| /* | 
 |  *  Copyright 2011 The WebRTC Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "rtc_base/message_digest.h" | 
 |  | 
 | #include <string.h> | 
 |  | 
 | #include <cstdint> | 
 | #include <memory> | 
 |  | 
 | #include "rtc_base/openssl_digest.h" | 
 | #include "rtc_base/string_encode.h" | 
 |  | 
 | namespace rtc { | 
 |  | 
 | // From RFC 4572. | 
 | const char DIGEST_MD5[] = "md5"; | 
 | const char DIGEST_SHA_1[] = "sha-1"; | 
 | const char DIGEST_SHA_224[] = "sha-224"; | 
 | const char DIGEST_SHA_256[] = "sha-256"; | 
 | const char DIGEST_SHA_384[] = "sha-384"; | 
 | const char DIGEST_SHA_512[] = "sha-512"; | 
 |  | 
 | static const size_t kBlockSize = 64;  // valid for SHA-256 and down | 
 |  | 
 | MessageDigest* MessageDigestFactory::Create(const std::string& alg) { | 
 |   MessageDigest* digest = new OpenSSLDigest(alg); | 
 |   if (digest->Size() == 0) {  // invalid algorithm | 
 |     delete digest; | 
 |     digest = nullptr; | 
 |   } | 
 |   return digest; | 
 | } | 
 |  | 
 | bool IsFips180DigestAlgorithm(const std::string& alg) { | 
 |   // These are the FIPS 180 algorithms.  According to RFC 4572 Section 5, | 
 |   // "Self-signed certificates (for which legacy certificates are not a | 
 |   // consideration) MUST use one of the FIPS 180 algorithms (SHA-1, | 
 |   // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm, | 
 |   // and thus also MUST use it to calculate certificate fingerprints." | 
 |   return alg == DIGEST_SHA_1 || alg == DIGEST_SHA_224 || | 
 |          alg == DIGEST_SHA_256 || alg == DIGEST_SHA_384 || | 
 |          alg == DIGEST_SHA_512; | 
 | } | 
 |  | 
 | size_t ComputeDigest(MessageDigest* digest, | 
 |                      const void* input, | 
 |                      size_t in_len, | 
 |                      void* output, | 
 |                      size_t out_len) { | 
 |   digest->Update(input, in_len); | 
 |   return digest->Finish(output, out_len); | 
 | } | 
 |  | 
 | size_t ComputeDigest(const std::string& alg, | 
 |                      const void* input, | 
 |                      size_t in_len, | 
 |                      void* output, | 
 |                      size_t out_len) { | 
 |   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
 |   return (digest) ? ComputeDigest(digest.get(), input, in_len, output, out_len) | 
 |                   : 0; | 
 | } | 
 |  | 
 | std::string ComputeDigest(MessageDigest* digest, const std::string& input) { | 
 |   std::unique_ptr<char[]> output(new char[digest->Size()]); | 
 |   ComputeDigest(digest, input.data(), input.size(), output.get(), | 
 |                 digest->Size()); | 
 |   return hex_encode(output.get(), digest->Size()); | 
 | } | 
 |  | 
 | bool ComputeDigest(const std::string& alg, | 
 |                    const std::string& input, | 
 |                    std::string* output) { | 
 |   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
 |   if (!digest) { | 
 |     return false; | 
 |   } | 
 |   *output = ComputeDigest(digest.get(), input); | 
 |   return true; | 
 | } | 
 |  | 
 | std::string ComputeDigest(const std::string& alg, const std::string& input) { | 
 |   std::string output; | 
 |   ComputeDigest(alg, input, &output); | 
 |   return output; | 
 | } | 
 |  | 
 | // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text)) | 
 | size_t ComputeHmac(MessageDigest* digest, | 
 |                    const void* key, | 
 |                    size_t key_len, | 
 |                    const void* input, | 
 |                    size_t in_len, | 
 |                    void* output, | 
 |                    size_t out_len) { | 
 |   // We only handle algorithms with a 64-byte blocksize. | 
 |   // TODO: Add BlockSize() method to MessageDigest. | 
 |   size_t block_len = kBlockSize; | 
 |   if (digest->Size() > 32) { | 
 |     return 0; | 
 |   } | 
 |   // Copy the key to a block-sized buffer to simplify padding. | 
 |   // If the key is longer than a block, hash it and use the result instead. | 
 |   std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]); | 
 |   if (key_len > block_len) { | 
 |     ComputeDigest(digest, key, key_len, new_key.get(), block_len); | 
 |     memset(new_key.get() + digest->Size(), 0, block_len - digest->Size()); | 
 |   } else { | 
 |     memcpy(new_key.get(), key, key_len); | 
 |     memset(new_key.get() + key_len, 0, block_len - key_len); | 
 |   } | 
 |   // Set up the padding from the key, salting appropriately for each padding. | 
 |   std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]); | 
 |   std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]); | 
 |   for (size_t i = 0; i < block_len; ++i) { | 
 |     o_pad[i] = 0x5c ^ new_key[i]; | 
 |     i_pad[i] = 0x36 ^ new_key[i]; | 
 |   } | 
 |   // Inner hash; hash the inner padding, and then the input buffer. | 
 |   std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]); | 
 |   digest->Update(i_pad.get(), block_len); | 
 |   digest->Update(input, in_len); | 
 |   digest->Finish(inner.get(), digest->Size()); | 
 |   // Outer hash; hash the outer padding, and then the result of the inner hash. | 
 |   digest->Update(o_pad.get(), block_len); | 
 |   digest->Update(inner.get(), digest->Size()); | 
 |   return digest->Finish(output, out_len); | 
 | } | 
 |  | 
 | size_t ComputeHmac(const std::string& alg, | 
 |                    const void* key, | 
 |                    size_t key_len, | 
 |                    const void* input, | 
 |                    size_t in_len, | 
 |                    void* output, | 
 |                    size_t out_len) { | 
 |   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
 |   if (!digest) { | 
 |     return 0; | 
 |   } | 
 |   return ComputeHmac(digest.get(), key, key_len, input, in_len, output, | 
 |                      out_len); | 
 | } | 
 |  | 
 | std::string ComputeHmac(MessageDigest* digest, | 
 |                         const std::string& key, | 
 |                         const std::string& input) { | 
 |   std::unique_ptr<char[]> output(new char[digest->Size()]); | 
 |   ComputeHmac(digest, key.data(), key.size(), input.data(), input.size(), | 
 |               output.get(), digest->Size()); | 
 |   return hex_encode(output.get(), digest->Size()); | 
 | } | 
 |  | 
 | bool ComputeHmac(const std::string& alg, | 
 |                  const std::string& key, | 
 |                  const std::string& input, | 
 |                  std::string* output) { | 
 |   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); | 
 |   if (!digest) { | 
 |     return false; | 
 |   } | 
 |   *output = ComputeHmac(digest.get(), key, input); | 
 |   return true; | 
 | } | 
 |  | 
 | std::string ComputeHmac(const std::string& alg, | 
 |                         const std::string& key, | 
 |                         const std::string& input) { | 
 |   std::string output; | 
 |   ComputeHmac(alg, key, input, &output); | 
 |   return output; | 
 | } | 
 |  | 
 | }  // namespace rtc |