| /* | 
 |  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #ifndef API_NUMERICS_RUNNING_STATISTICS_H_ | 
 | #define API_NUMERICS_RUNNING_STATISTICS_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <cstdint> | 
 | #include <optional> | 
 |  | 
 | #include "rtc_base/checks.h" | 
 | #include "rtc_base/numerics/math_utils.h" | 
 |  | 
 | namespace webrtc { | 
 | namespace webrtc_impl { | 
 |  | 
 | // tl;dr: Robust and efficient online computation of statistics, | 
 | //        using Welford's method for variance. [1] | 
 | // | 
 | // This should be your go-to class if you ever need to compute | 
 | // min, max, mean, variance and standard deviation. | 
 | // If you need to get percentiles, please use webrtc::SamplesStatsCounter. | 
 | // | 
 | // Please note RemoveSample() won't affect min and max. | 
 | // If you want a full-fledged moving window over N last samples, | 
 | // please use webrtc::RollingAccumulator. | 
 | // | 
 | // The measures return std::nullopt if no samples were fed (Size() == 0), | 
 | // otherwise the returned optional is guaranteed to contain a value. | 
 | // | 
 | // [1] | 
 | // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm | 
 |  | 
 | // The type T is a scalar which must be convertible to double. | 
 | // Rationale: we often need greater precision for measures | 
 | //            than for the samples themselves. | 
 | template <typename T> | 
 | class RunningStatistics { | 
 |  public: | 
 |   // Update stats //////////////////////////////////////////// | 
 |  | 
 |   // Add a value participating in the statistics in O(1) time. | 
 |   void AddSample(T sample) { | 
 |     max_ = std::max(max_, sample); | 
 |     min_ = std::min(min_, sample); | 
 |     sum_ += sample; | 
 |     ++size_; | 
 |     // Welford's incremental update. | 
 |     const double delta = sample - mean_; | 
 |     mean_ += delta / size_; | 
 |     const double delta2 = sample - mean_; | 
 |     cumul_ += delta * delta2; | 
 |   } | 
 |  | 
 |   // Remove a previously added value in O(1) time. | 
 |   // Nb: This doesn't affect min or max. | 
 |   // Calling RemoveSample when Size()==0 is incorrect. | 
 |   void RemoveSample(T sample) { | 
 |     RTC_DCHECK_GT(Size(), 0); | 
 |     // In production, just saturate at 0. | 
 |     if (Size() == 0) { | 
 |       return; | 
 |     } | 
 |     // Since samples order doesn't matter, this is the | 
 |     // exact reciprocal of Welford's incremental update. | 
 |     --size_; | 
 |     const double delta = sample - mean_; | 
 |     mean_ -= delta / size_; | 
 |     const double delta2 = sample - mean_; | 
 |     cumul_ -= delta * delta2; | 
 |   } | 
 |  | 
 |   // Merge other stats, as if samples were added one by one, but in O(1). | 
 |   void MergeStatistics(const RunningStatistics<T>& other) { | 
 |     if (other.size_ == 0) { | 
 |       return; | 
 |     } | 
 |     max_ = std::max(max_, other.max_); | 
 |     min_ = std::min(min_, other.min_); | 
 |     const int64_t new_size = size_ + other.size_; | 
 |     const double new_mean = | 
 |         (mean_ * size_ + other.mean_ * other.size_) / new_size; | 
 |     // Each cumulant must be corrected. | 
 |     //   * from: sum((x_i - mean_)²) | 
 |     //   * to:   sum((x_i - new_mean)²) | 
 |     auto delta = [new_mean](const RunningStatistics<T>& stats) { | 
 |       return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) + | 
 |                             stats.mean_ * stats.mean_); | 
 |     }; | 
 |     cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other); | 
 |     mean_ = new_mean; | 
 |     size_ = new_size; | 
 |   } | 
 |  | 
 |   // Get Measures //////////////////////////////////////////// | 
 |  | 
 |   // Returns number of samples involved via AddSample() or MergeStatistics(), | 
 |   // minus number of times RemoveSample() was called. | 
 |   int64_t Size() const { return size_; } | 
 |  | 
 |   // Returns minimum among all seen samples, in O(1) time. | 
 |   // This isn't affected by RemoveSample(). | 
 |   std::optional<T> GetMin() const { | 
 |     if (size_ == 0) { | 
 |       return std::nullopt; | 
 |     } | 
 |     return min_; | 
 |   } | 
 |  | 
 |   // Returns maximum among all seen samples, in O(1) time. | 
 |   // This isn't affected by RemoveSample(). | 
 |   std::optional<T> GetMax() const { | 
 |     if (size_ == 0) { | 
 |       return std::nullopt; | 
 |     } | 
 |     return max_; | 
 |   } | 
 |  | 
 |   // Returns sum in O(1) time. | 
 |   std::optional<double> GetSum() const { | 
 |     if (size_ == 0) { | 
 |       return std::nullopt; | 
 |     } | 
 |     return sum_; | 
 |   } | 
 |  | 
 |   // Returns mean in O(1) time. | 
 |   std::optional<double> GetMean() const { | 
 |     if (size_ == 0) { | 
 |       return std::nullopt; | 
 |     } | 
 |     return mean_; | 
 |   } | 
 |  | 
 |   // Returns unbiased sample variance in O(1) time. | 
 |   std::optional<double> GetVariance() const { | 
 |     if (size_ == 0) { | 
 |       return std::nullopt; | 
 |     } | 
 |     return cumul_ / size_; | 
 |   } | 
 |  | 
 |   // Returns unbiased standard deviation in O(1) time. | 
 |   std::optional<double> GetStandardDeviation() const { | 
 |     if (size_ == 0) { | 
 |       return std::nullopt; | 
 |     } | 
 |     return std::sqrt(*GetVariance()); | 
 |   } | 
 |  | 
 |  private: | 
 |   int64_t size_ = 0;  // Samples seen. | 
 |   T min_ = infinity_or_max<T>(); | 
 |   T max_ = minus_infinity_or_min<T>(); | 
 |   double mean_ = 0; | 
 |   double cumul_ = 0;  // Variance * size_, sometimes noted m2. | 
 |   double sum_ = 0; | 
 | }; | 
 |  | 
 | }  // namespace webrtc_impl | 
 | }  // namespace webrtc | 
 |  | 
 | #endif  // API_NUMERICS_RUNNING_STATISTICS_H_ |