blob: 5019a722965b2c67b74e7fa6c931f8d516df60af [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_packet_history.h"
#include <cstdint>
#include <limits>
#include <memory>
#include <utility>
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
// Set a high sequence number so we'll suffer a wrap-around.
constexpr uint16_t kStartSeqNum = 65534u;
// Utility method for truncating sequence numbers to uint16.
uint16_t To16u(size_t sequence_number) {
return static_cast<uint16_t>(sequence_number & 0xFFFF);
}
using StorageMode = RtpPacketHistory::StorageMode;
using ::testing::AllOf;
using ::testing::Pointee;
using ::testing::Property;
std::unique_ptr<RtpPacketToSend> CreatePacket(
uint16_t seq_num,
Timestamp capture_time = Timestamp::Zero()) {
// Payload, ssrc, timestamp and extensions are irrelevant for this tests.
std::unique_ptr<RtpPacketToSend> packet(new RtpPacketToSend(nullptr));
packet->SetSequenceNumber(seq_num);
packet->set_capture_time(capture_time);
packet->set_allow_retransmission(true);
return packet;
}
} // namespace
class RtpPacketHistoryTest
: public ::testing::TestWithParam<RtpPacketHistory::PaddingMode> {
protected:
RtpPacketHistoryTest()
: fake_clock_(123456),
hist_(&fake_clock_, /*enable_padding_prio=*/GetParam()) {}
SimulatedClock fake_clock_;
RtpPacketHistory hist_;
std::unique_ptr<RtpPacketToSend> CreateRtpPacket(uint16_t seq_num) {
return CreatePacket(seq_num, fake_clock_.CurrentTime());
}
};
TEST_P(RtpPacketHistoryTest, SetStoreStatus) {
EXPECT_EQ(StorageMode::kDisabled, hist_.GetStorageMode());
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_EQ(StorageMode::kStoreAndCull, hist_.GetStorageMode());
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_EQ(StorageMode::kStoreAndCull, hist_.GetStorageMode());
hist_.SetStorePacketsStatus(StorageMode::kDisabled, 0);
EXPECT_EQ(StorageMode::kDisabled, hist_.GetStorageMode());
}
TEST_P(RtpPacketHistoryTest, ClearsHistoryAfterSetStoreStatus) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
/*send_time=*/fake_clock_.CurrentTime());
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Changing store status, even to the current one, will clear the history.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, StartSeqResetAfterReset) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum),
/*send_time=*/fake_clock_.CurrentTime());
// Mark packet as pending so it won't be removed.
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Changing store status, to clear the history.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
// Add a new packet.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
/*send_time=*/fake_clock_.CurrentTime());
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(To16u(kStartSeqNum + 1)));
// Advance time past where packet expires.
fake_clock_.AdvanceTime(RtpPacketHistory::kPacketCullingDelayFactor *
RtpPacketHistory::kMinPacketDuration);
// Add one more packet and verify no state left from packet before reset.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 2)),
/*send_time=*/fake_clock_.CurrentTime());
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)));
}
TEST_P(RtpPacketHistoryTest, NoStoreStatus) {
EXPECT_EQ(StorageMode::kDisabled, hist_.GetStorageMode());
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
hist_.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock_.CurrentTime());
// Packet should not be stored.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, GetRtpPacket_NotStored) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
EXPECT_FALSE(hist_.GetPacketState(0));
}
TEST_P(RtpPacketHistoryTest, PutRtpPacket) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
hist_.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock_.CurrentTime());
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, GetRtpPacket) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
Timestamp capture_time = Timestamp::Millis(1);
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
packet->set_capture_time(capture_time);
rtc::CopyOnWriteBuffer buffer = packet->Buffer();
hist_.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock_.CurrentTime());
std::unique_ptr<RtpPacketToSend> packet_out =
hist_.GetPacketAndMarkAsPending(kStartSeqNum);
ASSERT_TRUE(packet_out);
EXPECT_EQ(buffer, packet_out->Buffer());
EXPECT_EQ(capture_time, packet_out->capture_time());
}
TEST_P(RtpPacketHistoryTest, MinResendTime) {
static const TimeDelta kMinRetransmitInterval = TimeDelta::Millis(100);
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
hist_.SetRtt(kMinRetransmitInterval);
Timestamp capture_time = fake_clock_.CurrentTime();
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
size_t len = packet->size();
hist_.PutRtpPacket(std::move(packet), fake_clock_.CurrentTime());
// First retransmission - allow early retransmission.
fake_clock_.AdvanceTimeMilliseconds(1);
packet = hist_.GetPacketAndMarkAsPending(kStartSeqNum);
ASSERT_TRUE(packet);
EXPECT_EQ(len, packet->size());
EXPECT_EQ(packet->capture_time(), capture_time);
hist_.MarkPacketAsSent(kStartSeqNum);
// Second retransmission - advance time to just before retransmission OK.
fake_clock_.AdvanceTime(kMinRetransmitInterval - TimeDelta::Millis(1));
EXPECT_FALSE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Advance time to just after retransmission OK.
fake_clock_.AdvanceTimeMilliseconds(1);
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, RemovesOldestSentPacketWhenAtMaxSize) {
const size_t kMaxNumPackets = 10;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets);
// History does not allow removing packets within kMinPacketDuration,
// so in order to test capacity, make sure insertion spans this time.
const TimeDelta kPacketInterval =
RtpPacketHistory::kMinPacketDuration / kMaxNumPackets;
// Add packets until the buffer is full.
for (size_t i = 0; i < kMaxNumPackets; ++i) {
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + i));
// Immediate mark packet as sent.
hist_.PutRtpPacket(std::move(packet), fake_clock_.CurrentTime());
fake_clock_.AdvanceTime(kPacketInterval);
}
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// History is full, oldest one should be overwritten.
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + kMaxNumPackets));
hist_.PutRtpPacket(std::move(packet), fake_clock_.CurrentTime());
// Oldest packet should be gone, but packet after than one still present.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, RemovesOldestPacketWhenAtMaxCapacity) {
// Tests the absolute upper bound on number of stored packets. Don't allow
// storing more than this, even if packets have not yet been sent.
const size_t kMaxNumPackets = RtpPacketHistory::kMaxCapacity;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull,
RtpPacketHistory::kMaxCapacity);
// Add packets until the buffer is full.
for (size_t i = 0; i < kMaxNumPackets; ++i) {
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + i));
hist_.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock_.CurrentTime());
// Mark packets as pending, preventing it from being removed.
hist_.GetPacketAndMarkAsPending(To16u(kStartSeqNum + i));
}
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// History is full, oldest one should be overwritten.
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + kMaxNumPackets));
hist_.PutRtpPacket(std::move(packet), fake_clock_.CurrentTime());
// Oldest packet should be gone, but packet after than one still present.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, RemovesLowestPrioPaddingWhenAtMaxCapacity) {
if (GetParam() != RtpPacketHistory::PaddingMode::kPriority) {
GTEST_SKIP() << "Padding prioritization required for this test";
}
// Tests the absolute upper bound on number of packets in the prioritized
// set of potential padding packets.
const size_t kMaxNumPackets = RtpPacketHistory::kMaxPaddingHistory;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets * 2);
hist_.SetRtt(TimeDelta::Millis(1));
// Add packets until the max is reached, and then yet another one.
for (size_t i = 0; i < kMaxNumPackets + 1; ++i) {
std::unique_ptr<RtpPacketToSend> packet =
CreateRtpPacket(To16u(kStartSeqNum + i));
// Don't mark packets as sent, preventing them from being removed.
hist_.PutRtpPacket(std::move(packet), fake_clock_.CurrentTime());
}
// Advance time to allow retransmission/padding.
fake_clock_.AdvanceTimeMilliseconds(1);
// The oldest packet will be least prioritized and has fallen out of the
// priority set.
for (size_t i = kMaxNumPackets - 1; i > 0; --i) {
auto packet = hist_.GetPayloadPaddingPacket();
ASSERT_TRUE(packet);
EXPECT_EQ(packet->SequenceNumber(), To16u(kStartSeqNum + i + 1));
}
// Wrap around to newest padding packet again.
auto packet = hist_.GetPayloadPaddingPacket();
ASSERT_TRUE(packet);
EXPECT_EQ(packet->SequenceNumber(), To16u(kStartSeqNum + kMaxNumPackets));
}
TEST_P(RtpPacketHistoryTest, DontRemoveTooRecentlyTransmittedPackets) {
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add a packet, marked as send, and advance time to just before removal time.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
fake_clock_.AdvanceTime(RtpPacketHistory::kMinPacketDuration -
TimeDelta::Millis(1));
// Add a new packet to trigger culling.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.CurrentTime());
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance time to where packet will be eligible for removal and try again.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 2)),
fake_clock_.CurrentTime());
// First packet should no be gone, but next one still there.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, DontRemoveTooRecentlyTransmittedPacketsHighRtt) {
const TimeDelta kRtt = RtpPacketHistory::kMinPacketDuration * 2;
const TimeDelta kPacketTimeout =
kRtt * RtpPacketHistory::kMinPacketDurationRtt;
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.SetRtt(kRtt);
// Add a packet, marked as send, and advance time to just before removal time.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
fake_clock_.AdvanceTime(kPacketTimeout - TimeDelta::Millis(1));
// Add a new packet to trigger culling.
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.CurrentTime());
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance time to where packet will be eligible for removal and try again.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 2)),
fake_clock_.CurrentTime());
// First packet should no be gone, but next one still there.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
}
TEST_P(RtpPacketHistoryTest, RemovesOldWithCulling) {
const size_t kMaxNumPackets = 10;
// Enable culling. Even without feedback, this can trigger early removal.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
TimeDelta kMaxPacketDuration = RtpPacketHistory::kMinPacketDuration *
RtpPacketHistory::kPacketCullingDelayFactor;
fake_clock_.AdvanceTime(kMaxPacketDuration - TimeDelta::Millis(1));
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance to where packet can be culled, even if buffer is not full.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.CurrentTime());
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, RemovesOldWithCullingHighRtt) {
const size_t kMaxNumPackets = 10;
const TimeDelta kRtt = RtpPacketHistory::kMinPacketDuration * 2;
// Enable culling. Even without feedback, this can trigger early removal.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kMaxNumPackets);
hist_.SetRtt(kRtt);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
TimeDelta kMaxPacketDuration = kRtt *
RtpPacketHistory::kMinPacketDurationRtt *
RtpPacketHistory::kPacketCullingDelayFactor;
fake_clock_.AdvanceTime(kMaxPacketDuration - TimeDelta::Millis(1));
// First packet should still be there.
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Advance to where packet can be culled, even if buffer is not full.
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + 1)),
fake_clock_.CurrentTime());
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, CullWithAcks) {
const TimeDelta kPacketLifetime = RtpPacketHistory::kMinPacketDuration *
RtpPacketHistory::kPacketCullingDelayFactor;
const Timestamp start_time = fake_clock_.CurrentTime();
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
// Insert three packets 33ms apart, immediately mark them as sent.
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock_.CurrentTime());
fake_clock_.AdvanceTimeMilliseconds(33);
packet = CreateRtpPacket(To16u(kStartSeqNum + 1));
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock_.CurrentTime());
fake_clock_.AdvanceTimeMilliseconds(33);
packet = CreateRtpPacket(To16u(kStartSeqNum + 2));
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock_.CurrentTime());
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)));
// Remove middle one using ack, check that only that one is gone.
std::vector<uint16_t> acked_sequence_numbers = {To16u(kStartSeqNum + 1)};
hist_.CullAcknowledgedPackets(acked_sequence_numbers);
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)));
// Advance time to where second packet would have expired, verify first packet
// is removed.
Timestamp second_packet_expiry_time =
start_time + kPacketLifetime + TimeDelta::Millis(33 + 1);
fake_clock_.AdvanceTime(second_packet_expiry_time -
fake_clock_.CurrentTime());
hist_.SetRtt(TimeDelta::Millis(1)); // Trigger culling of old packets.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
EXPECT_TRUE(hist_.GetPacketState(To16u(kStartSeqNum + 2)));
// Advance to where last packet expires, verify all gone.
fake_clock_.AdvanceTimeMilliseconds(33);
hist_.SetRtt(TimeDelta::Millis(1)); // Trigger culling of old packets.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 1)));
EXPECT_FALSE(hist_.GetPacketState(To16u(kStartSeqNum + 2)));
}
TEST_P(RtpPacketHistoryTest, GetPacketAndSetSent) {
const TimeDelta kRtt = RtpPacketHistory::kMinPacketDuration * 2;
hist_.SetRtt(kRtt);
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add a sent packet to the history.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
// Retransmission request, first retransmission is allowed immediately.
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Packet not yet sent, new retransmission not allowed.
fake_clock_.AdvanceTime(kRtt);
EXPECT_FALSE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Mark as sent, but too early for retransmission.
hist_.MarkPacketAsSent(kStartSeqNum);
EXPECT_FALSE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Enough time has passed, retransmission is allowed again.
fake_clock_.AdvanceTime(kRtt);
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, GetPacketWithEncapsulation) {
const uint32_t kSsrc = 92384762;
const TimeDelta kRtt = RtpPacketHistory::kMinPacketDuration * 2;
hist_.SetRtt(kRtt);
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add a sent packet to the history, with a set SSRC.
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(kStartSeqNum);
packet->SetSsrc(kSsrc);
hist_.PutRtpPacket(std::move(packet), fake_clock_.CurrentTime());
// Retransmission request, simulate an RTX-like encapsulation, were the packet
// is sent on a different SSRC.
std::unique_ptr<RtpPacketToSend> retransmit_packet =
hist_.GetPacketAndMarkAsPending(
kStartSeqNum, [](const RtpPacketToSend& packet) {
auto encapsulated_packet =
std::make_unique<RtpPacketToSend>(packet);
encapsulated_packet->SetSsrc(packet.Ssrc() + 1);
return encapsulated_packet;
});
ASSERT_TRUE(retransmit_packet);
EXPECT_EQ(retransmit_packet->Ssrc(), kSsrc + 1);
}
TEST_P(RtpPacketHistoryTest, GetPacketWithEncapsulationAbortOnNullptr) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
// Retransmission request, but the encapsulator determines that this packet is
// not suitable for retransmission (bandwidth exhausted?) so the retransmit is
// aborted and the packet is not marked as pending.
EXPECT_FALSE(hist_.GetPacketAndMarkAsPending(
kStartSeqNum, [](const RtpPacketToSend&) { return nullptr; }));
// New try, this time getting the packet should work, and it should not be
// blocked due to any pending status.
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, DontRemovePendingTransmissions) {
const TimeDelta kRtt = RtpPacketHistory::kMinPacketDuration * 2;
const TimeDelta kPacketTimeout =
kRtt * RtpPacketHistory::kMinPacketDurationRtt;
// Set size to remove old packets as soon as possible.
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.SetRtt(kRtt);
// Add a sent packet.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
// Advance clock to just before packet timeout.
fake_clock_.AdvanceTime(kPacketTimeout - TimeDelta::Millis(1));
// Mark as enqueued in pacer.
EXPECT_TRUE(hist_.GetPacketAndMarkAsPending(kStartSeqNum));
// Advance clock to where packet would have timed out. It should still
// be there and pending.
fake_clock_.AdvanceTimeMilliseconds(1);
EXPECT_TRUE(hist_.GetPacketState(kStartSeqNum));
// Packet sent. Now it can be removed.
hist_.MarkPacketAsSent(kStartSeqNum);
hist_.SetRtt(kRtt); // Force culling of old packets.
EXPECT_FALSE(hist_.GetPacketState(kStartSeqNum));
}
TEST_P(RtpPacketHistoryTest, PrioritizedPayloadPadding) {
if (GetParam() != RtpPacketHistory::PaddingMode::kPriority) {
GTEST_SKIP() << "Padding prioritization required for this test";
}
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
// Add two sent packets, one millisecond apart.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
fake_clock_.AdvanceTimeMilliseconds(1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum + 1),
fake_clock_.CurrentTime());
fake_clock_.AdvanceTimeMilliseconds(1);
// Latest packet given equal retransmission count.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
kStartSeqNum + 1);
// Older packet has lower retransmission count.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
// Equal retransmission count again, use newest packet.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
kStartSeqNum + 1);
// Older packet has lower retransmission count.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
// Remove newest packet.
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum + 1});
// Only older packet left.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum});
EXPECT_EQ(hist_.GetPayloadPaddingPacket(), nullptr);
}
TEST_P(RtpPacketHistoryTest, NoPendingPacketAsPadding) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
fake_clock_.AdvanceTimeMilliseconds(1);
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
// If packet is pending retransmission, don't try to use it as padding.
hist_.GetPacketAndMarkAsPending(kStartSeqNum);
if (GetParam() != RtpPacketHistory::PaddingMode::kRecentLargePacket) {
EXPECT_EQ(nullptr, hist_.GetPayloadPaddingPacket());
} else {
// We do allow sending the same packet multiple times in this mode.
EXPECT_NE(nullptr, hist_.GetPayloadPaddingPacket());
}
// Market it as no longer pending, should be usable as padding again.
hist_.MarkPacketAsSent(kStartSeqNum);
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(), kStartSeqNum);
}
TEST_P(RtpPacketHistoryTest, PayloadPaddingWithEncapsulation) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 1);
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
fake_clock_.AdvanceTimeMilliseconds(1);
// Aborted padding.
EXPECT_EQ(nullptr, hist_.GetPayloadPaddingPacket(
[](const RtpPacketToSend&) { return nullptr; }));
// Get copy of packet, but with sequence number modified.
auto padding_packet =
hist_.GetPayloadPaddingPacket([&](const RtpPacketToSend& packet) {
auto encapsulated_packet = std::make_unique<RtpPacketToSend>(packet);
encapsulated_packet->SetSequenceNumber(kStartSeqNum + 1);
return encapsulated_packet;
});
ASSERT_TRUE(padding_packet);
EXPECT_EQ(padding_packet->SequenceNumber(), kStartSeqNum + 1);
}
TEST_P(RtpPacketHistoryTest, NackAfterAckIsNoop) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 2);
// Add two sent packets.
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum), fake_clock_.CurrentTime());
hist_.PutRtpPacket(CreateRtpPacket(kStartSeqNum + 1),
fake_clock_.CurrentTime());
// Remove newest one.
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum + 1});
// Retransmission request for already acked packet, should be noop.
auto packet = hist_.GetPacketAndMarkAsPending(kStartSeqNum + 1);
EXPECT_EQ(packet.get(), nullptr);
}
TEST_P(RtpPacketHistoryTest, OutOfOrderInsertRemoval) {
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
// Insert packets, out of order, including both forwards and backwards
// sequence number wraps.
const int seq_offsets[] = {0, 1, -1, 2, -2, 3, -3};
for (int offset : seq_offsets) {
uint16_t seq_no = To16u(kStartSeqNum + offset);
std::unique_ptr<RtpPacketToSend> packet = CreateRtpPacket(seq_no);
packet->SetPayloadSize(50);
hist_.PutRtpPacket(std::move(packet), fake_clock_.CurrentTime());
fake_clock_.AdvanceTimeMilliseconds(33);
}
// Check packet are there and remove them in the same out-of-order fashion.
for (int offset : seq_offsets) {
uint16_t seq_no = To16u(kStartSeqNum + offset);
EXPECT_TRUE(hist_.GetPacketState(seq_no));
std::vector<uint16_t> acked_sequence_numbers = {seq_no};
hist_.CullAcknowledgedPackets(acked_sequence_numbers);
EXPECT_FALSE(hist_.GetPacketState(seq_no));
}
}
TEST_P(RtpPacketHistoryTest, UsesLastPacketAsPaddingWithPrioOff) {
if (GetParam() != RtpPacketHistory::PaddingMode::kDefault) {
GTEST_SKIP() << "Default padding prioritization required for this test";
}
const size_t kHistorySize = 10;
hist_.SetStorePacketsStatus(StorageMode::kStoreAndCull, kHistorySize);
EXPECT_EQ(hist_.GetPayloadPaddingPacket(), nullptr);
for (size_t i = 0; i < kHistorySize; ++i) {
hist_.PutRtpPacket(CreateRtpPacket(To16u(kStartSeqNum + i)),
fake_clock_.CurrentTime());
hist_.MarkPacketAsSent(To16u(kStartSeqNum + i));
fake_clock_.AdvanceTimeMilliseconds(1);
// Last packet always returned.
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i));
}
// Remove packets from the end, last in the list should be returned.
for (size_t i = kHistorySize - 1; i > 0; --i) {
hist_.CullAcknowledgedPackets(
std::vector<uint16_t>{To16u(kStartSeqNum + i)});
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i - 1));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i - 1));
EXPECT_EQ(hist_.GetPayloadPaddingPacket()->SequenceNumber(),
To16u(kStartSeqNum + i - 1));
}
hist_.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum});
EXPECT_EQ(hist_.GetPayloadPaddingPacket(), nullptr);
}
INSTANTIATE_TEST_SUITE_P(
WithAndWithoutPaddingPrio,
RtpPacketHistoryTest,
::testing::Values(RtpPacketHistory::PaddingMode::kDefault,
RtpPacketHistory::PaddingMode::kPriority,
RtpPacketHistory::PaddingMode::kRecentLargePacket));
TEST(RtpPacketHistoryRecentLargePacketMode,
GetPayloadPaddingPacketAfterCullWithAcksReturnOldPacket) {
SimulatedClock fake_clock(1234);
RtpPacketHistory history(&fake_clock,
RtpPacketHistory::PaddingMode::kRecentLargePacket);
history.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
std::unique_ptr<RtpPacketToSend> packet = CreatePacket(kStartSeqNum);
packet->SetPayloadSize(1000);
history.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock.CurrentTime());
fake_clock.AdvanceTimeMilliseconds(33);
history.CullAcknowledgedPackets(std::vector<uint16_t>{kStartSeqNum});
EXPECT_THAT(
history.GetPayloadPaddingPacket(),
Pointee(AllOf(Property(&RtpPacketToSend::SequenceNumber, kStartSeqNum),
(Property(&RtpPacketToSend::payload_size, 1000)))));
}
TEST(RtpPacketHistoryRecentLargePacketMode,
GetPayloadPaddingPacketIgnoreSmallRecentPackets) {
SimulatedClock fake_clock(1234);
RtpPacketHistory history(&fake_clock,
RtpPacketHistory::PaddingMode::kRecentLargePacket);
history.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
std::unique_ptr<RtpPacketToSend> packet = CreatePacket(kStartSeqNum);
packet->SetPayloadSize(1000);
history.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock.CurrentTime());
packet = CreatePacket(kStartSeqNum + 1);
packet->SetPayloadSize(100);
history.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock.CurrentTime());
EXPECT_THAT(
history.GetPayloadPaddingPacket(),
Pointee(AllOf(Property(&RtpPacketToSend::SequenceNumber, kStartSeqNum),
Property(&RtpPacketToSend::payload_size, 1000))));
}
TEST(RtpPacketHistoryRecentLargePacketMode,
GetPayloadPaddingPacketReturnsRecentPacketIfSizeNearMax) {
SimulatedClock fake_clock(1234);
RtpPacketHistory history(&fake_clock,
RtpPacketHistory::PaddingMode::kRecentLargePacket);
history.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
std::unique_ptr<RtpPacketToSend> packet = CreatePacket(kStartSeqNum);
packet->SetPayloadSize(1000);
history.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock.CurrentTime());
packet = CreatePacket(kStartSeqNum + 1);
packet->SetPayloadSize(950);
history.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock.CurrentTime());
EXPECT_THAT(history.GetPayloadPaddingPacket(),
(Pointee(AllOf(
Property(&RtpPacketToSend::SequenceNumber, kStartSeqNum + 1),
Property(&RtpPacketToSend::payload_size, 950)))));
}
TEST(RtpPacketHistoryRecentLargePacketMode,
GetPayloadPaddingPacketReturnsLastPacketAfterLargeSequenceNumberGap) {
SimulatedClock fake_clock(1234);
RtpPacketHistory history(&fake_clock,
RtpPacketHistory::PaddingMode::kRecentLargePacket);
history.SetStorePacketsStatus(StorageMode::kStoreAndCull, 10);
uint16_t sequence_number = std::numeric_limits<uint16_t>::max() - 50;
std::unique_ptr<RtpPacketToSend> packet = CreatePacket(sequence_number);
packet->SetPayloadSize(1000);
history.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock.CurrentTime());
ASSERT_THAT(
history.GetPayloadPaddingPacket(),
Pointee(Property(&RtpPacketToSend::SequenceNumber, sequence_number)));
// A long time pass... and potentially many small packets are injected, or
// timestamp jumps.
sequence_number = 1 << 13;
packet = CreatePacket(sequence_number);
packet->SetPayloadSize(100);
history.PutRtpPacket(std::move(packet),
/*send_time=*/fake_clock.CurrentTime());
EXPECT_THAT(
history.GetPayloadPaddingPacket(),
Pointee(Property(&RtpPacketToSend::SequenceNumber, sequence_number)));
}
} // namespace webrtc