|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | // Unit tests for PayloadSplitter class. | 
|  |  | 
|  | #include "webrtc/modules/audio_coding/neteq4/payload_splitter.h" | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <utility>  // pair | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  | #include "webrtc/modules/audio_coding/neteq4/mock/mock_decoder_database.h" | 
|  | #include "webrtc/modules/audio_coding/neteq4/packet.h" | 
|  | #include "webrtc/system_wrappers/interface/scoped_ptr.h" | 
|  |  | 
|  | using ::testing::Return; | 
|  | using ::testing::ReturnNull; | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | static const int kRedPayloadType = 100; | 
|  | static const int kPayloadLength = 10; | 
|  | static const int kRedHeaderLength = 4;  // 4 bytes RED header. | 
|  | static const uint16_t kSequenceNumber = 0; | 
|  | static const uint32_t kBaseTimestamp = 0x12345678; | 
|  |  | 
|  | // RED headers (according to RFC 2198): | 
|  | // | 
|  | //    0                   1                   2                   3 | 
|  | //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | 
|  | //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | //   |F|   block PT  |  timestamp offset         |   block length    | | 
|  | //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | // | 
|  | // Last RED header: | 
|  | //    0 1 2 3 4 5 6 7 | 
|  | //   +-+-+-+-+-+-+-+-+ | 
|  | //   |0|   Block PT  | | 
|  | //   +-+-+-+-+-+-+-+-+ | 
|  |  | 
|  | // Creates a RED packet, with |num_payloads| payloads, with payload types given | 
|  | // by the values in array |payload_types| (which must be of length | 
|  | // |num_payloads|). Each redundant payload is |timestamp_offset| samples | 
|  | // "behind" the the previous payload. | 
|  | Packet* CreateRedPayload(int num_payloads, | 
|  | uint8_t* payload_types, | 
|  | int timestamp_offset) { | 
|  | Packet* packet = new Packet; | 
|  | packet->header.payloadType = kRedPayloadType; | 
|  | packet->header.timestamp = kBaseTimestamp; | 
|  | packet->header.sequenceNumber = kSequenceNumber; | 
|  | packet->payload_length = (kPayloadLength + 1) + | 
|  | (num_payloads - 1) * (kPayloadLength + kRedHeaderLength); | 
|  | uint8_t* payload = new uint8_t[packet->payload_length]; | 
|  | uint8_t* payload_ptr = payload; | 
|  | for (int i = 0; i < num_payloads; ++i) { | 
|  | // Write the RED headers. | 
|  | if (i == num_payloads - 1) { | 
|  | // Special case for last payload. | 
|  | *payload_ptr = payload_types[i] & 0x7F;  // F = 0; | 
|  | ++payload_ptr; | 
|  | break; | 
|  | } | 
|  | *payload_ptr = payload_types[i] & 0x7F; | 
|  | // Not the last block; set F = 1. | 
|  | *payload_ptr |= 0x80; | 
|  | ++payload_ptr; | 
|  | int this_offset = (num_payloads - i - 1) * timestamp_offset; | 
|  | *payload_ptr = this_offset >> 6; | 
|  | ++payload_ptr; | 
|  | assert(kPayloadLength <= 1023);  // Max length described by 10 bits. | 
|  | *payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8); | 
|  | ++payload_ptr; | 
|  | *payload_ptr = kPayloadLength & 0xFF; | 
|  | ++payload_ptr; | 
|  | } | 
|  | for (int i = 0; i < num_payloads; ++i) { | 
|  | // Write |i| to all bytes in each payload. | 
|  | memset(payload_ptr, i, kPayloadLength); | 
|  | payload_ptr += kPayloadLength; | 
|  | } | 
|  | packet->payload = payload; | 
|  | return packet; | 
|  | } | 
|  |  | 
|  | // Create a packet with all payload bytes set to |payload_value|. | 
|  | Packet* CreatePacket(uint8_t payload_type, int payload_length, | 
|  | uint8_t payload_value) { | 
|  | Packet* packet = new Packet; | 
|  | packet->header.payloadType = payload_type; | 
|  | packet->header.timestamp = kBaseTimestamp; | 
|  | packet->header.sequenceNumber = kSequenceNumber; | 
|  | packet->payload_length = payload_length; | 
|  | uint8_t* payload = new uint8_t[packet->payload_length]; | 
|  | memset(payload, payload_value, payload_length); | 
|  | packet->payload = payload; | 
|  | return packet; | 
|  | } | 
|  |  | 
|  | // Checks that |packet| has the attributes given in the remaining parameters. | 
|  | void VerifyPacket(const Packet* packet, | 
|  | int payload_length, | 
|  | uint8_t payload_type, | 
|  | uint16_t sequence_number, | 
|  | uint32_t timestamp, | 
|  | uint8_t payload_value, | 
|  | bool primary = true) { | 
|  | EXPECT_EQ(payload_length, packet->payload_length); | 
|  | EXPECT_EQ(payload_type, packet->header.payloadType); | 
|  | EXPECT_EQ(sequence_number, packet->header.sequenceNumber); | 
|  | EXPECT_EQ(timestamp, packet->header.timestamp); | 
|  | EXPECT_EQ(primary, packet->primary); | 
|  | ASSERT_FALSE(packet->payload == NULL); | 
|  | for (int i = 0; i < packet->payload_length; ++i) { | 
|  | EXPECT_EQ(payload_value, packet->payload[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Start of test definitions. | 
|  |  | 
|  | TEST(PayloadSplitter, CreateAndDestroy) { | 
|  | PayloadSplitter* splitter = new PayloadSplitter; | 
|  | delete splitter; | 
|  | } | 
|  |  | 
|  | // Packet A is split into A1 and A2. | 
|  | TEST(RedPayloadSplitter, OnePacketTwoPayloads) { | 
|  | uint8_t payload_types[] = {0, 0}; | 
|  | const int kTimestampOffset = 160; | 
|  | Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset); | 
|  | PacketList packet_list; | 
|  | packet_list.push_back(packet); | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); | 
|  | ASSERT_EQ(2u, packet_list.size()); | 
|  | // Check first packet. The first in list should always be the primary payload. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber, | 
|  | kBaseTimestamp, 1, true); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | // Check second packet. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, | 
|  | kBaseTimestamp - kTimestampOffset, 0, false); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | } | 
|  |  | 
|  | // Packets A and B are not split at all. Only the RED header in each packet is | 
|  | // removed. | 
|  | TEST(RedPayloadSplitter, TwoPacketsOnePayload) { | 
|  | uint8_t payload_types[] = {0}; | 
|  | const int kTimestampOffset = 160; | 
|  | // Create first packet, with a single RED payload. | 
|  | Packet* packet = CreateRedPayload(1, payload_types, kTimestampOffset); | 
|  | PacketList packet_list; | 
|  | packet_list.push_back(packet); | 
|  | // Create second packet, with a single RED payload. | 
|  | packet = CreateRedPayload(1, payload_types, kTimestampOffset); | 
|  | // Manually change timestamp and sequence number of second packet. | 
|  | packet->header.timestamp += kTimestampOffset; | 
|  | packet->header.sequenceNumber++; | 
|  | packet_list.push_back(packet); | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); | 
|  | ASSERT_EQ(2u, packet_list.size()); | 
|  | // Check first packet. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, | 
|  | kBaseTimestamp, 0, true); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | // Check second packet. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1, | 
|  | kBaseTimestamp + kTimestampOffset, 0, true); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | } | 
|  |  | 
|  | // Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with | 
|  | // attributes as follows: | 
|  | // | 
|  | //                  A1*   A2    A3    B1*   B2    B3 | 
|  | // Payload type     0     1     2     0     1     2 | 
|  | // Timestamp        b     b-o   b-2o  b+o   b     b-o | 
|  | // Sequence number  0     0     0     1     1     1 | 
|  | // | 
|  | // b = kBaseTimestamp, o = kTimestampOffset, * = primary. | 
|  | TEST(RedPayloadSplitter, TwoPacketsThreePayloads) { | 
|  | uint8_t payload_types[] = {2, 1, 0};  // Primary is the last one. | 
|  | const int kTimestampOffset = 160; | 
|  | // Create first packet, with 3 RED payloads. | 
|  | Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset); | 
|  | PacketList packet_list; | 
|  | packet_list.push_back(packet); | 
|  | // Create first packet, with 3 RED payloads. | 
|  | packet = CreateRedPayload(3, payload_types, kTimestampOffset); | 
|  | // Manually change timestamp and sequence number of second packet. | 
|  | packet->header.timestamp += kTimestampOffset; | 
|  | packet->header.sequenceNumber++; | 
|  | packet_list.push_back(packet); | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); | 
|  | ASSERT_EQ(6u, packet_list.size()); | 
|  | // Check first packet, A1. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber, | 
|  | kBaseTimestamp, 2, true); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | // Check second packet, A2. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber, | 
|  | kBaseTimestamp - kTimestampOffset, 1, false); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | // Check third packet, A3. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, | 
|  | kBaseTimestamp - 2 * kTimestampOffset, 0, false); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | // Check fourth packet, B1. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber + 1, | 
|  | kBaseTimestamp + kTimestampOffset, 2, true); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | // Check fifth packet, B2. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber + 1, | 
|  | kBaseTimestamp, 1, false); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | // Check sixth packet, B3. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1, | 
|  | kBaseTimestamp - kTimestampOffset, 0, false); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | } | 
|  |  | 
|  | // Creates a list with 4 packets with these payload types: | 
|  | // 0 = CNGnb | 
|  | // 1 = PCMu | 
|  | // 2 = DTMF (AVT) | 
|  | // 3 = iLBC | 
|  | // We expect the method CheckRedPayloads to discard the iLBC packet, since it | 
|  | // is a non-CNG, non-DTMF payload of another type than the first speech payload | 
|  | // found in the list (which is PCMu). | 
|  | TEST(RedPayloadSplitter, CheckRedPayloads) { | 
|  | PacketList packet_list; | 
|  | for (int i = 0; i <= 3; ++i) { | 
|  | // Create packet with payload type |i|, payload length 10 bytes, all 0. | 
|  | Packet* packet = CreatePacket(i, 10, 0); | 
|  | packet_list.push_back(packet); | 
|  | } | 
|  |  | 
|  | // Use a real DecoderDatabase object here instead of a mock, since it is | 
|  | // easier to just register the payload types and let the actual implementation | 
|  | // do its job. | 
|  | DecoderDatabase decoder_database; | 
|  | decoder_database.RegisterPayload(0, kDecoderCNGnb); | 
|  | decoder_database.RegisterPayload(1, kDecoderPCMu); | 
|  | decoder_database.RegisterPayload(2, kDecoderAVT); | 
|  | decoder_database.RegisterPayload(3, kDecoderILBC); | 
|  |  | 
|  | PayloadSplitter splitter; | 
|  | splitter.CheckRedPayloads(&packet_list, decoder_database); | 
|  |  | 
|  | ASSERT_EQ(3u, packet_list.size());  // Should have dropped the last packet. | 
|  | // Verify packets. The loop verifies that payload types 0, 1, and 2 are in the | 
|  | // list. | 
|  | for (int i = 0; i <= 2; ++i) { | 
|  | Packet* packet = packet_list.front(); | 
|  | VerifyPacket(packet, 10, i, kSequenceNumber, kBaseTimestamp, 0, true); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | } | 
|  | EXPECT_TRUE(packet_list.empty()); | 
|  | } | 
|  |  | 
|  | // Packet A is split into A1, A2 and A3. But the length parameter is off, so | 
|  | // the last payloads should be discarded. | 
|  | TEST(RedPayloadSplitter, WrongPayloadLength) { | 
|  | uint8_t payload_types[] = {0, 0, 0}; | 
|  | const int kTimestampOffset = 160; | 
|  | Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset); | 
|  | // Manually tamper with the payload length of the packet. | 
|  | // This is one byte too short for the second payload (out of three). | 
|  | // We expect only the first payload to be returned. | 
|  | packet->payload_length -= kPayloadLength + 1; | 
|  | PacketList packet_list; | 
|  | packet_list.push_back(packet); | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(PayloadSplitter::kRedLengthMismatch, | 
|  | splitter.SplitRed(&packet_list)); | 
|  | ASSERT_EQ(1u, packet_list.size()); | 
|  | // Check first packet. | 
|  | packet = packet_list.front(); | 
|  | VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, | 
|  | kBaseTimestamp - 2 * kTimestampOffset, 0, false); | 
|  | delete [] packet->payload; | 
|  | delete packet; | 
|  | packet_list.pop_front(); | 
|  | } | 
|  |  | 
|  | // Test that iSAC, iSAC-swb, RED, DTMF, CNG, and "Arbitrary" payloads do not | 
|  | // get split. | 
|  | TEST(AudioPayloadSplitter, NonSplittable) { | 
|  | // Set up packets with different RTP payload types. The actual values do not | 
|  | // matter, since we are mocking the decoder database anyway. | 
|  | PacketList packet_list; | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | // Let the payload type be |i|, and the payload value 10 * |i|. | 
|  | packet_list.push_back(CreatePacket(i, kPayloadLength, 10 * i)); | 
|  | } | 
|  |  | 
|  | MockDecoderDatabase decoder_database; | 
|  | // Tell the mock decoder database to return DecoderInfo structs with different | 
|  | // codec types. | 
|  | // Use scoped pointers to avoid having to delete them later. | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info0( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderISAC, 16000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(0)) | 
|  | .WillRepeatedly(Return(info0.get())); | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info1( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderISACswb, 32000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(1)) | 
|  | .WillRepeatedly(Return(info1.get())); | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info2( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderRED, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(2)) | 
|  | .WillRepeatedly(Return(info2.get())); | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info3( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderAVT, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(3)) | 
|  | .WillRepeatedly(Return(info3.get())); | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info4( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderCNGnb, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(4)) | 
|  | .WillRepeatedly(Return(info4.get())); | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info5( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderArbitrary, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(5)) | 
|  | .WillRepeatedly(Return(info5.get())); | 
|  |  | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); | 
|  | EXPECT_EQ(6u, packet_list.size()); | 
|  |  | 
|  | // Check that all payloads are intact. | 
|  | uint8_t payload_type = 0; | 
|  | PacketList::iterator it = packet_list.begin(); | 
|  | while (it != packet_list.end()) { | 
|  | VerifyPacket((*it), kPayloadLength, payload_type, kSequenceNumber, | 
|  | kBaseTimestamp, 10 * payload_type); | 
|  | ++payload_type; | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | it = packet_list.erase(it); | 
|  | } | 
|  |  | 
|  | // The destructor is called when decoder_database goes out of scope. | 
|  | EXPECT_CALL(decoder_database, Die()); | 
|  | } | 
|  |  | 
|  | // Test unknown payload type. | 
|  | TEST(AudioPayloadSplitter, UnknownPayloadType) { | 
|  | PacketList packet_list; | 
|  | static const uint8_t kPayloadType = 17;  // Just a random number. | 
|  | int kPayloadLengthBytes = 4711;  // Random number. | 
|  | packet_list.push_back(CreatePacket(kPayloadType, kPayloadLengthBytes, 0)); | 
|  |  | 
|  | MockDecoderDatabase decoder_database; | 
|  | // Tell the mock decoder database to return NULL when asked for decoder info. | 
|  | // This signals that the decoder database does not recognize the payload type. | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) | 
|  | .WillRepeatedly(ReturnNull()); | 
|  |  | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(PayloadSplitter::kUnknownPayloadType, | 
|  | splitter.SplitAudio(&packet_list, decoder_database)); | 
|  | EXPECT_EQ(1u, packet_list.size()); | 
|  |  | 
|  |  | 
|  | // Delete the packets and payloads to avoid having the test leak memory. | 
|  | PacketList::iterator it = packet_list.begin(); | 
|  | while (it != packet_list.end()) { | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | it = packet_list.erase(it); | 
|  | } | 
|  |  | 
|  | // The destructor is called when decoder_database goes out of scope. | 
|  | EXPECT_CALL(decoder_database, Die()); | 
|  | } | 
|  |  | 
|  | class SplitBySamplesTest : public ::testing::TestWithParam<NetEqDecoder> { | 
|  | protected: | 
|  | virtual void SetUp() { | 
|  | decoder_type_ = GetParam(); | 
|  | switch (decoder_type_) { | 
|  | case kDecoderPCMu: | 
|  | case kDecoderPCMa: | 
|  | bytes_per_ms_ = 8; | 
|  | samples_per_ms_ = 8; | 
|  | break; | 
|  | case kDecoderPCMu_2ch: | 
|  | case kDecoderPCMa_2ch: | 
|  | bytes_per_ms_ = 2 * 8; | 
|  | samples_per_ms_ = 8; | 
|  | break; | 
|  | case kDecoderG722: | 
|  | bytes_per_ms_ = 8; | 
|  | samples_per_ms_ = 16; | 
|  | break; | 
|  | case kDecoderPCM16B: | 
|  | bytes_per_ms_ = 16; | 
|  | samples_per_ms_ = 8; | 
|  | break; | 
|  | case kDecoderPCM16Bwb: | 
|  | bytes_per_ms_ = 32; | 
|  | samples_per_ms_ = 16; | 
|  | break; | 
|  | case kDecoderPCM16Bswb32kHz: | 
|  | bytes_per_ms_ = 64; | 
|  | samples_per_ms_ = 32; | 
|  | break; | 
|  | case kDecoderPCM16Bswb48kHz: | 
|  | bytes_per_ms_ = 96; | 
|  | samples_per_ms_ = 48; | 
|  | break; | 
|  | case kDecoderPCM16B_2ch: | 
|  | bytes_per_ms_ = 2 * 16; | 
|  | samples_per_ms_ = 8; | 
|  | break; | 
|  | case kDecoderPCM16Bwb_2ch: | 
|  | bytes_per_ms_ = 2 * 32; | 
|  | samples_per_ms_ = 16; | 
|  | break; | 
|  | case kDecoderPCM16Bswb32kHz_2ch: | 
|  | bytes_per_ms_ = 2 * 64; | 
|  | samples_per_ms_ = 32; | 
|  | break; | 
|  | case kDecoderPCM16Bswb48kHz_2ch: | 
|  | bytes_per_ms_ = 2 * 96; | 
|  | samples_per_ms_ = 48; | 
|  | break; | 
|  | case kDecoderPCM16B_5ch: | 
|  | bytes_per_ms_ = 5 * 16; | 
|  | samples_per_ms_ = 8; | 
|  | break; | 
|  | default: | 
|  | assert(false); | 
|  | break; | 
|  | } | 
|  | } | 
|  | int bytes_per_ms_; | 
|  | int samples_per_ms_; | 
|  | NetEqDecoder decoder_type_; | 
|  | }; | 
|  |  | 
|  | // Test splitting sample-based payloads. | 
|  | TEST_P(SplitBySamplesTest, PayloadSizes) { | 
|  | PacketList packet_list; | 
|  | static const uint8_t kPayloadType = 17;  // Just a random number. | 
|  | for (int payload_size_ms = 10; payload_size_ms <= 60; payload_size_ms += 10) { | 
|  | // The payload values are set to be the same as the payload_size, so that | 
|  | // one can distinguish from which packet the split payloads come from. | 
|  | int payload_size_bytes = payload_size_ms * bytes_per_ms_; | 
|  | packet_list.push_back(CreatePacket(kPayloadType, payload_size_bytes, | 
|  | payload_size_ms)); | 
|  | } | 
|  |  | 
|  | MockDecoderDatabase decoder_database; | 
|  | // Tell the mock decoder database to return DecoderInfo structs with different | 
|  | // codec types. | 
|  | // Use scoped pointers to avoid having to delete them later. | 
|  | // (Sample rate is set to 8000 Hz, but does not matter.) | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info( | 
|  | new DecoderDatabase::DecoderInfo(decoder_type_, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) | 
|  | .WillRepeatedly(Return(info.get())); | 
|  |  | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); | 
|  | // The payloads are expected to be split as follows: | 
|  | // 10 ms -> 10 ms | 
|  | // 20 ms -> 20 ms | 
|  | // 30 ms -> 30 ms | 
|  | // 40 ms -> 20 + 20 ms | 
|  | // 50 ms -> 25 + 25 ms | 
|  | // 60 ms -> 30 + 30 ms | 
|  | int expected_size_ms[] = {10, 20, 30, 20, 20, 25, 25, 30, 30}; | 
|  | int expected_payload_value[] = {10, 20, 30, 40, 40, 50, 50, 60, 60}; | 
|  | int expected_timestamp_offset_ms[] = {0, 0, 0, 0, 20, 0, 25, 0, 30}; | 
|  | size_t expected_num_packets = | 
|  | sizeof(expected_size_ms) / sizeof(expected_size_ms[0]); | 
|  | EXPECT_EQ(expected_num_packets, packet_list.size()); | 
|  |  | 
|  | PacketList::iterator it = packet_list.begin(); | 
|  | int i = 0; | 
|  | while (it != packet_list.end()) { | 
|  | int length_bytes = expected_size_ms[i] * bytes_per_ms_; | 
|  | uint32_t expected_timestamp = kBaseTimestamp + | 
|  | expected_timestamp_offset_ms[i] * samples_per_ms_; | 
|  | VerifyPacket((*it), length_bytes, kPayloadType, kSequenceNumber, | 
|  | expected_timestamp, expected_payload_value[i]); | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | it = packet_list.erase(it); | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | // The destructor is called when decoder_database goes out of scope. | 
|  | EXPECT_CALL(decoder_database, Die()); | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | PayloadSplitter, SplitBySamplesTest, | 
|  | ::testing::Values(kDecoderPCMu, kDecoderPCMa, kDecoderPCMu_2ch, | 
|  | kDecoderPCMa_2ch, kDecoderG722, kDecoderPCM16B, | 
|  | kDecoderPCM16Bwb, kDecoderPCM16Bswb32kHz, | 
|  | kDecoderPCM16Bswb48kHz, kDecoderPCM16B_2ch, | 
|  | kDecoderPCM16Bwb_2ch, kDecoderPCM16Bswb32kHz_2ch, | 
|  | kDecoderPCM16Bswb48kHz_2ch, kDecoderPCM16B_5ch)); | 
|  |  | 
|  |  | 
|  | class SplitIlbcTest : public ::testing::TestWithParam<std::pair<int, int> > { | 
|  | protected: | 
|  | virtual void SetUp() { | 
|  | const std::pair<int, int> parameters = GetParam(); | 
|  | num_frames_ = parameters.first; | 
|  | frame_length_ms_ = parameters.second; | 
|  | frame_length_bytes_ = (frame_length_ms_ == 20) ? 38 : 50; | 
|  | } | 
|  | size_t num_frames_; | 
|  | int frame_length_ms_; | 
|  | int frame_length_bytes_; | 
|  | }; | 
|  |  | 
|  | // Test splitting sample-based payloads. | 
|  | TEST_P(SplitIlbcTest, NumFrames) { | 
|  | PacketList packet_list; | 
|  | static const uint8_t kPayloadType = 17;  // Just a random number. | 
|  | const int frame_length_samples = frame_length_ms_ * 8; | 
|  | int payload_length_bytes = frame_length_bytes_ * num_frames_; | 
|  | Packet* packet = CreatePacket(kPayloadType, payload_length_bytes, 0); | 
|  | // Fill payload with increasing integers {0, 1, 2, ...}. | 
|  | for (int i = 0; i < packet->payload_length; ++i) { | 
|  | packet->payload[i] = static_cast<uint8_t>(i); | 
|  | } | 
|  | packet_list.push_back(packet); | 
|  |  | 
|  | MockDecoderDatabase decoder_database; | 
|  | // Tell the mock decoder database to return DecoderInfo structs with different | 
|  | // codec types. | 
|  | // Use scoped pointers to avoid having to delete them later. | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) | 
|  | .WillRepeatedly(Return(info.get())); | 
|  |  | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); | 
|  | EXPECT_EQ(num_frames_, packet_list.size()); | 
|  |  | 
|  | PacketList::iterator it = packet_list.begin(); | 
|  | int frame_num = 0; | 
|  | uint8_t payload_value = 0; | 
|  | while (it != packet_list.end()) { | 
|  | Packet* packet = (*it); | 
|  | EXPECT_EQ(kBaseTimestamp + frame_length_samples * frame_num, | 
|  | packet->header.timestamp); | 
|  | EXPECT_EQ(frame_length_bytes_, packet->payload_length); | 
|  | EXPECT_EQ(kPayloadType, packet->header.payloadType); | 
|  | EXPECT_EQ(kSequenceNumber, packet->header.sequenceNumber); | 
|  | EXPECT_EQ(true, packet->primary); | 
|  | ASSERT_FALSE(packet->payload == NULL); | 
|  | for (int i = 0; i < packet->payload_length; ++i) { | 
|  | EXPECT_EQ(payload_value, packet->payload[i]); | 
|  | ++payload_value; | 
|  | } | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | it = packet_list.erase(it); | 
|  | ++frame_num; | 
|  | } | 
|  |  | 
|  | // The destructor is called when decoder_database goes out of scope. | 
|  | EXPECT_CALL(decoder_database, Die()); | 
|  | } | 
|  |  | 
|  | // Test 1 through 5 frames of 20 and 30 ms size. | 
|  | // Also test the maximum number of frames in one packet for 20 and 30 ms. | 
|  | // The maximum is defined by the largest payload length that can be uniquely | 
|  | // resolved to a frame size of either 38 bytes (20 ms) or 50 bytes (30 ms). | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | PayloadSplitter, SplitIlbcTest, | 
|  | ::testing::Values(std::pair<int, int>(1, 20),  // 1 frame, 20 ms. | 
|  | std::pair<int, int>(2, 20),  // 2 frames, 20 ms. | 
|  | std::pair<int, int>(3, 20),  // And so on. | 
|  | std::pair<int, int>(4, 20), | 
|  | std::pair<int, int>(5, 20), | 
|  | std::pair<int, int>(24, 20), | 
|  | std::pair<int, int>(1, 30), | 
|  | std::pair<int, int>(2, 30), | 
|  | std::pair<int, int>(3, 30), | 
|  | std::pair<int, int>(4, 30), | 
|  | std::pair<int, int>(5, 30), | 
|  | std::pair<int, int>(18, 30))); | 
|  |  | 
|  | // Test too large payload size. | 
|  | TEST(IlbcPayloadSplitter, TooLargePayload) { | 
|  | PacketList packet_list; | 
|  | static const uint8_t kPayloadType = 17;  // Just a random number. | 
|  | int kPayloadLengthBytes = 950; | 
|  | Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0); | 
|  | packet_list.push_back(packet); | 
|  |  | 
|  | MockDecoderDatabase decoder_database; | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) | 
|  | .WillRepeatedly(Return(info.get())); | 
|  |  | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(PayloadSplitter::kTooLargePayload, | 
|  | splitter.SplitAudio(&packet_list, decoder_database)); | 
|  | EXPECT_EQ(1u, packet_list.size()); | 
|  |  | 
|  | // Delete the packets and payloads to avoid having the test leak memory. | 
|  | PacketList::iterator it = packet_list.begin(); | 
|  | while (it != packet_list.end()) { | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | it = packet_list.erase(it); | 
|  | } | 
|  |  | 
|  | // The destructor is called when decoder_database goes out of scope. | 
|  | EXPECT_CALL(decoder_database, Die()); | 
|  | } | 
|  |  | 
|  | // Payload not an integer number of frames. | 
|  | TEST(IlbcPayloadSplitter, UnevenPayload) { | 
|  | PacketList packet_list; | 
|  | static const uint8_t kPayloadType = 17;  // Just a random number. | 
|  | int kPayloadLengthBytes = 39;  // Not an even number of frames. | 
|  | Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0); | 
|  | packet_list.push_back(packet); | 
|  |  | 
|  | MockDecoderDatabase decoder_database; | 
|  | scoped_ptr<DecoderDatabase::DecoderInfo> info( | 
|  | new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false)); | 
|  | EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) | 
|  | .WillRepeatedly(Return(info.get())); | 
|  |  | 
|  | PayloadSplitter splitter; | 
|  | EXPECT_EQ(PayloadSplitter::kFrameSplitError, | 
|  | splitter.SplitAudio(&packet_list, decoder_database)); | 
|  | EXPECT_EQ(1u, packet_list.size()); | 
|  |  | 
|  | // Delete the packets and payloads to avoid having the test leak memory. | 
|  | PacketList::iterator it = packet_list.begin(); | 
|  | while (it != packet_list.end()) { | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | it = packet_list.erase(it); | 
|  | } | 
|  |  | 
|  | // The destructor is called when decoder_database goes out of scope. | 
|  | EXPECT_CALL(decoder_database, Die()); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |