure_controller = |
| CreateScalabilityStructure(*scalability_mode); |
| if (scalability_structure_controller == nullptr) { |
| RTC_LOG(LS_WARNING) << "Unsupported scalability structure " << name; |
| } else { |
| RTC_LOG(LS_INFO) << "Created scalability structure " << name; |
| } |
| return scalability_structure_controller; |
| } |
| |
| vpx_svc_ref_frame_config_t Vp9References( |
| rtc::ArrayView<const ScalableVideoController::LayerFrameConfig> layers) { |
| vpx_svc_ref_frame_config_t ref_config = {}; |
| for (const ScalableVideoController::LayerFrameConfig& layer_frame : layers) { |
| const auto& buffers = layer_frame.Buffers(); |
| RTC_DCHECK_LE(buffers.size(), 3); |
| int sid = layer_frame.SpatialId(); |
| if (!buffers.empty()) { |
| ref_config.lst_fb_idx[sid] = buffers[0].id; |
| ref_config.reference_last[sid] = buffers[0].referenced; |
| if (buffers[0].updated) { |
| ref_config.update_buffer_slot[sid] |= (1 << buffers[0].id); |
| } |
| } |
| if (buffers.size() > 1) { |
| ref_config.gld_fb_idx[sid] = buffers[1].id; |
| ref_config.reference_golden[sid] = buffers[1].referenced; |
| if (buffers[1].updated) { |
| ref_config.update_buffer_slot[sid] |= (1 << buffers[1].id); |
| } |
| } |
| if (buffers.size() > 2) { |
| ref_config.alt_fb_idx[sid] = buffers[2].id; |
| ref_config.reference_alt_ref[sid] = buffers[2].referenced; |
| if (buffers[2].updated) { |
| ref_config.update_buffer_slot[sid] |= (1 << buffers[2].id); |
| } |
| } |
| } |
| // TODO(bugs.webrtc.org/11999): Fill ref_config.duration |
| return ref_config; |
| } |
| |
| bool AllowDenoising() { |
| #ifdef MOBILE_ARM |
| // Keep the denoiser disabled on mobile ARM devices. It increases encode time |
| // by up to 16%. |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| } // namespace |
| |
| void LibvpxVp9Encoder::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt, |
| void* user_data) { |
| LibvpxVp9Encoder* enc = static_cast<LibvpxVp9Encoder*>(user_data); |
| enc->GetEncodedLayerFrame(pkt); |
| } |
| |
| LibvpxVp9Encoder::LibvpxVp9Encoder(const Environment& env, |
| Vp9EncoderSettings settings, |
| std::unique_ptr<LibvpxInterface> interface) |
| : libvpx_(std::move(interface)), |
| encoded_image_(), |
| encoded_complete_callback_(nullptr), |
| profile_(settings.profile), |
| inited_(false), |
| timestamp_(0), |
| rc_max_intra_target_(0), |
| encoder_(nullptr), |
| config_(nullptr), |
| raw_(nullptr), |
| input_image_(nullptr), |
| force_key_frame_(true), |
| pics_since_key_(0), |
| num_temporal_layers_(0), |
| num_spatial_layers_(0), |
| num_active_spatial_layers_(0), |
| first_active_layer_(0), |
| layer_deactivation_requires_key_frame_(env.field_trials().IsEnabled( |
| "WebRTC-Vp9IssueKeyFrameOnLayerDeactivation")), |
| is_svc_(false), |
| inter_layer_pred_(InterLayerPredMode::kOn), |
| external_ref_control_(false), // Set in InitEncode because of tests. |
| trusted_rate_controller_( |
| RateControlSettings::ParseFromKeyValueConfig(&env.field_trials()) |
| .LibvpxVp9TrustedRateController()), |
| first_frame_in_picture_(true), |
| ss_info_needed_(false), |
| force_all_active_layers_(false), |
| is_flexible_mode_(false), |
| variable_framerate_experiment_( |
| ParseVariableFramerateConfig(env.field_trials())), |
| variable_framerate_controller_( |
| variable_framerate_experiment_.framerate_limit), |
| quality_scaler_experiment_(ParseQualityScalerConfig(env.field_trials())), |
| external_ref_ctrl_( |
| !env.field_trials().IsDisabled("WebRTC-Vp9ExternalRefCtrl")), |
| performance_flags_(ParsePerformanceFlagsFromTrials(env.field_trials())), |
| num_steady_state_frames_(0), |
| config_changed_(true), |
| svc_frame_drop_config_(ParseSvcFrameDropConfig(env.field_trials())) { |
| codec_ = {}; |
| memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t)); |
| } |
| |
| LibvpxVp9Encoder::~LibvpxVp9Encoder() { |
| Release(); |
| } |
| |
| void LibvpxVp9Encoder::SetFecControllerOverride(FecControllerOverride*) { |
| // Ignored. |
| } |
| |
| int LibvpxVp9Encoder::Release() { |
| int ret_val = WEBRTC_VIDEO_CODEC_OK; |
| |
| if (encoder_ != nullptr) { |
| if (inited_) { |
| if (libvpx_->codec_destroy(encoder_)) { |
| ret_val = WEBRTC_VIDEO_CODEC_MEMORY; |
| } |
| } |
| delete encoder_; |
| encoder_ = nullptr; |
| } |
| if (config_ != nullptr) { |
| delete config_; |
| config_ = nullptr; |
| } |
| if (raw_ != nullptr) { |
| libvpx_->img_free(raw_); |
| raw_ = nullptr; |
| } |
| inited_ = false; |
| return ret_val; |
| } |
| |
| bool LibvpxVp9Encoder::ExplicitlyConfiguredSpatialLayers() const { |
| // We check target_bitrate_bps of the 0th layer to see if the spatial layers |
| // (i.e. bitrates) were explicitly configured. |
| return codec_.spatialLayers[0].targetBitrate > 0; |
| } |
| |
| bool LibvpxVp9Encoder::SetSvcRates( |
| const VideoBitrateAllocation& bitrate_allocation) { |
| std::pair<size_t, size_t> current_layers = |
| GetActiveLayers(current_bitrate_allocation_); |
| std::pair<size_t, size_t> new_layers = GetActiveLayers(bitrate_allocation); |
| |
| const bool layer_activation_requires_key_frame = |
| inter_layer_pred_ == InterLayerPredMode::kOff || |
| inter_layer_pred_ == InterLayerPredMode::kOnKeyPic; |
| const bool lower_layers_enabled = new_layers.first < current_layers.first; |
| const bool higher_layers_enabled = new_layers.second > current_layers.second; |
| const bool disabled_layers = new_layers.first > current_layers.first || |
| new_layers.second < current_layers.second; |
| |
| if (lower_layers_enabled || |
| (higher_layers_enabled && layer_activation_requires_key_frame) || |
| (disabled_layers && layer_deactivation_requires_key_frame_)) { |
| force_key_frame_ = true; |
| } |
| |
| if (current_layers != new_layers) { |
| ss_info_needed_ = true; |
| } |
| |
| config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps(); |
| |
| if (ExplicitlyConfiguredSpatialLayers()) { |
| for (size_t sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { |
| const bool was_layer_active = (config_->ss_target_bitrate[sl_idx] > 0); |
| config_->ss_target_bitrate[sl_idx] = |
| bitrate_allocation.GetSpatialLayerSum(sl_idx) / 1000; |
| |
| for (size_t tl_idx = 0; tl_idx < num_temporal_layers_; ++tl_idx) { |
| config_->layer_target_bitrate[sl_idx * num_temporal_layers_ + tl_idx] = |
| bitrate_allocation.GetTemporalLayerSum(sl_idx, tl_idx) / 1000; |
| } |
| |
| if (!was_layer_active) { |
| // Reset frame rate controller if layer is resumed after pause. |
| framerate_controller_[sl_idx].Reset(); |
| } |
| |
| framerate_controller_[sl_idx].SetTargetRate( |
| codec_.spatialLayers[sl_idx].maxFramerate); |
| } |
| } else { |
| float rate_ratio[VPX_MAX_LAYERS] = {0}; |
| float total = 0; |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| if (svc_params_.scaling_factor_num[i] <= 0 || |
| svc_params_.scaling_factor_den[i] <= 0) { |
| RTC_LOG(LS_ERROR) << "Scaling factors not specified!"; |
| return false; |
| } |
| rate_ratio[i] = static_cast<float>(svc_params_.scaling_factor_num[i]) / |
| svc_params_.scaling_factor_den[i]; |
| total += rate_ratio[i]; |
| } |
| |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| RTC_CHECK_GT(total, 0); |
| config_->ss_target_bitrate[i] = static_cast<unsigned int>( |
| config_->rc_target_bitrate * rate_ratio[i] / total); |
| if (num_temporal_layers_ == 1) { |
| config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i]; |
| } else if (num_temporal_layers_ == 2) { |
| config_->layer_target_bitrate[i * num_temporal_layers_] = |
| config_->ss_target_bitrate[i] * 2 / 3; |
| config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = |
| config_->ss_target_bitrate[i]; |
| } else if (num_temporal_layers_ == 3) { |
| config_->layer_target_bitrate[i * num_temporal_layers_] = |
| config_->ss_target_bitrate[i] / 2; |
| config_->layer_target_bitrate[i * num_temporal_layers_ + 1] = |
| config_->layer_target_bitrate[i * num_temporal_layers_] + |
| (config_->ss_target_bitrate[i] / 4); |
| config_->layer_target_bitrate[i * num_temporal_layers_ + 2] = |
| config_->ss_target_bitrate[i]; |
| } else { |
| RTC_LOG(LS_ERROR) << "Unsupported number of temporal layers: " |
| << num_temporal_layers_; |
| return false; |
| } |
| |
| framerate_controller_[i].SetTargetRate(codec_.maxFramerate); |
| } |
| } |
| |
| num_active_spatial_layers_ = 0; |
| first_active_layer_ = 0; |
| bool seen_active_layer = false; |
| bool expect_no_more_active_layers = false; |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| if (config_->ss_target_bitrate[i] > 0) { |
| RTC_DCHECK(!expect_no_more_active_layers) << "Only middle layer is " |
| "deactivated."; |
| if (!seen_active_layer) { |
| first_active_layer_ = i; |
| } |
| num_active_spatial_layers_ = i + 1; |
| seen_active_layer = true; |
| } else { |
| expect_no_more_active_layers = seen_active_layer; |
| } |
| } |
| |
| if (seen_active_layer && performance_flags_.use_per_layer_speed) { |
| bool denoiser_on = |
| AllowDenoising() && codec_.VP9()->denoisingOn && |
| performance_flags_by_spatial_index_[num_active_spatial_layers_ - 1] |
| .allow_denoising; |
| libvpx_->codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, |
| denoiser_on ? 1 : 0); |
| } |
| |
| if (higher_layers_enabled && !force_key_frame_) { |
| // Prohibit drop of all layers for the next frame, so newly enabled |
| // layer would have a valid spatial reference. |
| for (size_t i = 0; i < num_spatial_layers_; ++i) { |
| svc_drop_frame_.framedrop_thresh[i] = 0; |
| } |
| force_all_active_layers_ = true; |
| } |
| |
| if (svc_controller_) { |
| for (int sid = 0; sid < num_spatial_layers_; ++sid) { |
| // Bitrates in `layer_target_bitrate` are accumulated for each temporal |
| // layer but in `VideoBitrateAllocation` they should be separated. |
| int previous_bitrate_kbps = 0; |
| for (int tid = 0; tid < num_temporal_layers_; ++tid) { |
| int accumulated_bitrate_kbps = |
| config_->layer_target_bitrate[sid * num_temporal_layers_ + tid]; |
| int single_layer_bitrate_kbps = |
| accumulated_bitrate_kbps - previous_bitrate_kbps; |
| RTC_DCHECK_GE(single_layer_bitrate_kbps, 0); |
| current_bitrate_allocation_.SetBitrate( |
| sid, tid, single_layer_bitrate_kbps * 1'000); |
| previous_bitrate_kbps = accumulated_bitrate_kbps; |
| } |
| } |
| svc_controller_->OnRatesUpdated(current_bitrate_allocation_); |
| } else { |
| current_bitrate_allocation_ = bitrate_allocation; |
| } |
| config_changed_ = true; |
| return true; |
| } |
| |
| void LibvpxVp9Encoder::DisableSpatialLayer(int sid) { |
| RTC_DCHECK_LT(sid, num_spatial_layers_); |
| if (config_->ss_target_bitrate[sid] == 0) { |
| return; |
| } |
| config_->ss_target_bitrate[sid] = 0; |
| for (int tid = 0; tid < num_temporal_layers_; ++tid) { |
| config_->layer_target_bitrate[sid * num_temporal_layers_ + tid] = 0; |
| } |
| config_changed_ = true; |
| } |
| |
| void LibvpxVp9Encoder::EnableSpatialLayer(int sid) { |
| RTC_DCHECK_LT(sid, num_spatial_layers_); |
| if (config_->ss_target_bitrate[sid] > 0) { |
| return; |
| } |
| for (int tid = 0; tid < num_temporal_layers_; ++tid) { |
| config_->layer_target_bitrate[sid * num_temporal_layers_ + tid] = |
| current_bitrate_allocation_.GetTemporalLayerSum(sid, tid) / 1000; |
| } |
| config_->ss_target_bitrate[sid] = |
| current_bitrate_allocation_.GetSpatialLayerSum(sid) / 1000; |
| RTC_DCHECK_GT(config_->ss_target_bitrate[sid], 0); |
| config_changed_ = true; |
| } |
| |
| void LibvpxVp9Encoder::SetActiveSpatialLayers() { |
| // Svc controller may decide to skip a frame at certain spatial layer even |
| // when bitrate for it is non-zero, however libvpx uses configured bitrate as |
| // a signal which layers should be produced. |
| RTC_DCHECK(svc_controller_); |
| RTC_DCHECK(!layer_frames_.empty()); |
| RTC_DCHECK(absl::c_is_sorted( |
| layer_frames_, [](const ScalableVideoController::LayerFrameConfig& lhs, |
| const ScalableVideoController::LayerFrameConfig& rhs) { |
| return lhs.SpatialId() < rhs.SpatialId(); |
| })); |
| |
| auto frame_it = layer_frames_.begin(); |
| for (int sid = 0; sid < num_spatial_layers_; ++sid) { |
| if (frame_it != layer_frames_.end() && frame_it->SpatialId() == sid) { |
| EnableSpatialLayer(sid); |
| ++frame_it; |
| } else { |
| DisableSpatialLayer(sid); |
| } |
| } |
| } |
| |
| void LibvpxVp9Encoder::SetRates(const RateControlParameters& parameters) { |
| if (!inited_) { |
| RTC_LOG(LS_WARNING) << "SetRates() called while uninitialized."; |
| return; |
| } |
| if (encoder_->err) { |
| RTC_LOG(LS_WARNING) << "Encoder in error state: " << encoder_->err; |
| return; |
| } |
| if (parameters.framerate_fps < 1.0) { |
| RTC_LOG(LS_WARNING) << "Unsupported framerate: " |
| << parameters.framerate_fps; |
| return; |
| } |
| |
| codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps + 0.5); |
| |
| bool res = SetSvcRates(parameters.bitrate); |
| RTC_DCHECK(res) << "Failed to set new bitrate allocation"; |
| config_changed_ = true; |
| } |
| |
| // TODO(eladalon): s/inst/codec_settings/g. |
| int LibvpxVp9Encoder::InitEncode(const VideoCodec* inst, |
| const Settings& settings) { |
| if (inst == nullptr) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->maxFramerate < 1) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| // Allow zero to represent an unspecified maxBitRate |
| if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->width < 1 || inst->height < 1) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (settings.number_of_cores < 1) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->VP9().numberOfTemporalLayers > 3) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| // libvpx probably does not support more than 3 spatial layers. |
| if (inst->VP9().numberOfSpatialLayers > 3) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| absl::optional<vpx_img_fmt_t> previous_img_fmt = |
| raw_ ? absl::make_optional<vpx_img_fmt_t>(raw_->fmt) : absl::nullopt; |
| |
| int ret_val = Release(); |
| if (ret_val < 0) { |
| return ret_val; |
| } |
| if (encoder_ == nullptr) { |
| encoder_ = new vpx_codec_ctx_t; |
| memset(encoder_, 0, sizeof(*encoder_)); |
| } |
| if (config_ == nullptr) { |
| config_ = new vpx_codec_enc_cfg_t; |
| memset(config_, 0, sizeof(*config_)); |
| } |
| timestamp_ = 0; |
| if (&codec_ != inst) { |
| codec_ = *inst; |
| } |
| memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t)); |
| |
| force_key_frame_ = true; |
| pics_since_key_ = 0; |
| |
| scalability_mode_ = inst->GetScalabilityMode(); |
| if (scalability_mode_.has_value()) { |
| // Use settings from `ScalabilityMode` identifier. |
| RTC_LOG(LS_INFO) << "Create scalability structure " |
| << ScalabilityModeToString(*scalability_mode_); |
| svc_controller_ = CreateScalabilityStructure(*scalability_mode_); |
| if (!svc_controller_) { |
| RTC_LOG(LS_WARNING) << "Failed to create scalability structure."; |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| ScalableVideoController::StreamLayersConfig info = |
| svc_controller_->StreamConfig(); |
| num_spatial_layers_ = info.num_spatial_layers; |
| num_temporal_layers_ = info.num_temporal_layers; |
| inter_layer_pred_ = ScalabilityModeToInterLayerPredMode(*scalability_mode_); |
| } else { |
| num_spatial_layers_ = inst->VP9().numberOfSpatialLayers; |
| RTC_DCHECK_GT(num_spatial_layers_, 0); |
| num_temporal_layers_ = inst->VP9().numberOfTemporalLayers; |
| if (num_temporal_layers_ == 0) { |
| num_temporal_layers_ = 1; |
| } |
| inter_layer_pred_ = inst->VP9().interLayerPred; |
| svc_controller_ = CreateVp9ScalabilityStructure(*inst); |
| } |
| |
| framerate_controller_ = std::vector<FramerateControllerDeprecated>( |
| num_spatial_layers_, FramerateControllerDeprecated(codec_.maxFramerate)); |
| |
| is_svc_ = (num_spatial_layers_ > 1 || num_temporal_layers_ > 1); |
| |
| // Populate encoder configuration with default values. |
| if (libvpx_->codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| |
| vpx_img_fmt img_fmt = VPX_IMG_FMT_NONE; |
| unsigned int bits_for_storage = 8; |
| switch (profile_) { |
| case VP9Profile::kProfile0: |
| img_fmt = previous_img_fmt.value_or(VPX_IMG_FMT_I420); |
| bits_for_storage = 8; |
| config_->g_bit_depth = VPX_BITS_8; |
| config_->g_profile = 0; |
| config_->g_input_bit_depth = 8; |
| break; |
| case VP9Profile::kProfile1: |
| // Encoding of profile 1 is not implemented. It would require extended |
| // support for I444, I422, and I440 buffers. |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| case VP9Profile::kProfile2: |
| img_fmt = VPX_IMG_FMT_I42016; |
| bits_for_storage = 16; |
| config_->g_bit_depth = VPX_BITS_10; |
| config_->g_profile = 2; |
| config_->g_input_bit_depth = 10; |
| break; |
| case VP9Profile::kProfile3: |
| // Encoding of profile 3 is not implemented. |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| } |
| |
| // Creating a wrapper to the image - setting image data to nullptr. Actual |
| // pointer will be set in encode. Setting align to 1, as it is meaningless |
| // (actual memory is not allocated). |
| raw_ = libvpx_->img_wrap(nullptr, img_fmt, codec_.width, codec_.height, 1, |
| nullptr); |
| raw_->bit_depth = bits_for_storage; |
| |
| config_->g_w = codec_.width; |
| config_->g_h = codec_.height; |
| config_->rc_target_bitrate = inst->startBitrate; // in kbit/s |
| config_->g_error_resilient = is_svc_ ? VPX_ERROR_RESILIENT_DEFAULT : 0; |
| // Setting the time base of the codec. |
| config_->g_timebase.num = 1; |
| config_->g_timebase.den = 90000; |
| config_->g_lag_in_frames = 0; // 0- no frame lagging |
| config_->g_threads = 1; |
| // Rate control settings. |
| config_->rc_dropframe_thresh = inst->GetFrameDropEnabled() ? 30 : 0; |
| config_->rc_end_usage = VPX_CBR; |
| config_->g_pass = VPX_RC_ONE_PASS; |
| config_->rc_min_quantizer = |
| codec_.mode == VideoCodecMode::kScreensharing ? 8 : 2; |
| config_->rc_max_quantizer = 52; |
| config_->rc_undershoot_pct = 50; |
| config_->rc_overshoot_pct = 50; |
| config_->rc_buf_initial_sz = 500; |
| config_->rc_buf_optimal_sz = 600; |
| config_->rc_buf_sz = 1000; |
| // Set the maximum target size of any key-frame. |
| rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz); |
| // Key-frame interval is enforced manually by this wrapper. |
| config_->kf_mode = VPX_KF_DISABLED; |
| // TODO(webm:1592): work-around for libvpx issue, as it can still |
| // put some key-frames at will even in VPX_KF_DISABLED kf_mode. |
| config_->kf_max_dist = inst->VP9().keyFrameInterval; |
| config_->kf_min_dist = config_->kf_max_dist; |
| if (quality_scaler_experiment_.enabled) { |
| // In that experiment webrtc wide quality scaler is used instead of libvpx |
| // internal scaler. |
| config_->rc_resize_allowed = 0; |
| } else { |
| config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0; |
| } |
| // Determine number of threads based on the image size and #cores. |
| config_->g_threads = |
| NumberOfThreads(config_->g_w, config_->g_h, settings.number_of_cores); |
| |
| is_flexible_mode_ = inst->VP9().flexibleMode; |
| |
| if (num_spatial_layers_ > 1 && |
| codec_.mode == VideoCodecMode::kScreensharing && !is_flexible_mode_) { |
| RTC_LOG(LS_ERROR) << "Flexible mode is required for screenshare with " |
| "several spatial layers"; |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| // External reference control is required for different frame rate on spatial |
| // layers because libvpx generates rtp incompatible references in this case. |
| external_ref_control_ = external_ref_ctrl_ || |
| (num_spatial_layers_ > 1 && |
| codec_.mode == VideoCodecMode::kScreensharing) || |
| inter_layer_pred_ == InterLayerPredMode::kOn; |
| |
| if (num_temporal_layers_ == 1) { |
| gof_.SetGofInfoVP9(kTemporalStructureMode1); |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING; |
| config_->ts_number_layers = 1; |
| config_->ts_rate_decimator[0] = 1; |
| config_->ts_periodicity = 1; |
| config_->ts_layer_id[0] = 0; |
| } else if (num_temporal_layers_ == 2) { |
| gof_.SetGofInfoVP9(kTemporalStructureMode2); |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101; |
| config_->ts_number_layers = 2; |
| config_->ts_rate_decimator[0] = 2; |
| config_->ts_rate_decimator[1] = 1; |
| config_->ts_periodicity = 2; |
| config_->ts_layer_id[0] = 0; |
| config_->ts_layer_id[1] = 1; |
| } else if (num_temporal_layers_ == 3) { |
| gof_.SetGofInfoVP9(kTemporalStructureMode3); |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212; |
| config_->ts_number_layers = 3; |
| config_->ts_rate_decimator[0] = 4; |
| config_->ts_rate_decimator[1] = 2; |
| config_->ts_rate_decimator[2] = 1; |
| config_->ts_periodicity = 4; |
| config_->ts_layer_id[0] = 0; |
| config_->ts_layer_id[1] = 2; |
| config_->ts_layer_id[2] = 1; |
| config_->ts_layer_id[3] = 2; |
| } else { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| if (external_ref_control_) { |
| config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; |
| if (num_temporal_layers_ > 1 && num_spatial_layers_ > 1 && |
| codec_.mode == VideoCodecMode::kScreensharing) { |
| // External reference control for several temporal layers with different |
| // frame rates on spatial layers is not implemented yet. |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| } |
| ref_buf_ = {}; |
| |
| return InitAndSetControlSettings(inst); |
| } |
| |
| int LibvpxVp9Encoder::NumberOfThreads(int width, |
| int height, |
| int number_of_cores) { |
| // Keep the number of encoder threads equal to the possible number of column |
| // tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS. |
| if (width * height >= 1280 * 720 && number_of_cores > 4) { |
| return 4; |
| } else if (width * height >= 640 * 360 && number_of_cores > 2) { |
| return 2; |
| } else { |
| // Use 2 threads for low res on mobile ARM. |
| #ifdef MOBILE_ARM |
| if (width * height >= 320 * 180 && number_of_cores > 2) { |
| return 2; |
| } |
| #endif |
| // 1 thread less than VGA. |
| return 1; |
| } |
| } |
| |
| int LibvpxVp9Encoder::InitAndSetControlSettings(const VideoCodec* inst) { |
| // Set QP-min/max per spatial and temporal layer. |
| int tot_num_layers = num_spatial_layers_ * num_temporal_layers_; |
| for (int i = 0; i < tot_num_layers; ++i) { |
| svc_params_.max_quantizers[i] = config_->rc_max_quantizer; |
| svc_params_.min_quantizers[i] = config_->rc_min_quantizer; |
| } |
| config_->ss_number_layers = num_spatial_layers_; |
| if (svc_controller_) { |
| auto stream_config = svc_controller_->StreamConfig(); |
| for (int i = 0; i < stream_config.num_spatial_layers; ++i) { |
| svc_params_.scaling_factor_num[i] = stream_config.scaling_factor_num[i]; |
| svc_params_.scaling_factor_den[i] = stream_config.scaling_factor_den[i]; |
| } |
| } else if (ExplicitlyConfiguredSpatialLayers()) { |
| for (int i = 0; i < num_spatial_layers_; ++i) { |
| const auto& layer = codec_.spatialLayers[i]; |
| RTC_CHECK_GT(layer.width, 0); |
| const int scale_factor = codec_.width / layer.width; |
| RTC_DCHECK_GT(scale_factor, 0); |
| |
| // Ensure scaler factor is integer. |
| if (scale_factor * layer.width != codec_.width) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| // Ensure scale factor is the same in both dimensions. |
| if (scale_factor * layer.height != codec_.height) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| // Ensure scale factor is power of two. |
| const bool is_pow_of_two = (scale_factor & (scale_factor - 1)) == 0; |
| if (!is_pow_of_two) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| svc_params_.scaling_factor_num[i] = 1; |
| svc_params_.scaling_factor_den[i] = scale_factor; |
| |
| RTC_DCHECK_GT(codec_.spatialLayers[i].maxFramerate, 0); |
| RTC_DCHECK_LE(codec_.spatialLayers[i].maxFramerate, codec_.maxFramerate); |
| if (i > 0) { |
| // Frame rate of high spatial layer is supposed to be equal or higher |
| // than frame rate of low spatial layer. |
| RTC_DCHECK_GE(codec_.spatialLayers[i].maxFramerate, |
| codec_.spatialLayers[i - 1].maxFramerate); |
| } |
| } |
| } else { |
| int scaling_factor_num = 256; |
| for (int i = num_spatial_layers_ - 1; i >= 0; --i) { |
| // 1:2 scaling in each dimension. |
| svc_params_.scaling_factor_num[i] = scaling_factor_num; |
| svc_params_.scaling_factor_den[i] = 256; |
| if (inst->mode != VideoCodecMode::kScreensharing) |
| scaling_factor_num /= 2; |
| } |
| } |
| |
| UpdatePerformanceFlags(); |
| RTC_DCHECK_EQ(performance_flags_by_spatial_index_.size(), |
| static_cast<size_t>(num_spatial_layers_)); |
| |
| SvcRateAllocator init_allocator(codec_); |
| current_bitrate_allocation_ = |
| init_allocator.Allocate(VideoBitrateAllocationParameters( |
| inst->startBitrate * 1000, inst->maxFramerate)); |
| if (!SetSvcRates(current_bitrate_allocation_)) { |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| const vpx_codec_err_t rv = libvpx_->codec_enc_init( |
| encoder_, vpx_codec_vp9_cx(), config_, |
| config_->g_bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH); |
| if (rv != VPX_CODEC_OK) { |
| RTC_LOG(LS_ERROR) << "Init error: " << libvpx_->codec_err_to_string(rv); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| |
| if (performance_flags_.use_per_layer_speed) { |
| for (int si = 0; si < num_spatial_layers_; ++si) { |
| svc_params_.speed_per_layer[si] = |
| performance_flags_by_spatial_index_[si].base_layer_speed; |
| svc_params_.loopfilter_ctrl[si] = |
| performance_flags_by_spatial_index_[si].deblock_mode; |
| } |
| bool denoiser_on = |
| AllowDenoising() && inst->VP9().denoisingOn && |
| performance_flags_by_spatial_index_[num_spatial_layers_ - 1] |
| .allow_denoising; |
| libvpx_->codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, |
| denoiser_on ? 1 : 0); |
| } |
| |
| libvpx_->codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT, |
| rc_max_intra_target_); |
| libvpx_->codec_control(encoder_, VP9E_SET_AQ_MODE, |
| inst->VP9().adaptiveQpMode ? 3 : 0); |
| |
| libvpx_->codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0); |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_GF_TEMPORAL_REF, 0); |
| |
| if (is_svc_) { |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC, 1); |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_); |
| } |
| if (!is_svc_ || !performance_flags_.use_per_layer_speed) { |
| libvpx_->codec_control( |
| encoder_, VP8E_SET_CPUUSED, |
| performance_flags_by_spatial_index_.rbegin()->base_layer_speed); |
| } |
| |
| if (num_spatial_layers_ > 1) { |
| switch (inter_layer_pred_) { |
| case InterLayerPredMode::kOn: |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 0); |
| break; |
| case InterLayerPredMode::kOff: |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 1); |
| break; |
| case InterLayerPredMode::kOnKeyPic: |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 2); |
| break; |
| default: |
| RTC_DCHECK_NOTREACHED(); |
| } |
| |
| memset(&svc_drop_frame_, 0, sizeof(svc_drop_frame_)); |
| const bool reverse_constrained_drop_mode = |
| inter_layer_pred_ == InterLayerPredMode::kOn && |
| codec_.mode == VideoCodecMode::kScreensharing && |
| num_spatial_layers_ > 1; |
| if (reverse_constrained_drop_mode) { |
| // Screenshare dropping mode: drop a layer only together with all lower |
| // layers. This ensures that drops on lower layers won't reduce frame-rate |
| // for higher layers and reference structure is RTP-compatible. |
| svc_drop_frame_.framedrop_mode = CONSTRAINED_FROM_ABOVE_DROP; |
| svc_drop_frame_.max_consec_drop = 5; |
| for (size_t i = 0; i < num_spatial_layers_; ++i) { |
| svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh; |
| } |
| } else { |
| if (svc_frame_drop_config_.enabled && |
| svc_frame_drop_config_.layer_drop_mode == LAYER_DROP && |
| is_flexible_mode_ && svc_controller_ && |
| (inter_layer_pred_ == InterLayerPredMode::kOff || |
| inter_layer_pred_ == InterLayerPredMode::kOnKeyPic)) { |
| // SVC controller is required since it properly accounts for dropped |
| // refs (unlike SetReferences(), which assumes full superframe drop). |
| svc_drop_frame_.framedrop_mode = LAYER_DROP; |
| } else { |
| // Configure encoder to drop entire superframe whenever it needs to drop |
| // a layer. This mode is preferred over per-layer dropping which causes |
| // quality flickering and is not compatible with RTP non-flexible mode. |
| svc_drop_frame_.framedrop_mode = FULL_SUPERFRAME_DROP; |
| } |
| svc_drop_frame_.max_consec_drop = |
| svc_frame_drop_config_.enabled |
| ? svc_frame_drop_config_.max_consec_drop |
| : std::numeric_limits<int>::max(); |
| for (size_t i = 0; i < num_spatial_layers_; ++i) { |
| svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh; |
| } |
| } |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, |
| &svc_drop_frame_); |
| } |
| |
| // Register callback for getting each spatial layer. |
| vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = { |
| LibvpxVp9Encoder::EncoderOutputCodedPacketCallback, |
| reinterpret_cast<void*>(this)}; |
| libvpx_->codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK, |
| reinterpret_cast<void*>(&cbp)); |
| |
| // Control function to set the number of column tiles in encoding a frame, in |
| // log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns. |
| // The number tile columns will be capped by the encoder based on image size |
| // (minimum width of tile column is 256 pixels, maximum is 4096). |
| libvpx_->codec_control(encoder_, VP9E_SET_TILE_COLUMNS, |
| static_cast<int>((config_->g_threads >> 1))); |
| |
| // Turn on row-based multithreading. |
| libvpx_->codec_control(encoder_, VP9E_SET_ROW_MT, 1); |
| |
| if (AllowDenoising() && !performance_flags_.use_per_layer_speed) { |
| libvpx_->codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY, |
| inst->VP9().denoisingOn ? 1 : 0); |
| } |
| |
| if (codec_.mode == VideoCodecMode::kScreensharing) { |
| // Adjust internal parameters to screen content. |
| libvpx_->codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1); |
| } |
| // Enable encoder skip of static/low content blocks. |
| libvpx_->codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1); |
| inited_ = true; |
| config_changed_ = true; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| uint32_t LibvpxVp9Encoder::MaxIntraTarget(uint32_t optimal_buffer_size) { |
| // Set max to the optimal buffer level (normalized by target BR), |
| // and scaled by a scale_par. |
| // Max target size = scale_par * optimal_buffer_size * targetBR[Kbps]. |
| // This value is presented in percentage of perFrameBw: |
| // perFrameBw = targetBR[Kbps] * 1000 / framerate. |
| // The target in % is as follows: |
| float scale_par = 0.5; |
| uint32_t target_pct = |
| optimal_buffer_size * scale_par * codec_.maxFramerate / 10; |
| // Don't go below 3 times the per frame bandwidth. |
| const uint32_t min_intra_size = 300; |
| return (target_pct < min_intra_size) ? min_intra_size : target_pct; |
| } |
| |
| int LibvpxVp9Encoder::Encode(const VideoFrame& input_image, |
| const std::vector<VideoFrameType>* frame_types) { |
| if (!inited_) { |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (encoded_complete_callback_ == nullptr) { |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (num_active_spatial_layers_ == 0) { |
| // All spatial layers are disabled, return without encoding anything. |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| // We only support one stream at the moment. |
| if (frame_types && !frame_types->empty()) { |
| if ((*frame_types)[0] == VideoFrameType::kVideoFrameKey) { |
| force_key_frame_ = true; |
| } |
| } |
| |
| if (pics_since_key_ + 1 == |
| static_cast<size_t>(codec_.VP9()->keyFrameInterval)) { |
| force_key_frame_ = true; |
| } |
| |
| if (svc_controller_) { |
| layer_frames_ = svc_controller_->NextFrameConfig(force_key_frame_); |
| if (layer_frames_.empty()) { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| if (layer_frames_.front().IsKeyframe()) { |
| force_key_frame_ = true; |
| } |
| } |
| |
| vpx_svc_layer_id_t layer_id = {0}; |
| if (!force_key_frame_) { |
| const size_t gof_idx = (pics_since_key_ + 1) % gof_.num_frames_in_gof; |
| layer_id.temporal_layer_id = gof_.temporal_idx[gof_idx]; |
| |
| if (codec_.mode == VideoCodecMode::kScreensharing) { |
| const uint32_t frame_timestamp_ms = |
| 1000 * input_image.rtp_timestamp() / kVideoPayloadTypeFrequency; |
| |
| // To ensure that several rate-limiters with different limits don't |
| // interfere, they must be queried in order of increasing limit. |
| |
| bool use_steady_state_limiter = |
| variable_framerate_experiment_.enabled && |
| input_image.update_rect().IsEmpty() && |
| num_steady_state_frames_ >= |
| variable_framerate_experiment_.frames_before_steady_state; |
| |
| // Need to check all frame limiters, even if lower layers are disabled, |
| // because variable frame-rate limiter should be checked after the first |
| // layer. It's easier to overwrite active layers after, then check all |
| // cases. |
| for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { |
| const float layer_fps = |
| framerate_controller_[layer_id.spatial_layer_id].GetTargetRate(); |
| // Use steady state rate-limiter at the correct place. |
| if (use_steady_state_limiter && |
| layer_fps > variable_framerate_experiment_.framerate_limit - 1e-9) { |
| if (variable_framerate_controller_.DropFrame(frame_timestamp_ms)) { |
| layer_id.spatial_layer_id = num_active_spatial_layers_; |
| } |
| // Break always: if rate limiter triggered frame drop, no need to |
| // continue; otherwise, the rate is less than the next limiters. |
| break; |
| } |
| if (framerate_controller_[sl_idx].DropFrame(frame_timestamp_ms)) { |
| ++layer_id.spatial_layer_id; |
| } else { |
| break; |
| } |
| } |
| |
| if (use_steady_state_limiter && |
| layer_id.spatial_layer_id < num_active_spatial_layers_) { |
| variable_framerate_controller_.AddFrame(frame_timestamp_ms); |
| } |
| } |
| |
| if (force_all_active_layers_) { |
| layer_id.spatial_layer_id = first_active_layer_; |
| force_all_active_layers_ = false; |
| } |
| |
| RTC_DCHECK_LE(layer_id.spatial_layer_id, num_active_spatial_layers_); |
| if (layer_id.spatial_layer_id >= num_active_spatial_layers_) { |
| // Drop entire picture. |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| } |
| |
| // Need to set temporal layer id on ALL layers, even disabled ones. |
| // Otherwise libvpx might produce frames on a disabled layer: |
| // http://crbug.com/1051476 |
| for (int sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { |
| layer_id.temporal_layer_id_per_spatial[sl_idx] = layer_id.temporal_layer_id; |
| } |
| |
| if (layer_id.spatial_layer_id < first_active_layer_) { |
| layer_id.spatial_layer_id = first_active_layer_; |
| } |
| |
| if (svc_controller_) { |
| layer_id.spatial_layer_id = layer_frames_.front().SpatialId(); |
| layer_id.temporal_layer_id = layer_frames_.front().TemporalId(); |
| for (const auto& layer : layer_frames_) { |
| layer_id.temporal_layer_id_per_spatial[layer.SpatialId()] = |
| layer.TemporalId(); |
| } |
| SetActiveSpatialLayers(); |
| } |
| |
| if (is_svc_ && performance_flags_.use_per_layer_speed) { |
| // Update speed settings that might depend on temporal index. |
| bool speed_updated = false; |
| for (int sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) { |
| const int target_speed = |
| layer_id.temporal_layer_id_per_spatial[sl_idx] == 0 |
| ? performance_flags_by_spatial_index_[sl_idx].base_layer_speed |
| : performance_flags_by_spatial_index_[sl_idx].high_layer_speed; |
| if (svc_params_.speed_per_layer[sl_idx] != target_speed) { |
| svc_params_.speed_per_layer[sl_idx] = target_speed; |
| speed_updated = true; |
| } |
| } |
| if (speed_updated) { |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_); |
| } |
| } |
| |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id); |
| |
| if (num_spatial_layers_ > 1) { |
| // Update frame dropping settings as they may change on per-frame basis. |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER, |
| &svc_drop_frame_); |
| } |
| |
| if (config_changed_) { |
| if (libvpx_->codec_enc_config_set(encoder_, config_)) { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| |
| if (!performance_flags_.use_per_layer_speed) { |
| // Not setting individual speeds per layer, find the highest active |
| // resolution instead and base the speed on that. |
| for (int i = num_spatial_layers_ - 1; i >= 0; --i) { |
| if (config_->ss_target_bitrate[i] > 0) { |
| int width = (svc_params_.scaling_factor_num[i] * config_->g_w) / |
| svc_params_.scaling_factor_den[i]; |
| int height = (svc_params_.scaling_factor_num[i] * config_->g_h) / |
| svc_params_.scaling_factor_den[i]; |
| int speed = |
| std::prev(performance_flags_.settings_by_resolution.lower_bound( |
| width * height)) |
| ->second.base_layer_speed; |
| libvpx_->codec_control(encoder_, VP8E_SET_CPUUSED, speed); |
| break; |
| } |
| } |
| } |
| config_changed_ = false; |
| } |
| |
| RTC_DCHECK_EQ(input_image.width(), raw_->d_w); |
| RTC_DCHECK_EQ(input_image.height(), raw_->d_h); |
| |
| // Set input image for use in the callback. |
| // This was necessary since you need some information from input_image. |
| // You can save only the necessary information (such as timestamp) instead of |
| // doing this. |
| input_image_ = &input_image; |
| |
| // In case we need to map the buffer, `mapped_buffer` is used to keep it alive |
| // through reference counting until after encoding has finished. |
| rtc::scoped_refptr<const VideoFrameBuffer> mapped_buffer; |
| const I010BufferInterface* i010_buffer; |
| rtc::scoped_refptr<const I010BufferInterface> i010_copy; |
| switch (profile_) { |
| case VP9Profile::kProfile0: { |
| mapped_buffer = |
| PrepareBufferForProfile0(input_image.video_frame_buffer()); |
| if (!mapped_buffer) { |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| break; |
| } |
| case VP9Profile::kProfile1: { |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| } |
| case VP9Profile::kProfile2: { |
| // We can inject kI010 frames directly for encode. All other formats |
| // should be converted to it. |
| switch (input_image.video_frame_buffer()->type()) { |
| case VideoFrameBuffer::Type::kI010: { |
| i010_buffer = input_image.video_frame_buffer()->GetI010(); |
| break; |
| } |
| default: { |
| auto i420_buffer = input_image.video_frame_buffer()->ToI420(); |
| if (!i420_buffer) { |
| RTC_LOG(LS_ERROR) << "Failed to convert " |
| << VideoFrameBufferTypeToString( |
| input_image.video_frame_buffer()->type()) |
| << " image to I420. Can't encode frame."; |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| i010_copy = I010Buffer::Copy(*i420_buffer); |
| i010_buffer = i010_copy.get(); |
| } |
| } |
| raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>( |
| reinterpret_cast<const uint8_t*>(i010_buffer->DataY())); |
| raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>( |
| reinterpret_cast<const uint8_t*>(i010_buffer->DataU())); |
| raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>( |
| reinterpret_cast<const uint8_t*>(i010_buffer->DataV())); |
| raw_->stride[VPX_PLANE_Y] = i010_buffer->StrideY() * 2; |
| raw_->stride[VPX_PLANE_U] = i010_buffer->StrideU() * 2; |
| raw_->stride[VPX_PLANE_V] = i010_buffer->StrideV() * 2; |
| break; |
| } |
| case VP9Profile::kProfile3: { |
| RTC_DCHECK_NOTREACHED(); |
| break; |
| } |
| } |
| |
| vpx_enc_frame_flags_t flags = 0; |
| if (force_key_frame_) { |
| flags = VPX_EFLAG_FORCE_KF; |
| } |
| |
| if (svc_controller_) { |
| vpx_svc_ref_frame_config_t ref_config = Vp9References(layer_frames_); |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, |
| &ref_config); |
| } else if (external_ref_control_) { |
| vpx_svc_ref_frame_config_t ref_config = |
| SetReferences(force_key_frame_, layer_id.spatial_layer_id); |
| |
| if (VideoCodecMode::kScreensharing == codec_.mode) { |
| for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) { |
| ref_config.duration[sl_idx] = static_cast<int64_t>( |
| 90000 / (std::min(static_cast<float>(codec_.maxFramerate), |
| framerate_controller_[sl_idx].GetTargetRate()))); |
| } |
| } |
| |
| libvpx_->codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, |
| &ref_config); |
| } |
| |
| first_frame_in_picture_ = true; |
| |
| // TODO(ssilkin): Frame duration should be specified per spatial layer |
| // since their frame rate can be different. For now calculate frame duration |
| // based on target frame rate of the highest spatial layer, which frame rate |
| // is supposed to be equal or higher than frame rate of low spatial layers. |
| // Also, timestamp should represent actual time passed since previous frame |
| // (not 'expected' time). Then rate controller can drain buffer more |
| // accurately. |
| RTC_DCHECK_GE(framerate_controller_.size(), num_active_spatial_layers_); |
| float target_framerate_fps = |
| (codec_.mode == VideoCodecMode::kScreensharing) |
| ? std::min(static_cast<float>(codec_.maxFramerate), |
| framerate_controller_[num_active_spatial_layers_ - 1] |
| .GetTargetRate()) |
| : codec_.maxFramerate; |
| uint32_t duration = static_cast<uint32_t>(90000 / target_framerate_fps); |
| const vpx_codec_err_t rv = libvpx_->codec_encode( |
| encoder_, raw_, timestamp_, duration, flags, VPX_DL_REALTIME); |
| if (rv != VPX_CODEC_OK) { |
| RTC_LOG(LS_ERROR) << "Encoding error: " << libvpx_->codec_err_to_string(rv) |
| << "\n" |
| "Details: " |
| << libvpx_->codec_error(encoder_) << "\n" |
| << libvpx_->codec_error_detail(encoder_); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| timestamp_ += duration; |
| |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| bool LibvpxVp9Encoder::PopulateCodecSpecific(CodecSpecificInfo* codec_specific, |
| absl::optional<int>* spatial_idx, |
| absl::optional<int>* temporal_idx, |
| const vpx_codec_cx_pkt& pkt) { |
| RTC_CHECK(codec_specific != nullptr); |
| codec_specific->codecType = kVideoCodecVP9; |
| CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9); |
| |
| vp9_info->first_frame_in_picture = first_frame_in_picture_; |
| vp9_info->flexible_mode = is_flexible_mode_; |
| |
| if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) { |
| pics_since_key_ = 0; |
| } else if (first_frame_in_picture_) { |
| ++pics_since_key_; |
| } |
| |
| vpx_svc_layer_id_t layer_id = {0}; |
| libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| // Can't have keyframe with non-zero temporal layer. |
| RTC_DCHECK(pics_since_key_ != 0 || layer_id.temporal_layer_id == 0); |
| |
| RTC_CHECK_GT(num_temporal_layers_, 0); |
| RTC_CHECK_GT(num_active_spatial_layers_, 0); |
| if (num_temporal_layers_ == 1) { |
| RTC_CHECK_EQ(layer_id.temporal_layer_id, 0); |
| vp9_info->temporal_idx = kNoTemporalIdx; |
| *temporal_idx = absl::nullopt; |
| } else { |
| vp9_info->temporal_idx = layer_id.temporal_layer_id; |
| *temporal_idx = layer_id.temporal_layer_id; |
| } |
| if (num_active_spatial_layers_ == 1) { |
| RTC_CHECK_EQ(layer_id.spatial_layer_id, 0); |
| *spatial_idx = absl::nullopt; |
| } else { |
| *spatial_idx = layer_id.spatial_layer_id; |
| } |
| |
| const bool is_key_pic = (pics_since_key_ == 0); |
| const bool is_inter_layer_pred_allowed = |
| (inter_layer_pred_ == InterLayerPredMode::kOn || |
| (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic)); |
| |
| // Always set inter_layer_predicted to true on high layer frame if inter-layer |
| // prediction (ILP) is allowed even if encoder didn't actually use it. |
| // Setting inter_layer_predicted to false would allow receiver to decode high |
| // layer frame without decoding low layer frame. If that would happen (e.g. |
| // if low layer frame is lost) then receiver won't be able to decode next high |
| // layer frame which uses ILP. |
| vp9_info->inter_layer_predicted = |
| first_frame_in_picture_ ? false : is_inter_layer_pred_allowed; |
| |
| // Mark all low spatial layer frames as references (not just frames of |
| // active low spatial layers) if inter-layer prediction is enabled since |
| // these frames are indirect references of high spatial layer, which can |
| // later be enabled without key frame. |
| vp9_info->non_ref_for_inter_layer_pred = |
| !is_inter_layer_pred_allowed || |
| layer_id.spatial_layer_id + 1 == num_spatial_layers_; |
| |
| // Always populate this, so that the packetizer can properly set the marker |
| // bit. |
| vp9_info->num_spatial_layers = num_active_spatial_layers_; |
| vp9_info->first_active_layer = first_active_layer_; |
| |
| vp9_info->num_ref_pics = 0; |
| FillReferenceIndices(pkt, pics_since_key_, vp9_info->inter_layer_predicted, |
| vp9_info); |
| if (vp9_info->flexible_mode) { |
| vp9_info->gof_idx = kNoGofIdx; |
| if (!svc_controller_) { |
| if (num_temporal_layers_ == 1) { |
| vp9_info->temporal_up_switch = true; |
| } else { |
| // In flexible mode with > 1 temporal layer but no SVC controller we |
| // can't techincally determine if a frame is an upswitch point, use |
| // gof-based data as proxy for now. |
| // TODO(sprang): Remove once SVC controller is the only choice. |
| vp9_info->gof_idx = |
| static_cast<uint8_t>(pics_since_key_ % gof_.num_frames_in_gof); |
| vp9_info->temporal_up_switch = |
| gof_.temporal_up_switch[vp9_info->gof_idx]; |
| } |
| } |
| } else { |
| vp9_info->gof_idx = |
| static_cast<uint8_t>(pics_since_key_ % gof_.num_frames_in_gof); |
| vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx]; |
| RTC_DCHECK(vp9_info->num_ref_pics == gof_.num_ref_pics[vp9_info->gof_idx] || |
| vp9_info->num_ref_pics == 0); |
| } |
| |
| vp9_info->inter_pic_predicted = (!is_key_pic && vp9_info->num_ref_pics > 0); |
| |
| // Write SS on key frame of independently coded spatial layers and on base |
| // temporal/spatial layer frame if number of layers changed without issuing |
| // of key picture (inter-layer prediction is enabled). |
| const bool is_key_frame = is_key_pic && !vp9_info->inter_layer_predicted; |
| if (is_key_frame || (ss_info_needed_ && layer_id.temporal_layer_id == 0 && |
| layer_id.spatial_layer_id == first_active_layer_)) { |
| vp9_info->ss_data_available = true; |
| vp9_info->spatial_layer_resolution_present = true; |
| // Signal disabled layers. |
| for (size_t i = 0; i < first_active_layer_; ++i) { |
| vp9_info->width[i] = 0; |
| vp9_info->height[i] = 0; |
| } |
| for (size_t i = first_active_layer_; i < num_active_spatial_layers_; ++i) { |
| vp9_info->width[i] = codec_.width * svc_params_.scaling_factor_num[i] / |
| svc_params_.scaling_factor_den[i]; |
| vp9_info->height[i] = codec_.height * svc_params_.scaling_factor_num[i] / |
| svc_params_.scaling_factor_den[i]; |
| } |
| if (vp9_info->flexible_mode) { |
| vp9_info->gof.num_frames_in_gof = 0; |
| } else { |
| vp9_info->gof.CopyGofInfoVP9(gof_); |
| } |
| |
| ss_info_needed_ = false; |
| } else { |
| vp9_info->ss_data_available = false; |
| } |
| |
| first_frame_in_picture_ = false; |
| |
| // Populate codec-agnostic section in the codec specific structure. |
| if (svc_controller_) { |
| auto it = absl::c_find_if( |
| layer_frames_, |
| [&](const ScalableVideoController::LayerFrameConfig& config) { |
| return config.SpatialId() == layer_id.spatial_layer_id; |
| }); |
| if (it == layer_frames_.end()) { |
| RTC_LOG(LS_ERROR) << "Encoder produced a frame for layer S" |
| << layer_id.spatial_layer_id << "T" |
| << layer_id.temporal_layer_id |
| << " that wasn't requested."; |
| return false; |
| } |
| codec_specific->generic_frame_info = svc_controller_->OnEncodeDone(*it); |
| if (is_key_frame) { |
| codec_specific->template_structure = |
| svc_controller_->DependencyStructure(); |
| auto& resolutions = codec_specific->template_structure->resolutions; |
| resolutions.resize(num_spatial_layers_); |
| for (int sid = 0; sid < num_spatial_layers_; ++sid) { |
| resolutions[sid] = RenderResolution( |
| /*width=*/codec_.width * svc_params_.scaling_factor_num[sid] / |
| svc_params_.scaling_factor_den[sid], |
| /*height=*/codec_.height * svc_params_.scaling_factor_num[sid] / |
| svc_params_.scaling_factor_den[sid]); |
| } |
| } |
| if (is_flexible_mode_) { |
| // Populate data for legacy temporal-upswitch state. |
| // We can switch up to a higher temporal layer only if all temporal layers |
| // higher than this (within the current spatial layer) are switch points. |
| vp9_info->temporal_up_switch = true; |
| for (int i = layer_id.temporal_layer_id + 1; i < num_temporal_layers_; |
| ++i) { |
| // Assumes decode targets are always ordered first by spatial then by |
| // temporal id. |
| size_t dti_index = |
| (layer_id.spatial_layer_id * num_temporal_layers_) + i; |
| vp9_info->temporal_up_switch &= |
| (codec_specific->generic_frame_info |
| ->decode_target_indications[dti_index] == |
| DecodeTargetIndication::kSwitch); |
| } |
| } |
| } |
| // If returned the configured scalability mode in standard mode, otherwise |
| // create one if it is based on layer activation. |
| if (scalability_mode_) { |
| codec_specific->scalability_mode = scalability_mode_; |
| } else { |
| codec_specific_.scalability_mode = MakeScalabilityMode( |
| num_active_spatial_layers_, num_temporal_layers_, inter_layer_pred_, |
| num_active_spatial_layers_ > 1 |
| ? absl::make_optional(ScalabilityModeResolutionRatio::kTwoToOne) |
| : absl::nullopt, |
| /*shift=*/false); |
| } |
| |
| return true; |
| } |
| |
| void LibvpxVp9Encoder::FillReferenceIndices(const vpx_codec_cx_pkt& pkt, |
| const size_t pic_num, |
| const bool inter_layer_predicted, |
| CodecSpecificInfoVP9* vp9_info) { |
| vpx_svc_layer_id_t layer_id = {0}; |
| libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| const bool is_key_frame = |
| (pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; |
| |
| std::vector<RefFrameBuffer> ref_buf_list; |
| |
| if (is_svc_) { |
| vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; |
| libvpx_->codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, |
| &enc_layer_conf); |
| char ref_buf_flags[] = "00000000"; |
| // There should be one character per buffer + 1 termination '\0'. |
| static_assert(sizeof(ref_buf_flags) == kNumVp9Buffers + 1); |
| |
| if (enc_layer_conf.reference_last[layer_id.spatial_layer_id]) { |
| const size_t fb_idx = |
| enc_layer_conf.lst_fb_idx[layer_id.spatial_layer_id]; |
| RTC_DCHECK_LT(fb_idx, ref_buf_.size()); |
| if (std::find(ref_buf_list.begin(), ref_buf_list.end(), |
| ref_buf_[fb_idx]) == ref_buf_list.end()) { |
| ref_buf_list.push_back(ref_buf_[fb_idx]); |
| ref_buf_flags[fb_idx] = '1'; |
| } |
| } |
| |
| if (enc_layer_conf.reference_alt_ref[layer_id.spatial_layer_id]) { |
| const size_t fb_idx = |
| enc_layer_conf.alt_fb_idx[layer_id.spatial_layer_id]; |
| RTC_DCHECK_LT(fb_idx, ref_buf_.size()); |
| if (std::find(ref_buf_list.begin(), ref_buf_list.end(), |
| ref_buf_[fb_idx]) == ref_buf_list.end()) { |
| ref_buf_list.push_back(ref_buf_[fb_idx]); |
| ref_buf_flags[fb_idx] = '1'; |
| } |
| } |
| |
| if (enc_layer_conf.reference_golden[layer_id.spatial_layer_id]) { |
| const size_t fb_idx = |
| enc_layer_conf.gld_fb_idx[layer_id.spatial_layer_id]; |
| RTC_DCHECK_LT(fb_idx, ref_buf_.size()); |
| if (std::find(ref_buf_list.begin(), ref_buf_list.end(), |
| ref_buf_[fb_idx]) == ref_buf_list.end()) { |
| ref_buf_list.push_back(ref_buf_[fb_idx]); |
| ref_buf_flags[fb_idx] = '1'; |
| } |
| } |
| |
| RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " |
| << layer_id.spatial_layer_id << " tl " |
| << layer_id.temporal_layer_id << " refered buffers " |
| << ref_buf_flags; |
| |
| } else if (!is_key_frame) { |
| RTC_DCHECK_EQ(num_spatial_layers_, 1); |
| RTC_DCHECK_EQ(num_temporal_layers_, 1); |
| // In non-SVC mode encoder doesn't provide reference list. Assume each frame |
| // refers previous one, which is stored in buffer 0. |
| ref_buf_list.push_back(ref_buf_[0]); |
| } |
| |
| std::vector<size_t> ref_pid_list; |
| |
| vp9_info->num_ref_pics = 0; |
| for (const RefFrameBuffer& ref_buf : ref_buf_list) { |
| RTC_DCHECK_LE(ref_buf.pic_num, pic_num); |
| if (ref_buf.pic_num < pic_num) { |
| if (inter_layer_pred_ != InterLayerPredMode::kOn) { |
| // RTP spec limits temporal prediction to the same spatial layer. |
| // It is safe to ignore this requirement if inter-layer prediction is |
| // enabled for all frames when all base frames are relayed to receiver. |
| RTC_DCHECK_EQ(ref_buf.spatial_layer_id, layer_id.spatial_layer_id); |
| } else { |
| RTC_DCHECK_LE(ref_buf.spatial_layer_id, layer_id.spatial_layer_id); |
| } |
| RTC_DCHECK_LE(ref_buf.temporal_layer_id, layer_id.temporal_layer_id); |
| |
| // Encoder may reference several spatial layers on the same previous |
| // frame in case if some spatial layers are skipped on the current frame. |
| // We shouldn't put duplicate references as it may break some old |
| // clients and isn't RTP compatible. |
| if (std::find(ref_pid_list.begin(), ref_pid_list.end(), |
| ref_buf.pic_num) != ref_pid_list.end()) { |
| continue; |
| } |
| ref_pid_list.push_back(ref_buf.pic_num); |
| |
| const size_t p_diff = pic_num - ref_buf.pic_num; |
| RTC_DCHECK_LE(p_diff, 127UL); |
| |
| vp9_info->p_diff[vp9_info->num_ref_pics] = static_cast<uint8_t>(p_diff); |
| ++vp9_info->num_ref_pics; |
| } else { |
| RTC_DCHECK(inter_layer_predicted); |
| // RTP spec only allows to use previous spatial layer for inter-layer |
| // prediction. |
| RTC_DCHECK_EQ(ref_buf.spatial_layer_id + 1, layer_id.spatial_layer_id); |
| } |
| } |
| } |
| |
| void LibvpxVp9Encoder::UpdateReferenceBuffers(const vpx_codec_cx_pkt& pkt, |
| const size_t pic_num) { |
| vpx_svc_layer_id_t layer_id = {0}; |
| libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| RefFrameBuffer frame_buf = {.pic_num = pic_num, |
| .spatial_layer_id = layer_id.spatial_layer_id, |
| .temporal_layer_id = layer_id.temporal_layer_id}; |
| |
| if (is_svc_) { |
| vpx_svc_ref_frame_config_t enc_layer_conf = {{0}}; |
| libvpx_->codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, |
| &enc_layer_conf); |
| const int update_buffer_slot = |
| enc_layer_conf.update_buffer_slot[layer_id.spatial_layer_id]; |
| |
| for (size_t i = 0; i < ref_buf_.size(); ++i) { |
| if (update_buffer_slot & (1 << i)) { |
| ref_buf_[i] = frame_buf; |
| } |
| } |
| |
| RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl " |
| << layer_id.spatial_layer_id << " tl " |
| << layer_id.temporal_layer_id << " updated buffers " |
| << (update_buffer_slot & (1 << 0) ? 1 : 0) |
| << (update_buffer_slot & (1 << 1) ? 1 : 0) |
| << (update_buffer_slot & (1 << 2) ? 1 : 0) |
| << (update_buffer_slot & (1 << 3) ? 1 : 0) |
| << (update_buffer_slot & (1 << 4) ? 1 : 0) |
| << (update_buffer_slot & (1 << 5) ? 1 : 0) |
| << (update_buffer_slot & (1 << 6) ? 1 : 0) |
| << (update_buffer_slot & (1 << 7) ? 1 : 0); |
| } else { |
| RTC_DCHECK_EQ(num_spatial_layers_, 1); |
| RTC_DCHECK_EQ(num_temporal_layers_, 1); |
| // In non-svc mode encoder doesn't provide reference list. Assume each frame |
| // is reference and stored in buffer 0. |
| ref_buf_[0] = frame_buf; |
| } |
| } |
| |
| vpx_svc_ref_frame_config_t LibvpxVp9Encoder::SetReferences( |
| bool is_key_pic, |
| int first_active_spatial_layer_id) { |
| // kRefBufIdx, kUpdBufIdx need to be updated to support longer GOFs. |
| RTC_DCHECK_LE(gof_.num_frames_in_gof, 4); |
| |
| vpx_svc_ref_frame_config_t ref_config; |
| memset(&ref_config, 0, sizeof(ref_config)); |
| |
| const size_t num_temporal_refs = std::max(1, num_temporal_layers_ - 1); |
| const bool is_inter_layer_pred_allowed = |
| inter_layer_pred_ == InterLayerPredMode::kOn || |
| (inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic); |
| absl::optional<int> last_updated_buf_idx; |
| |
| // Put temporal reference to LAST and spatial reference to GOLDEN. Update |
| // frame buffer (i.e. store encoded frame) if current frame is a temporal |
| // reference (i.e. it belongs to a low temporal layer) or it is a spatial |
| // reference. In later case, always store spatial reference in the last |
| // reference frame buffer. |
| // For the case of 3 temporal and 3 spatial layers we need 6 frame buffers |
| // for temporal references plus 1 buffer for spatial reference. 7 buffers |
| // in total. |
| |
| for (int sl_idx = first_active_spatial_layer_id; |
| sl_idx < num_active_spatial_layers_; ++sl_idx) { |
| const size_t curr_pic_num = is_key_pic ? 0 : pics_since_key_ + 1; |
| const size_t gof_idx = curr_pic_num % gof_.num_frames_in_gof; |
| |
| if (!is_key_pic) { |
| // Set up temporal reference. |
| const int buf_idx = sl_idx * num_temporal_refs + kRefBufIdx[gof_idx]; |
| |
| // Last reference frame buffer is reserved for spatial reference. It is |
| // not supposed to be used for temporal prediction. |
| RTC_DCHECK_LT(buf_idx, kNumVp9Buffers - 1); |
| |
| const int pid_diff = curr_pic_num - ref_buf_[buf_idx].pic_num; |
| // Incorrect spatial layer may be in the buffer due to a key-frame. |
| const bool same_spatial_layer = |
| ref_buf_[buf_idx].spatial_layer_id == sl_idx; |
| bool correct_pid = false; |
| if (is_flexible_mode_) { |
| correct_pid = pid_diff > 0 && pid_diff < kMaxAllowedPidDiff; |
| } else { |
| // Below code assumes single temporal referecence. |
| RTC_DCHECK_EQ(gof_.num_ref_pics[gof_idx], 1); |
| correct_pid = pid_diff == gof_.pid_diff[gof_idx][0]; |
| } |
| |
| if (same_spatial_layer && correct_pid) { |
| ref_config.lst_fb_idx[sl_idx] = buf_idx; |
| ref_config.reference_last[sl_idx] = 1; |
| } else { |
| // This reference doesn't match with one specified by GOF. This can |
| // only happen if spatial layer is enabled dynamically without key |
| // frame. Spatial prediction is supposed to be enabled in this case. |
| RTC_DCHECK(is_inter_layer_pred_allowed && |
| sl_idx > first_active_spatial_layer_id); |
| } |
| } |
| |
| if (is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id) { |
| // Set up spatial reference. |
| RTC_DCHECK(last_updated_buf_idx); |
| ref_config.gld_fb_idx[sl_idx] = *last_updated_buf_idx; |
| ref_config.reference_golden[sl_idx] = 1; |
| } else { |
| RTC_DCHECK(ref_config.reference_last[sl_idx] != 0 || |
| sl_idx == first_active_spatial_layer_id || |
| inter_layer_pred_ == InterLayerPredMode::kOff); |
| } |
| |
| last_updated_buf_idx.reset(); |
| |
| if (gof_.temporal_idx[gof_idx] < num_temporal_layers_ - 1 || |
| num_temporal_layers_ == 1) { |
| last_updated_buf_idx = sl_idx * num_temporal_refs + kUpdBufIdx[gof_idx]; |
| |
| // Ensure last frame buffer is not used for temporal prediction (it is |
| // reserved for spatial reference). |
| RTC_DCHECK_LT(*last_updated_buf_idx, kNumVp9Buffers - 1); |
| } else if (is_inter_layer_pred_allowed) { |
| last_updated_buf_idx = kNumVp9Buffers - 1; |
| } |
| |
| if (last_updated_buf_idx) { |
| ref_config.update_buffer_slot[sl_idx] = 1 << *last_updated_buf_idx; |
| } |
| } |
| |
| return ref_config; |
| } |
| |
| void LibvpxVp9Encoder::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) { |
| RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT); |
| |
| if (pkt->data.frame.sz == 0) { |
| // Ignore dropped frame. |
| return; |
| } |
| |
| vpx_svc_layer_id_t layer_id = {0}; |
| libvpx_->codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| |
| encoded_image_.SetEncodedData(EncodedImageBuffer::Create( |
| static_cast<const uint8_t*>(pkt->data.frame.buf), pkt->data.frame.sz)); |
| |
| codec_specific_ = {}; |
| absl::optional<int> spatial_index; |
| absl::optional<int> temporal_index; |
| if (!PopulateCodecSpecific(&codec_specific_, &spatial_index, &temporal_index, |
| *pkt)) { |
| // Drop the frame. |
| encoded_image_.set_size(0); |
| return; |
| } |
| encoded_image_.SetSpatialIndex(spatial_index); |
| encoded_image_.SetTemporalIndex(temporal_index); |
| |
| const bool is_key_frame = |
| ((pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false) && |
| !codec_specific_.codecSpecific.VP9.inter_layer_predicted; |
| |
| // Ensure encoder issued key frame on request. |
| RTC_DCHECK(is_key_frame || !force_key_frame_); |
| |
| // Check if encoded frame is a key frame. |
| encoded_image_._frameType = VideoFrameType::kVideoFrameDelta; |
| if (is_key_frame) { |
| encoded_image_._frameType = VideoFrameType::kVideoFrameKey; |
| force_key_frame_ = false; |
| } |
| |
| UpdateReferenceBuffers(*pkt, pics_since_key_); |
| |
| TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_.size()); |
| encoded_image_.SetRtpTimestamp(input_image_->rtp_timestamp()); |
| encoded_image_.SetCaptureTimeIdentifier( |
| input_image_->capture_time_identifier()); |
| encoded_image_.SetColorSpace(input_image_->color_space()); |
| encoded_image_._encodedHeight = |
| pkt->data.frame.height[layer_id.spatial_layer_id]; |
| encoded_image_._encodedWidth = |
| pkt->data.frame.width[layer_id.spatial_layer_id]; |
| int qp = -1; |
| libvpx_->codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp); |
| encoded_image_.qp_ = qp; |
| |
| const bool end_of_picture = encoded_image_.SpatialIndex().value_or(0) + 1 == |
| num_active_spatial_layers_; |
| DeliverBufferedFrame(end_of_picture); |
| } |
| |
| void LibvpxVp9Encoder::DeliverBufferedFrame(bool end_of_picture) { |
| if (encoded_image_.size() > 0) { |
| if (num_spatial_layers_ > 1) { |
| // Restore frame dropping settings, as dropping may be temporary forbidden |
| // due to dynamically enabled layers. |
| for (size_t i = 0; i < num_spatial_layers_; ++i) { |
| svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh; |
| } |
| } |
| |
| codec_specific_.end_of_picture = end_of_picture; |
| |
| encoded_complete_callback_->OnEncodedImage(encoded_image_, |
| &codec_specific_); |
| |
| if (codec_.mode == VideoCodecMode::kScreensharing) { |
| const uint8_t spatial_idx = encoded_image_.SpatialIndex().value_or(0); |
| const uint32_t frame_timestamp_ms = |
| 1000 * encoded_image_.RtpTimestamp() / kVideoPayloadTypeFrequency; |
| framerate_controller_[spatial_idx].AddFrame(frame_timestamp_ms); |
| |
| const size_t steady_state_size = SteadyStateSize( |
| spatial_idx, codec_specific_.codecSpecific.VP9.temporal_idx); |
| |
| // Only frames on spatial layers, which may be limited in a steady state |
| // are considered for steady state detection. |
| if (framerate_controller_[spatial_idx].GetTargetRate() > |
| variable_framerate_experiment_.framerate_limit + 1e-9) { |
| if (encoded_image_.qp_ <= |
| variable_framerate_experiment_.steady_state_qp && |
| encoded_image_.size() <= steady_state_size) { |
| ++num_steady_state_frames_; |
| } else { |
| num_steady_state_frames_ = 0; |
| } |
| } |
| } |
| encoded_image_.set_size(0); |
| } |
| } |
| |
| int LibvpxVp9Encoder::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| encoded_complete_callback_ = callback; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| VideoEncoder::EncoderInfo LibvpxVp9Encoder::GetEncoderInfo() const { |
| EncoderInfo info; |
| info.supports_native_handle = false; |
| info.implementation_name = "libvpx"; |
| if (quality_scaler_experiment_.enabled && inited_ && |
| codec_.VP9().automaticResizeOn) { |
| info.scaling_settings = VideoEncoder::ScalingSettings( |
| quality_scaler_experiment_.low_qp, quality_scaler_experiment_.high_qp); |
| } else { |
| info.scaling_settings = VideoEncoder::ScalingSettings::kOff; |
| } |
| info.has_trusted_rate_controller = trusted_rate_controller_; |
| info.is_hardware_accelerated = false; |
| if (inited_) { |
| // Find the max configured fps of any active spatial layer. |
| float max_fps = 0.0; |
| for (size_t si = 0; si < num_spatial_layers_; ++si) { |
| if (codec_.spatialLayers[si].active && |
| codec_.spatialLayers[si].maxFramerate > max_fps) { |
| max_fps = codec_.spatialLayers[si].maxFramerate; |
| } |
| } |
| |
| for (size_t si = 0; si < num_spatial_layers_; ++si) { |
| info.fps_allocation[si].clear(); |
| if (!codec_.spatialLayers[si].active) { |
| continue; |
| } |
| |
| // This spatial layer may already use a fraction of the total frame rate. |
| const float sl_fps_fraction = |
| codec_.spatialLayers[si].maxFramerate / max_fps; |
| for (size_t ti = 0; ti < num_temporal_layers_; ++ti) { |
| const uint32_t decimator = |
| num_temporal_layers_ <= 1 ? 1 : config_->ts_rate_decimator[ti]; |
| RTC_DCHECK_GT(decimator, 0); |
| info.fps_allocation[si].push_back( |
| rtc::saturated_cast<uint8_t>(EncoderInfo::kMaxFramerateFraction * |
| (sl_fps_fraction / decimator))); |
| } |
| } |
| if (profile_ == VP9Profile::kProfile0) { |
| info.preferred_pixel_formats = {VideoFrameBuffer::Type::kI420, |
| VideoFrameBuffer::Type::kNV12}; |
| } |
| } |
| if (!encoder_info_override_.resolution_bitrate_limits().empty()) { |
| info.resolution_bitrate_limits = |
| encoder_info_override_.resolution_bitrate_limits(); |
| } |
| return info; |
| } |
| |
| size_t LibvpxVp9Encoder::SteadyStateSize(int sid, int tid) { |
| const size_t bitrate_bps = current_bitrate_allocation_.GetBitrate( |
| sid, tid == kNoTemporalIdx ? 0 : tid); |
| const float fps = (codec_.mode == VideoCodecMode::kScreensharing) |
| ? std::min(static_cast<float>(codec_.maxFramerate), |
| framerate_controller_[sid].GetTargetRate()) |
| : codec_.maxFramerate; |
| return static_cast<size_t>( |
| bitrate_bps / (8 * fps) * |
| (100 - |
| variable_framerate_experiment_.steady_state_undershoot_percentage) / |
| 100 + |
| 0.5); |
| } |
| |
| // static |
| LibvpxVp9Encoder::VariableFramerateExperiment |
| LibvpxVp9Encoder::ParseVariableFramerateConfig(const FieldTrialsView& trials) { |
| FieldTrialFlag enabled = FieldTrialFlag("Enabled"); |
| FieldTrialParameter<double> framerate_limit("min_fps", 5.0); |
| FieldTrialParameter<int> qp("min_qp", 32); |
| FieldTrialParameter<int> undershoot_percentage("undershoot", 30); |
| FieldTrialParameter<int> frames_before_steady_state( |
| "frames_before_steady_state", 5); |
| ParseFieldTrial({&enabled, &framerate_limit, &qp, &undershoot_percentage, |
| &frames_before_steady_state}, |
| trials.Lookup("WebRTC-VP9VariableFramerateScreenshare")); |
| VariableFramerateExperiment config; |
| config.enabled = enabled.Get(); |
| config.framerate_limit = framerate_limit.Get(); |
| config.steady_state_qp = qp.Get(); |
| config.steady_state_undershoot_percentage = undershoot_percentage.Get(); |
| config.frames_before_steady_state = frames_before_steady_state.Get(); |
| |
| return config; |
| } |
| |
| // static |
| LibvpxVp9Encoder::QualityScalerExperiment |
| LibvpxVp9Encoder::ParseQualityScalerConfig(const FieldTrialsView& trials) { |
| FieldTrialFlag disabled = FieldTrialFlag("Disabled"); |
| FieldTrialParameter<int> low_qp("low_qp", kLowVp9QpThreshold); |
| FieldTrialParameter<int> high_qp("hihg_qp", kHighVp9QpThreshold); |
| ParseFieldTrial({&disabled, &low_qp, &high_qp}, |
| trials.Lookup("WebRTC-VP9QualityScaler")); |
| QualityScalerExperiment config; |
| config.enabled = !disabled.Get(); |
| RTC_LOG(LS_INFO) << "Webrtc quality scaler for vp9 is " |
| << (config.enabled ? "enabled." : "disabled"); |
| config.low_qp = low_qp.Get(); |
| config.high_qp = high_qp.Get(); |
| |
| return config; |
| } |
| |
| LibvpxVp9Encoder::SvcFrameDropConfig LibvpxVp9Encoder::ParseSvcFrameDropConfig( |
| const FieldTrialsView& trials) { |
| FieldTrialFlag enabled = FieldTrialFlag("Enabled"); |
| FieldTrialParameter<int> layer_drop_mode("layer_drop_mode", |
| FULL_SUPERFRAME_DROP); |
| FieldTrialParameter<int> max_consec_drop("max_consec_drop", |
| std::numeric_limits<int>::max()); |
| ParseFieldTrial({&enabled, &layer_drop_mode, &max_consec_drop}, |
| trials.Lookup("WebRTC-LibvpxVp9Encoder-SvcFrameDropConfig")); |
| SvcFrameDropConfig config; |
| config.enabled = enabled.Get(); |
| config.layer_drop_mode = layer_drop_mode.Get(); |
| config.max_consec_drop = max_consec_drop.Get(); |
| RTC_LOG(LS_INFO) << "Libvpx VP9 encoder SVC frame drop config: " |
| << (config.enabled ? "enabled" : "disabled") |
| << " layer_drop_mode " << config.layer_drop_mode |
| << " max_consec_drop " << config.max_consec_drop; |
| return config; |
| } |
| |
| void LibvpxVp9Encoder::UpdatePerformanceFlags() { |
| flat_map<int, PerformanceFlags::ParameterSet> params_by_resolution; |
| if (codec_.GetVideoEncoderComplexity() == |
| VideoCodecComplexity::kComplexityLow) { |
| // For low tier devices, always use speed 9. Only disable upper |
| // layer deblocking below QCIF. |
| params_by_resolution[0] = {.base_layer_speed = 9, |
| .high_layer_speed = 9, |
| .deblock_mode = 1, |
| .allow_denoising = true}; |
| params_by_resolution[352 * 288] = {.base_layer_speed = 9, |
| .high_layer_speed = 9, |
| .deblock_mode = 0, |
| .allow_denoising = true}; |
| } else { |
| params_by_resolution = performance_flags_.settings_by_resolution; |
| } |
| |
| const auto find_speed = [&](int min_pixel_count) { |
| RTC_DCHECK(!params_by_resolution.empty()); |
| auto it = params_by_resolution.upper_bound(min_pixel_count); |
| return std::prev(it)->second; |
| }; |
| performance_flags_by_spatial_index_.clear(); |
| |
| if (is_svc_) { |
| for (int si = 0; si < num_spatial_layers_; ++si) { |
| performance_flags_by_spatial_index_.push_back(find_speed( |
| codec_.spatialLayers[si].width * codec_.spatialLayers[si].height)); |
| } |
| } else { |
| performance_flags_by_spatial_index_.push_back( |
| find_speed(codec_.width * codec_.height)); |
| } |
| } |
| |
| // static |
| LibvpxVp9Encoder::PerformanceFlags |
| LibvpxVp9Encoder::ParsePerformanceFlagsFromTrials( |
| const FieldTrialsView& trials) { |
| struct Params : public PerformanceFlags::ParameterSet { |
| int min_pixel_count = 0; |
| }; |
| |
| FieldTrialStructList<Params> trials_list( |
| {FieldTrialStructMember("min_pixel_count", |
| [](Params* p) { return &p->min_pixel_count; }), |
| FieldTrialStructMember("high_layer_speed", |
| [](Params* p) { return &p->high_layer_speed; }), |
| FieldTrialStructMember("base_layer_speed", |
| [](Params* p) { return &p->base_layer_speed; }), |
| FieldTrialStructMember("deblock_mode", |
| [](Params* p) { return &p->deblock_mode; }), |
| FieldTrialStructMember("denoiser", |
| [](Params* p) { return &p->allow_denoising; })}, |
| {}); |
| |
| FieldTrialFlag per_layer_speed("use_per_layer_speed"); |
| |
| ParseFieldTrial({&trials_list, &per_layer_speed}, |
| trials.Lookup("WebRTC-VP9-PerformanceFlags")); |
| |
| PerformanceFlags flags; |
| flags.use_per_layer_speed = per_layer_speed.Get(); |
| |
| constexpr int kMinSpeed = 1; |
| constexpr int kMaxSpeed = 9; |
| for (auto& f : trials_list.Get()) { |
| if (f.base_layer_speed < kMinSpeed || f.base_layer_speed > kMaxSpeed || |
| f.high_layer_speed < kMinSpeed || f.high_layer_speed > kMaxSpeed || |
| f.deblock_mode < 0 || f.deblock_mode > 2) { |
| RTC_LOG(LS_WARNING) << "Ignoring invalid performance flags: " |
| << "min_pixel_count = " << f.min_pixel_count |
| << ", high_layer_speed = " << f.high_layer_speed |
| << ", base_layer_speed = " << f.base_layer_speed |
| << ", deblock_mode = " << f.deblock_mode; |
| continue; |
| } |
| flags.settings_by_resolution[f.min_pixel_count] = f; |
| } |
| |
| if (flags.settings_by_resolution.empty()) { |
| return GetDefaultPerformanceFlags(); |
| } |
| |
| return flags; |
| } |
| |
| // static |
| LibvpxVp9Encoder::PerformanceFlags |
| LibvpxVp9Encoder::GetDefaultPerformanceFlags() { |
| PerformanceFlags flags; |
| flags.use_per_layer_speed = true; |
| #ifdef MOBILE_ARM |
| // Speed 8 on all layers for all resolutions. |
| flags.settings_by_resolution[0] = {.base_layer_speed = 8, |
| .high_layer_speed = 8, |
| .deblock_mode = 0, |
| .allow_denoising = true}; |
| #else |
| |
| // For smaller resolutions, use lower speed setting for the temporal base |
| // layer (get some coding gain at the cost of increased encoding complexity). |
| // Set encoder Speed 5 for TL0, encoder Speed 8 for upper temporal layers, and |
| // disable deblocking for upper-most temporal layers. |
| flags.settings_by_resolution[0] = {.base_layer_speed = 5, |
| .high_layer_speed = 8, |
| .deblock_mode = 1, |
| .allow_denoising = true}; |
| |
| // Use speed 7 for QCIF and above. |
| // Set encoder Speed 7 for TL0, encoder Speed 8 for upper temporal layers, and |
| // enable deblocking for all temporal layers. |
| flags.settings_by_resolution[352 * 288] = {.base_layer_speed = 7, |
| .high_layer_speed = 8, |
| .deblock_mode = 0, |
| .allow_denoising = true}; |
| |
| // For very high resolution (1080p and up), turn the speed all the way up |
| // since this is very CPU intensive. Also disable denoising to save CPU, at |
| // these resolutions denoising appear less effective and hopefully you also |
| // have a less noisy video source at this point. |
| flags.settings_by_resolution[1920 * 1080] = {.base_layer_speed = 9, |
| .high_layer_speed = 9, |
| .deblock_mode = 0, |
| .allow_denoising = false}; |
| |
| #endif |
| return flags; |
| } |
| |
| void LibvpxVp9Encoder::MaybeRewrapRawWithFormat(const vpx_img_fmt fmt) { |
| if (!raw_) { |
| raw_ = libvpx_->img_wrap(nullptr, fmt, codec_.width, codec_.height, 1, |
| nullptr); |
| } else if (raw_->fmt != fmt) { |
| RTC_LOG(LS_INFO) << "Switching VP9 encoder pixel format to " |
| << (fmt == VPX_IMG_FMT_NV12 ? "NV12" : "I420"); |
| libvpx_->img_free(raw_); |
| raw_ = libvpx_->img_wrap(nullptr, fmt, codec_.width, codec_.height, 1, |
| nullptr); |
| } |
| // else no-op since the image is already in the right format. |
| } |
| |
| rtc::scoped_refptr<VideoFrameBuffer> LibvpxVp9Encoder::PrepareBufferForProfile0( |
| rtc::scoped_refptr<VideoFrameBuffer> buffer) { |
| absl::InlinedVector<VideoFrameBuffer::Type, kMaxPreferredPixelFormats> |
| supported_formats = {VideoFrameBuffer::Type::kI420, |
| VideoFrameBuffer::Type::kNV12}; |
| |
| rtc::scoped_refptr<VideoFrameBuffer> mapped_buffer; |
| if (buffer->type() != VideoFrameBuffer::Type::kNative) { |
| // `buffer` is already mapped. |
| mapped_buffer = buffer; |
| } else { |
| // Attempt to map to one of the supported formats. |
| mapped_buffer = buffer->GetMappedFrameBuffer(supported_formats); |
| } |
| if (!mapped_buffer || |
| (absl::c_find(supported_formats, mapped_buffer->type()) == |
| supported_formats.end() && |
| mapped_buffer->type() != VideoFrameBuffer::Type::kI420A)) { |
| // Unknown pixel format or unable to map, convert to I420 and prepare that |
| // buffer instead to ensure Scale() is safe to use. |
| auto converted_buffer = buffer->ToI420(); |
| if (!converted_buffer) { |
| RTC_LOG(LS_ERROR) << "Failed to convert " |
| << VideoFrameBufferTypeToString(buffer->type()) |
| << " image to I420. Can't encode frame."; |
| return {}; |
| } |
| RTC_CHECK(converted_buffer->type() == VideoFrameBuffer::Type::kI420 || |
| converted_buffer->type() == VideoFrameBuffer::Type::kI420A); |
| |
| // Because `buffer` had to be converted, use `converted_buffer` instead. |
| buffer = mapped_buffer = converted_buffer; |
| } |
| |
| // Prepare `raw_` from `mapped_buffer`. |
| switch (mapped_buffer->type()) { |
| case VideoFrameBuffer::Type::kI420: |
| case VideoFrameBuffer::Type::kI420A: { |
| MaybeRewrapRawWithFormat(VPX_IMG_FMT_I420); |
| const I420BufferInterface* i420_buffer = mapped_buffer->GetI420(); |
| RTC_DCHECK(i420_buffer); |
| raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(i420_buffer->DataY()); |
| raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(i420_buffer->DataU()); |
| raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(i420_buffer->DataV()); |
| raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY(); |
| raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU(); |
| raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV(); |
| break; |
| } |
| case VideoFrameBuffer::Type::kNV12: { |
| MaybeRewrapRawWithFormat(VPX_IMG_FMT_NV12); |
| const NV12BufferInterface* nv12_buffer = mapped_buffer->GetNV12(); |
| RTC_DCHECK(nv12_buffer); |
| raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(nv12_buffer->DataY()); |
| raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(nv12_buffer->DataUV()); |
| raw_->planes[VPX_PLANE_V] = raw_->planes[VPX_PLANE_U] + 1; |
| raw_->stride[VPX_PLANE_Y] = nv12_buffer->StrideY(); |
| raw_->stride[VPX_PLANE_U] = nv12_buffer->StrideUV(); |
| raw_->stride[VPX_PLANE_V] = nv12_buffer->StrideUV(); |
| break; |
| } |
| default: |
| RTC_DCHECK_NOTREACHED(); |
| } |
| return mapped_buffer; |
| } |
| |
| } // namespace webrtc |
| |
| #endif // RTC_ENABLE_VP9 |