blob: 97fdac98bc925ca8c496a489091f293e87ea4788 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/main/source/timing.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
#include "webrtc/modules/video_coding/main/source/timestamp_extrapolator.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/trace.h"
namespace webrtc {
VCMTiming::VCMTiming(Clock* clock,
int32_t vcm_id,
int32_t timing_id,
VCMTiming* master_timing)
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
vcm_id_(vcm_id),
clock_(clock),
timing_id_(timing_id),
master_(false),
ts_extrapolator_(),
codec_timer_(),
render_delay_ms_(kDefaultRenderDelayMs),
min_playout_delay_ms_(0),
jitter_delay_ms_(0),
current_delay_ms_(0),
prev_frame_timestamp_(0) {
if (master_timing == NULL) {
master_ = true;
ts_extrapolator_ = new VCMTimestampExtrapolator(clock_, vcm_id, timing_id);
} else {
ts_extrapolator_ = master_timing->ts_extrapolator_;
}
}
VCMTiming::~VCMTiming() {
if (master_) {
delete ts_extrapolator_;
}
delete crit_sect_;
}
void VCMTiming::Reset() {
CriticalSectionScoped cs(crit_sect_);
ts_extrapolator_->Reset();
codec_timer_.Reset();
render_delay_ms_ = kDefaultRenderDelayMs;
min_playout_delay_ms_ = 0;
jitter_delay_ms_ = 0;
current_delay_ms_ = 0;
prev_frame_timestamp_ = 0;
}
void VCMTiming::ResetDecodeTime() {
codec_timer_.Reset();
}
void VCMTiming::set_render_delay(uint32_t render_delay_ms) {
CriticalSectionScoped cs(crit_sect_);
render_delay_ms_ = render_delay_ms;
}
void VCMTiming::set_min_playout_delay(uint32_t min_playout_delay_ms) {
CriticalSectionScoped cs(crit_sect_);
min_playout_delay_ms_ = min_playout_delay_ms;
}
void VCMTiming::SetJitterDelay(uint32_t jitter_delay_ms) {
CriticalSectionScoped cs(crit_sect_);
if (jitter_delay_ms != jitter_delay_ms_) {
if (master_) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, timing_id_),
"Desired jitter buffer level: %u ms", jitter_delay_ms);
}
jitter_delay_ms_ = jitter_delay_ms;
// When in initial state, set current delay to minimum delay.
if (current_delay_ms_ == 0) {
current_delay_ms_ = jitter_delay_ms_;
}
}
}
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
CriticalSectionScoped cs(crit_sect_);
uint32_t target_delay_ms = TargetDelayInternal();
if (current_delay_ms_ == 0) {
// Not initialized, set current delay to target.
current_delay_ms_ = target_delay_ms;
} else if (target_delay_ms != current_delay_ms_) {
int64_t delay_diff_ms = static_cast<int64_t>(target_delay_ms) -
current_delay_ms_;
// Never change the delay with more than 100 ms every second. If we're
// changing the delay in too large steps we will get noticeable freezes. By
// limiting the change we can increase the delay in smaller steps, which
// will be experienced as the video is played in slow motion. When lowering
// the delay the video will be played at a faster pace.
int64_t max_change_ms = 0;
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
// wrap
max_change_ms = kDelayMaxChangeMsPerS * (frame_timestamp +
(static_cast<int64_t>(1) << 32) - prev_frame_timestamp_) / 90000;
} else {
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp - prev_frame_timestamp_) / 90000;
}
if (max_change_ms <= 0) {
// Any changes less than 1 ms are truncated and
// will be postponed. Negative change will be due
// to reordering and should be ignored.
return;
}
delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
delay_diff_ms = std::min(delay_diff_ms, max_change_ms);
current_delay_ms_ = current_delay_ms_ + static_cast<int32_t>(delay_diff_ms);
}
prev_frame_timestamp_ = frame_timestamp;
}
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
int64_t actual_decode_time_ms) {
CriticalSectionScoped cs(crit_sect_);
uint32_t target_delay_ms = TargetDelayInternal();
int64_t delayed_ms = actual_decode_time_ms -
(render_time_ms - MaxDecodeTimeMs() - render_delay_ms_);
if (delayed_ms < 0) {
return;
}
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
current_delay_ms_ += static_cast<uint32_t>(delayed_ms);
} else {
current_delay_ms_ = target_delay_ms;
}
}
int32_t VCMTiming::StopDecodeTimer(uint32_t time_stamp,
int64_t start_time_ms,
int64_t now_ms) {
CriticalSectionScoped cs(crit_sect_);
const int32_t max_dec_time = MaxDecodeTimeMs();
int32_t time_diff_ms = codec_timer_.StopTimer(start_time_ms, now_ms);
if (time_diff_ms < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceVideoCoding, VCMId(vcm_id_,
timing_id_), "Codec timer error: %d", time_diff_ms);
assert(false);
}
if (master_) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(vcm_id_,
timing_id_),
"Frame decoded: time_stamp=%u dec_time=%d max_dec_time=%u, at %u",
time_stamp, time_diff_ms, max_dec_time, MaskWord64ToUWord32(now_ms));
}
return 0;
}
void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
CriticalSectionScoped cs(crit_sect_);
ts_extrapolator_->Update(now_ms, time_stamp, master_);
}
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms)
const {
CriticalSectionScoped cs(crit_sect_);
const int64_t render_time_ms = RenderTimeMsInternal(frame_timestamp, now_ms);
if (master_) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, VCMId(vcm_id_,
timing_id_), "Render frame %u at %u. Render delay %u",
"jitter delay %u, max decode time %u, playout delay %u",
frame_timestamp, MaskWord64ToUWord32(render_time_ms), render_delay_ms_,
jitter_delay_ms_, MaxDecodeTimeMs(), min_playout_delay_ms_);
}
return render_time_ms;
}
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
int64_t now_ms) const {
int64_t estimated_complete_time_ms =
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
if (master_) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, timing_id_), "ExtrapolateLocalTime(%u)=%u ms",
frame_timestamp, MaskWord64ToUWord32(estimated_complete_time_ms));
}
if (estimated_complete_time_ms == -1) {
estimated_complete_time_ms = now_ms;
}
// Make sure that we have at least the playout delay.
uint32_t actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
return estimated_complete_time_ms + actual_delay;
}
// Must be called from inside a critical section.
int32_t VCMTiming::MaxDecodeTimeMs(FrameType frame_type /*= kVideoFrameDelta*/)
const {
const int32_t decode_time_ms = codec_timer_.RequiredDecodeTimeMs(frame_type);
if (decode_time_ms < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceVideoCoding, VCMId(vcm_id_,
timing_id_), "Negative maximum decode time: %d", decode_time_ms);
return -1;
}
return decode_time_ms;
}
uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms, int64_t now_ms)
const {
CriticalSectionScoped cs(crit_sect_);
const int64_t max_wait_time_ms = render_time_ms - now_ms -
MaxDecodeTimeMs() - render_delay_ms_;
if (max_wait_time_ms < 0) {
return 0;
}
return static_cast<uint32_t>(max_wait_time_ms);
}
bool VCMTiming::EnoughTimeToDecode(uint32_t available_processing_time_ms)
const {
CriticalSectionScoped cs(crit_sect_);
int32_t max_decode_time_ms = MaxDecodeTimeMs();
if (max_decode_time_ms < 0) {
// Haven't decoded any frames yet, try decoding one to get an estimate
// of the decode time.
return true;
} else if (max_decode_time_ms == 0) {
// Decode time is less than 1, set to 1 for now since
// we don't have any better precision. Count ticks later?
max_decode_time_ms = 1;
}
return static_cast<int32_t>(available_processing_time_ms) -
max_decode_time_ms > 0;
}
uint32_t VCMTiming::TargetVideoDelay() const {
CriticalSectionScoped cs(crit_sect_);
return TargetDelayInternal();
}
uint32_t VCMTiming::TargetDelayInternal() const {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
VCMId(vcm_id_, timing_id_),
"Delay: min_playout=%u jitter=%u max_decode=%u render=%u",
min_playout_delay_ms_, jitter_delay_ms_, MaxDecodeTimeMs(),
render_delay_ms_);
return std::max(min_playout_delay_ms_,
jitter_delay_ms_ + MaxDecodeTimeMs() + render_delay_ms_);
}
} // namespace webrtc