blob: 332857d371c36d693930f33ca65aa3d644994e01 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_TESTUTILS_H__
#define WEBRTC_BASE_TESTUTILS_H__
// Utilities for testing rtc infrastructure in unittests
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
#include <X11/Xlib.h>
#include <X11/extensions/Xrandr.h>
// X defines a few macros that stomp on types that gunit.h uses.
#undef None
#undef Bool
#endif
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "webrtc/base/arraysize.h"
#include "webrtc/base/asyncsocket.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/common.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/nethelpers.h"
#include "webrtc/base/pathutils.h"
#include "webrtc/base/stream.h"
#include "webrtc/base/stringencode.h"
#include "webrtc/base/stringutils.h"
#include "webrtc/base/thread.h"
namespace testing {
using namespace rtc;
///////////////////////////////////////////////////////////////////////////////
// StreamSink - Monitor asynchronously signalled events from StreamInterface
// or AsyncSocket (which should probably be a StreamInterface.
///////////////////////////////////////////////////////////////////////////////
// Note: Any event that is an error is treaded as SSE_ERROR instead of that
// event.
enum StreamSinkEvent {
SSE_OPEN = SE_OPEN,
SSE_READ = SE_READ,
SSE_WRITE = SE_WRITE,
SSE_CLOSE = SE_CLOSE,
SSE_ERROR = 16
};
class StreamSink : public sigslot::has_slots<> {
public:
void Monitor(StreamInterface* stream) {
stream->SignalEvent.connect(this, &StreamSink::OnEvent);
events_.erase(stream);
}
void Unmonitor(StreamInterface* stream) {
stream->SignalEvent.disconnect(this);
// In case you forgot to unmonitor a previous object with this address
events_.erase(stream);
}
bool Check(StreamInterface* stream, StreamSinkEvent event, bool reset = true) {
return DoCheck(stream, event, reset);
}
int Events(StreamInterface* stream, bool reset = true) {
return DoEvents(stream, reset);
}
void Monitor(AsyncSocket* socket) {
socket->SignalConnectEvent.connect(this, &StreamSink::OnConnectEvent);
socket->SignalReadEvent.connect(this, &StreamSink::OnReadEvent);
socket->SignalWriteEvent.connect(this, &StreamSink::OnWriteEvent);
socket->SignalCloseEvent.connect(this, &StreamSink::OnCloseEvent);
// In case you forgot to unmonitor a previous object with this address
events_.erase(socket);
}
void Unmonitor(AsyncSocket* socket) {
socket->SignalConnectEvent.disconnect(this);
socket->SignalReadEvent.disconnect(this);
socket->SignalWriteEvent.disconnect(this);
socket->SignalCloseEvent.disconnect(this);
events_.erase(socket);
}
bool Check(AsyncSocket* socket, StreamSinkEvent event, bool reset = true) {
return DoCheck(socket, event, reset);
}
int Events(AsyncSocket* socket, bool reset = true) {
return DoEvents(socket, reset);
}
private:
typedef std::map<void*,int> EventMap;
void OnEvent(StreamInterface* stream, int events, int error) {
if (error) {
events = SSE_ERROR;
}
AddEvents(stream, events);
}
void OnConnectEvent(AsyncSocket* socket) {
AddEvents(socket, SSE_OPEN);
}
void OnReadEvent(AsyncSocket* socket) {
AddEvents(socket, SSE_READ);
}
void OnWriteEvent(AsyncSocket* socket) {
AddEvents(socket, SSE_WRITE);
}
void OnCloseEvent(AsyncSocket* socket, int error) {
AddEvents(socket, (0 == error) ? SSE_CLOSE : SSE_ERROR);
}
void AddEvents(void* obj, int events) {
EventMap::iterator it = events_.find(obj);
if (events_.end() == it) {
events_.insert(EventMap::value_type(obj, events));
} else {
it->second |= events;
}
}
bool DoCheck(void* obj, StreamSinkEvent event, bool reset) {
EventMap::iterator it = events_.find(obj);
if ((events_.end() == it) || (0 == (it->second & event))) {
return false;
}
if (reset) {
it->second &= ~event;
}
return true;
}
int DoEvents(void* obj, bool reset) {
EventMap::iterator it = events_.find(obj);
if (events_.end() == it)
return 0;
int events = it->second;
if (reset) {
it->second = 0;
}
return events;
}
EventMap events_;
};
///////////////////////////////////////////////////////////////////////////////
// StreamSource - Implements stream interface and simulates asynchronous
// events on the stream, without a network. Also buffers written data.
///////////////////////////////////////////////////////////////////////////////
class StreamSource : public StreamInterface {
public:
StreamSource() {
Clear();
}
void Clear() {
readable_data_.clear();
written_data_.clear();
state_ = SS_CLOSED;
read_block_ = 0;
write_block_ = SIZE_UNKNOWN;
}
void QueueString(const char* data) {
QueueData(data, strlen(data));
}
void QueueStringF(const char* format, ...) {
va_list args;
va_start(args, format);
char buffer[1024];
size_t len = vsprintfn(buffer, sizeof(buffer), format, args);
RTC_CHECK(len < sizeof(buffer) - 1);
va_end(args);
QueueData(buffer, len);
}
void QueueData(const char* data, size_t len) {
readable_data_.insert(readable_data_.end(), data, data + len);
if ((SS_OPEN == state_) && (readable_data_.size() == len)) {
SignalEvent(this, SE_READ, 0);
}
}
std::string ReadData() {
std::string data;
// avoid accessing written_data_[0] if it is undefined
if (written_data_.size() > 0) {
data.insert(0, &written_data_[0], written_data_.size());
}
written_data_.clear();
return data;
}
void SetState(StreamState state) {
int events = 0;
if ((SS_OPENING == state_) && (SS_OPEN == state)) {
events |= SE_OPEN;
if (!readable_data_.empty()) {
events |= SE_READ;
}
} else if ((SS_CLOSED != state_) && (SS_CLOSED == state)) {
events |= SE_CLOSE;
}
state_ = state;
if (events) {
SignalEvent(this, events, 0);
}
}
// Will cause Read to block when there are pos bytes in the read queue.
void SetReadBlock(size_t pos) { read_block_ = pos; }
// Will cause Write to block when there are pos bytes in the write queue.
void SetWriteBlock(size_t pos) { write_block_ = pos; }
virtual StreamState GetState() const { return state_; }
virtual StreamResult Read(void* buffer, size_t buffer_len,
size_t* read, int* error) {
if (SS_CLOSED == state_) {
if (error) *error = -1;
return SR_ERROR;
}
if ((SS_OPENING == state_) || (readable_data_.size() <= read_block_)) {
return SR_BLOCK;
}
size_t count = std::min(buffer_len, readable_data_.size() - read_block_);
memcpy(buffer, &readable_data_[0], count);
size_t new_size = readable_data_.size() - count;
// Avoid undefined access beyond the last element of the vector.
// This only happens when new_size is 0.
if (count < readable_data_.size()) {
memmove(&readable_data_[0], &readable_data_[count], new_size);
}
readable_data_.resize(new_size);
if (read) *read = count;
return SR_SUCCESS;
}
virtual StreamResult Write(const void* data, size_t data_len,
size_t* written, int* error) {
if (SS_CLOSED == state_) {
if (error) *error = -1;
return SR_ERROR;
}
if (SS_OPENING == state_) {
return SR_BLOCK;
}
if (SIZE_UNKNOWN != write_block_) {
if (written_data_.size() >= write_block_) {
return SR_BLOCK;
}
if (data_len > (write_block_ - written_data_.size())) {
data_len = write_block_ - written_data_.size();
}
}
if (written) *written = data_len;
const char* cdata = static_cast<const char*>(data);
written_data_.insert(written_data_.end(), cdata, cdata + data_len);
return SR_SUCCESS;
}
virtual void Close() { state_ = SS_CLOSED; }
private:
typedef std::vector<char> Buffer;
Buffer readable_data_, written_data_;
StreamState state_;
size_t read_block_, write_block_;
};
///////////////////////////////////////////////////////////////////////////////
// SocketTestClient
// Creates a simulated client for testing. Works on real and virtual networks.
///////////////////////////////////////////////////////////////////////////////
class SocketTestClient : public sigslot::has_slots<> {
public:
SocketTestClient() {
Init(NULL, AF_INET);
}
SocketTestClient(AsyncSocket* socket) {
Init(socket, socket->GetLocalAddress().family());
}
SocketTestClient(const SocketAddress& address) {
Init(NULL, address.family());
socket_->Connect(address);
}
AsyncSocket* socket() { return socket_.get(); }
void QueueString(const char* data) {
QueueData(data, strlen(data));
}
void QueueStringF(const char* format, ...) {
va_list args;
va_start(args, format);
char buffer[1024];
size_t len = vsprintfn(buffer, sizeof(buffer), format, args);
RTC_CHECK(len < sizeof(buffer) - 1);
va_end(args);
QueueData(buffer, len);
}
void QueueData(const char* data, size_t len) {
send_buffer_.insert(send_buffer_.end(), data, data + len);
if (Socket::CS_CONNECTED == socket_->GetState()) {
Flush();
}
}
std::string ReadData() {
std::string data(&recv_buffer_[0], recv_buffer_.size());
recv_buffer_.clear();
return data;
}
bool IsConnected() const {
return (Socket::CS_CONNECTED == socket_->GetState());
}
bool IsClosed() const {
return (Socket::CS_CLOSED == socket_->GetState());
}
private:
typedef std::vector<char> Buffer;
void Init(AsyncSocket* socket, int family) {
if (!socket) {
socket = Thread::Current()->socketserver()
->CreateAsyncSocket(family, SOCK_STREAM);
}
socket_.reset(socket);
socket_->SignalConnectEvent.connect(this,
&SocketTestClient::OnConnectEvent);
socket_->SignalReadEvent.connect(this, &SocketTestClient::OnReadEvent);
socket_->SignalWriteEvent.connect(this, &SocketTestClient::OnWriteEvent);
socket_->SignalCloseEvent.connect(this, &SocketTestClient::OnCloseEvent);
}
void Flush() {
size_t sent = 0;
while (sent < send_buffer_.size()) {
int result = socket_->Send(&send_buffer_[sent],
send_buffer_.size() - sent);
if (result > 0) {
sent += result;
} else {
break;
}
}
size_t new_size = send_buffer_.size() - sent;
memmove(&send_buffer_[0], &send_buffer_[sent], new_size);
send_buffer_.resize(new_size);
}
void OnConnectEvent(AsyncSocket* socket) {
if (!send_buffer_.empty()) {
Flush();
}
}
void OnReadEvent(AsyncSocket* socket) {
char data[64 * 1024];
int result = socket_->Recv(data, arraysize(data), nullptr);
if (result > 0) {
recv_buffer_.insert(recv_buffer_.end(), data, data + result);
}
}
void OnWriteEvent(AsyncSocket* socket) {
if (!send_buffer_.empty()) {
Flush();
}
}
void OnCloseEvent(AsyncSocket* socket, int error) {
}
std::unique_ptr<AsyncSocket> socket_;
Buffer send_buffer_, recv_buffer_;
};
///////////////////////////////////////////////////////////////////////////////
// SocketTestServer
// Creates a simulated server for testing. Works on real and virtual networks.
///////////////////////////////////////////////////////////////////////////////
class SocketTestServer : public sigslot::has_slots<> {
public:
SocketTestServer(const SocketAddress& address)
: socket_(Thread::Current()->socketserver()
->CreateAsyncSocket(address.family(), SOCK_STREAM))
{
socket_->SignalReadEvent.connect(this, &SocketTestServer::OnReadEvent);
socket_->Bind(address);
socket_->Listen(5);
}
virtual ~SocketTestServer() {
clear();
}
size_t size() const { return clients_.size(); }
SocketTestClient* client(size_t index) const { return clients_[index]; }
SocketTestClient* operator[](size_t index) const { return client(index); }
void clear() {
for (size_t i=0; i<clients_.size(); ++i) {
delete clients_[i];
}
clients_.clear();
}
private:
void OnReadEvent(AsyncSocket* socket) {
AsyncSocket* accepted =
static_cast<AsyncSocket*>(socket_->Accept(NULL));
if (!accepted)
return;
clients_.push_back(new SocketTestClient(accepted));
}
std::unique_ptr<AsyncSocket> socket_;
std::vector<SocketTestClient*> clients_;
};
///////////////////////////////////////////////////////////////////////////////
// Unittest predicates which are similar to STREQ, but for raw memory
///////////////////////////////////////////////////////////////////////////////
inline AssertionResult CmpHelperMemEq(const char* expected_expression,
const char* expected_length_expression,
const char* actual_expression,
const char* actual_length_expression,
const void* expected,
size_t expected_length,
const void* actual,
size_t actual_length)
{
if ((expected_length == actual_length)
&& (0 == memcmp(expected, actual, expected_length))) {
return AssertionSuccess();
}
Message msg;
msg << "Value of: " << actual_expression
<< " [" << actual_length_expression << "]";
if (true) { //!actual_value.Equals(actual_expression)) {
size_t buffer_size = actual_length * 2 + 1;
char* buffer = STACK_ARRAY(char, buffer_size);
hex_encode(buffer, buffer_size,
reinterpret_cast<const char*>(actual), actual_length);
msg << "\n Actual: " << buffer << " [" << actual_length << "]";
}
msg << "\nExpected: " << expected_expression
<< " [" << expected_length_expression << "]";
if (true) { //!expected_value.Equals(expected_expression)) {
size_t buffer_size = expected_length * 2 + 1;
char* buffer = STACK_ARRAY(char, buffer_size);
hex_encode(buffer, buffer_size,
reinterpret_cast<const char*>(expected), expected_length);
msg << "\nWhich is: " << buffer << " [" << expected_length << "]";
}
return AssertionFailure(msg);
}
#define EXPECT_MEMEQ(expected, expected_length, actual, actual_length) \
EXPECT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \
actual, actual_length)
#define ASSERT_MEMEQ(expected, expected_length, actual, actual_length) \
ASSERT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \
actual, actual_length)
///////////////////////////////////////////////////////////////////////////////
// Helpers for initializing constant memory with integers in a particular byte
// order
///////////////////////////////////////////////////////////////////////////////
#define BYTE_CAST(x) static_cast<uint8_t>((x)&0xFF)
// Declare a N-bit integer as a little-endian sequence of bytes
#define LE16(x) BYTE_CAST(((uint16_t)x) >> 0), BYTE_CAST(((uint16_t)x) >> 8)
#define LE32(x) \
BYTE_CAST(((uint32_t)x) >> 0), BYTE_CAST(((uint32_t)x) >> 8), \
BYTE_CAST(((uint32_t)x) >> 16), BYTE_CAST(((uint32_t)x) >> 24)
#define LE64(x) \
BYTE_CAST(((uint64_t)x) >> 0), BYTE_CAST(((uint64_t)x) >> 8), \
BYTE_CAST(((uint64_t)x) >> 16), BYTE_CAST(((uint64_t)x) >> 24), \
BYTE_CAST(((uint64_t)x) >> 32), BYTE_CAST(((uint64_t)x) >> 40), \
BYTE_CAST(((uint64_t)x) >> 48), BYTE_CAST(((uint64_t)x) >> 56)
// Declare a N-bit integer as a big-endian (Internet) sequence of bytes
#define BE16(x) BYTE_CAST(((uint16_t)x) >> 8), BYTE_CAST(((uint16_t)x) >> 0)
#define BE32(x) \
BYTE_CAST(((uint32_t)x) >> 24), BYTE_CAST(((uint32_t)x) >> 16), \
BYTE_CAST(((uint32_t)x) >> 8), BYTE_CAST(((uint32_t)x) >> 0)
#define BE64(x) \
BYTE_CAST(((uint64_t)x) >> 56), BYTE_CAST(((uint64_t)x) >> 48), \
BYTE_CAST(((uint64_t)x) >> 40), BYTE_CAST(((uint64_t)x) >> 32), \
BYTE_CAST(((uint64_t)x) >> 24), BYTE_CAST(((uint64_t)x) >> 16), \
BYTE_CAST(((uint64_t)x) >> 8), BYTE_CAST(((uint64_t)x) >> 0)
// Declare a N-bit integer as a this-endian (local machine) sequence of bytes
#ifndef BIG_ENDIAN
#define BIG_ENDIAN 1
#endif // BIG_ENDIAN
#if BIG_ENDIAN
#define TE16 BE16
#define TE32 BE32
#define TE64 BE64
#else // !BIG_ENDIAN
#define TE16 LE16
#define TE32 LE32
#define TE64 LE64
#endif // !BIG_ENDIAN
///////////////////////////////////////////////////////////////////////////////
// Helpers for determining if X/screencasting is available (on linux).
#define MAYBE_SKIP_SCREENCAST_TEST() \
if (!testing::IsScreencastingAvailable()) { \
LOG(LS_WARNING) << "Skipping test, since it doesn't have the requisite " \
<< "X environment for screen capture."; \
return; \
} \
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
struct XDisplay {
XDisplay() : display_(XOpenDisplay(NULL)) { }
~XDisplay() { if (display_) XCloseDisplay(display_); }
bool IsValid() const { return display_ != NULL; }
operator Display*() { return display_; }
private:
Display* display_;
};
#endif
// Returns true if screencasting is available. When false, anything that uses
// screencasting features may fail.
inline bool IsScreencastingAvailable() {
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
XDisplay display;
if (!display.IsValid()) {
LOG(LS_WARNING) << "No X Display available.";
return false;
}
int ignored_int, major_version, minor_version;
if (!XRRQueryExtension(display, &ignored_int, &ignored_int) ||
!XRRQueryVersion(display, &major_version, &minor_version) ||
major_version < 1 ||
(major_version < 2 && minor_version < 3)) {
LOG(LS_WARNING) << "XRandr version: " << major_version << "."
<< minor_version;
LOG(LS_WARNING) << "XRandr is not supported or is too old (pre 1.3).";
return false;
}
#endif
return true;
}
} // namespace testing
#endif // WEBRTC_BASE_TESTUTILS_H__