| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef WEBRTC_BASE_TESTUTILS_H__ |
| #define WEBRTC_BASE_TESTUTILS_H__ |
| |
| // Utilities for testing rtc infrastructure in unittests |
| |
| #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) |
| #include <X11/Xlib.h> |
| #include <X11/extensions/Xrandr.h> |
| |
| // X defines a few macros that stomp on types that gunit.h uses. |
| #undef None |
| #undef Bool |
| #endif |
| |
| #include <algorithm> |
| #include <map> |
| #include <memory> |
| #include <vector> |
| #include "webrtc/base/arraysize.h" |
| #include "webrtc/base/asyncsocket.h" |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/common.h" |
| #include "webrtc/base/gunit.h" |
| #include "webrtc/base/nethelpers.h" |
| #include "webrtc/base/pathutils.h" |
| #include "webrtc/base/stream.h" |
| #include "webrtc/base/stringencode.h" |
| #include "webrtc/base/stringutils.h" |
| #include "webrtc/base/thread.h" |
| |
| namespace testing { |
| |
| using namespace rtc; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // StreamSink - Monitor asynchronously signalled events from StreamInterface |
| // or AsyncSocket (which should probably be a StreamInterface. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Note: Any event that is an error is treaded as SSE_ERROR instead of that |
| // event. |
| |
| enum StreamSinkEvent { |
| SSE_OPEN = SE_OPEN, |
| SSE_READ = SE_READ, |
| SSE_WRITE = SE_WRITE, |
| SSE_CLOSE = SE_CLOSE, |
| SSE_ERROR = 16 |
| }; |
| |
| class StreamSink : public sigslot::has_slots<> { |
| public: |
| void Monitor(StreamInterface* stream) { |
| stream->SignalEvent.connect(this, &StreamSink::OnEvent); |
| events_.erase(stream); |
| } |
| void Unmonitor(StreamInterface* stream) { |
| stream->SignalEvent.disconnect(this); |
| // In case you forgot to unmonitor a previous object with this address |
| events_.erase(stream); |
| } |
| bool Check(StreamInterface* stream, StreamSinkEvent event, bool reset = true) { |
| return DoCheck(stream, event, reset); |
| } |
| int Events(StreamInterface* stream, bool reset = true) { |
| return DoEvents(stream, reset); |
| } |
| |
| void Monitor(AsyncSocket* socket) { |
| socket->SignalConnectEvent.connect(this, &StreamSink::OnConnectEvent); |
| socket->SignalReadEvent.connect(this, &StreamSink::OnReadEvent); |
| socket->SignalWriteEvent.connect(this, &StreamSink::OnWriteEvent); |
| socket->SignalCloseEvent.connect(this, &StreamSink::OnCloseEvent); |
| // In case you forgot to unmonitor a previous object with this address |
| events_.erase(socket); |
| } |
| void Unmonitor(AsyncSocket* socket) { |
| socket->SignalConnectEvent.disconnect(this); |
| socket->SignalReadEvent.disconnect(this); |
| socket->SignalWriteEvent.disconnect(this); |
| socket->SignalCloseEvent.disconnect(this); |
| events_.erase(socket); |
| } |
| bool Check(AsyncSocket* socket, StreamSinkEvent event, bool reset = true) { |
| return DoCheck(socket, event, reset); |
| } |
| int Events(AsyncSocket* socket, bool reset = true) { |
| return DoEvents(socket, reset); |
| } |
| |
| private: |
| typedef std::map<void*,int> EventMap; |
| |
| void OnEvent(StreamInterface* stream, int events, int error) { |
| if (error) { |
| events = SSE_ERROR; |
| } |
| AddEvents(stream, events); |
| } |
| void OnConnectEvent(AsyncSocket* socket) { |
| AddEvents(socket, SSE_OPEN); |
| } |
| void OnReadEvent(AsyncSocket* socket) { |
| AddEvents(socket, SSE_READ); |
| } |
| void OnWriteEvent(AsyncSocket* socket) { |
| AddEvents(socket, SSE_WRITE); |
| } |
| void OnCloseEvent(AsyncSocket* socket, int error) { |
| AddEvents(socket, (0 == error) ? SSE_CLOSE : SSE_ERROR); |
| } |
| |
| void AddEvents(void* obj, int events) { |
| EventMap::iterator it = events_.find(obj); |
| if (events_.end() == it) { |
| events_.insert(EventMap::value_type(obj, events)); |
| } else { |
| it->second |= events; |
| } |
| } |
| bool DoCheck(void* obj, StreamSinkEvent event, bool reset) { |
| EventMap::iterator it = events_.find(obj); |
| if ((events_.end() == it) || (0 == (it->second & event))) { |
| return false; |
| } |
| if (reset) { |
| it->second &= ~event; |
| } |
| return true; |
| } |
| int DoEvents(void* obj, bool reset) { |
| EventMap::iterator it = events_.find(obj); |
| if (events_.end() == it) |
| return 0; |
| int events = it->second; |
| if (reset) { |
| it->second = 0; |
| } |
| return events; |
| } |
| |
| EventMap events_; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // StreamSource - Implements stream interface and simulates asynchronous |
| // events on the stream, without a network. Also buffers written data. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class StreamSource : public StreamInterface { |
| public: |
| StreamSource() { |
| Clear(); |
| } |
| |
| void Clear() { |
| readable_data_.clear(); |
| written_data_.clear(); |
| state_ = SS_CLOSED; |
| read_block_ = 0; |
| write_block_ = SIZE_UNKNOWN; |
| } |
| void QueueString(const char* data) { |
| QueueData(data, strlen(data)); |
| } |
| void QueueStringF(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| char buffer[1024]; |
| size_t len = vsprintfn(buffer, sizeof(buffer), format, args); |
| RTC_CHECK(len < sizeof(buffer) - 1); |
| va_end(args); |
| QueueData(buffer, len); |
| } |
| void QueueData(const char* data, size_t len) { |
| readable_data_.insert(readable_data_.end(), data, data + len); |
| if ((SS_OPEN == state_) && (readable_data_.size() == len)) { |
| SignalEvent(this, SE_READ, 0); |
| } |
| } |
| std::string ReadData() { |
| std::string data; |
| // avoid accessing written_data_[0] if it is undefined |
| if (written_data_.size() > 0) { |
| data.insert(0, &written_data_[0], written_data_.size()); |
| } |
| written_data_.clear(); |
| return data; |
| } |
| void SetState(StreamState state) { |
| int events = 0; |
| if ((SS_OPENING == state_) && (SS_OPEN == state)) { |
| events |= SE_OPEN; |
| if (!readable_data_.empty()) { |
| events |= SE_READ; |
| } |
| } else if ((SS_CLOSED != state_) && (SS_CLOSED == state)) { |
| events |= SE_CLOSE; |
| } |
| state_ = state; |
| if (events) { |
| SignalEvent(this, events, 0); |
| } |
| } |
| // Will cause Read to block when there are pos bytes in the read queue. |
| void SetReadBlock(size_t pos) { read_block_ = pos; } |
| // Will cause Write to block when there are pos bytes in the write queue. |
| void SetWriteBlock(size_t pos) { write_block_ = pos; } |
| |
| virtual StreamState GetState() const { return state_; } |
| virtual StreamResult Read(void* buffer, size_t buffer_len, |
| size_t* read, int* error) { |
| if (SS_CLOSED == state_) { |
| if (error) *error = -1; |
| return SR_ERROR; |
| } |
| if ((SS_OPENING == state_) || (readable_data_.size() <= read_block_)) { |
| return SR_BLOCK; |
| } |
| size_t count = std::min(buffer_len, readable_data_.size() - read_block_); |
| memcpy(buffer, &readable_data_[0], count); |
| size_t new_size = readable_data_.size() - count; |
| // Avoid undefined access beyond the last element of the vector. |
| // This only happens when new_size is 0. |
| if (count < readable_data_.size()) { |
| memmove(&readable_data_[0], &readable_data_[count], new_size); |
| } |
| readable_data_.resize(new_size); |
| if (read) *read = count; |
| return SR_SUCCESS; |
| } |
| virtual StreamResult Write(const void* data, size_t data_len, |
| size_t* written, int* error) { |
| if (SS_CLOSED == state_) { |
| if (error) *error = -1; |
| return SR_ERROR; |
| } |
| if (SS_OPENING == state_) { |
| return SR_BLOCK; |
| } |
| if (SIZE_UNKNOWN != write_block_) { |
| if (written_data_.size() >= write_block_) { |
| return SR_BLOCK; |
| } |
| if (data_len > (write_block_ - written_data_.size())) { |
| data_len = write_block_ - written_data_.size(); |
| } |
| } |
| if (written) *written = data_len; |
| const char* cdata = static_cast<const char*>(data); |
| written_data_.insert(written_data_.end(), cdata, cdata + data_len); |
| return SR_SUCCESS; |
| } |
| virtual void Close() { state_ = SS_CLOSED; } |
| |
| private: |
| typedef std::vector<char> Buffer; |
| Buffer readable_data_, written_data_; |
| StreamState state_; |
| size_t read_block_, write_block_; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // SocketTestClient |
| // Creates a simulated client for testing. Works on real and virtual networks. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class SocketTestClient : public sigslot::has_slots<> { |
| public: |
| SocketTestClient() { |
| Init(NULL, AF_INET); |
| } |
| SocketTestClient(AsyncSocket* socket) { |
| Init(socket, socket->GetLocalAddress().family()); |
| } |
| SocketTestClient(const SocketAddress& address) { |
| Init(NULL, address.family()); |
| socket_->Connect(address); |
| } |
| |
| AsyncSocket* socket() { return socket_.get(); } |
| |
| void QueueString(const char* data) { |
| QueueData(data, strlen(data)); |
| } |
| void QueueStringF(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| char buffer[1024]; |
| size_t len = vsprintfn(buffer, sizeof(buffer), format, args); |
| RTC_CHECK(len < sizeof(buffer) - 1); |
| va_end(args); |
| QueueData(buffer, len); |
| } |
| void QueueData(const char* data, size_t len) { |
| send_buffer_.insert(send_buffer_.end(), data, data + len); |
| if (Socket::CS_CONNECTED == socket_->GetState()) { |
| Flush(); |
| } |
| } |
| std::string ReadData() { |
| std::string data(&recv_buffer_[0], recv_buffer_.size()); |
| recv_buffer_.clear(); |
| return data; |
| } |
| |
| bool IsConnected() const { |
| return (Socket::CS_CONNECTED == socket_->GetState()); |
| } |
| bool IsClosed() const { |
| return (Socket::CS_CLOSED == socket_->GetState()); |
| } |
| |
| private: |
| typedef std::vector<char> Buffer; |
| |
| void Init(AsyncSocket* socket, int family) { |
| if (!socket) { |
| socket = Thread::Current()->socketserver() |
| ->CreateAsyncSocket(family, SOCK_STREAM); |
| } |
| socket_.reset(socket); |
| socket_->SignalConnectEvent.connect(this, |
| &SocketTestClient::OnConnectEvent); |
| socket_->SignalReadEvent.connect(this, &SocketTestClient::OnReadEvent); |
| socket_->SignalWriteEvent.connect(this, &SocketTestClient::OnWriteEvent); |
| socket_->SignalCloseEvent.connect(this, &SocketTestClient::OnCloseEvent); |
| } |
| |
| void Flush() { |
| size_t sent = 0; |
| while (sent < send_buffer_.size()) { |
| int result = socket_->Send(&send_buffer_[sent], |
| send_buffer_.size() - sent); |
| if (result > 0) { |
| sent += result; |
| } else { |
| break; |
| } |
| } |
| size_t new_size = send_buffer_.size() - sent; |
| memmove(&send_buffer_[0], &send_buffer_[sent], new_size); |
| send_buffer_.resize(new_size); |
| } |
| |
| void OnConnectEvent(AsyncSocket* socket) { |
| if (!send_buffer_.empty()) { |
| Flush(); |
| } |
| } |
| void OnReadEvent(AsyncSocket* socket) { |
| char data[64 * 1024]; |
| int result = socket_->Recv(data, arraysize(data), nullptr); |
| if (result > 0) { |
| recv_buffer_.insert(recv_buffer_.end(), data, data + result); |
| } |
| } |
| void OnWriteEvent(AsyncSocket* socket) { |
| if (!send_buffer_.empty()) { |
| Flush(); |
| } |
| } |
| void OnCloseEvent(AsyncSocket* socket, int error) { |
| } |
| |
| std::unique_ptr<AsyncSocket> socket_; |
| Buffer send_buffer_, recv_buffer_; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // SocketTestServer |
| // Creates a simulated server for testing. Works on real and virtual networks. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class SocketTestServer : public sigslot::has_slots<> { |
| public: |
| SocketTestServer(const SocketAddress& address) |
| : socket_(Thread::Current()->socketserver() |
| ->CreateAsyncSocket(address.family(), SOCK_STREAM)) |
| { |
| socket_->SignalReadEvent.connect(this, &SocketTestServer::OnReadEvent); |
| socket_->Bind(address); |
| socket_->Listen(5); |
| } |
| virtual ~SocketTestServer() { |
| clear(); |
| } |
| |
| size_t size() const { return clients_.size(); } |
| SocketTestClient* client(size_t index) const { return clients_[index]; } |
| SocketTestClient* operator[](size_t index) const { return client(index); } |
| |
| void clear() { |
| for (size_t i=0; i<clients_.size(); ++i) { |
| delete clients_[i]; |
| } |
| clients_.clear(); |
| } |
| |
| private: |
| void OnReadEvent(AsyncSocket* socket) { |
| AsyncSocket* accepted = |
| static_cast<AsyncSocket*>(socket_->Accept(NULL)); |
| if (!accepted) |
| return; |
| clients_.push_back(new SocketTestClient(accepted)); |
| } |
| |
| std::unique_ptr<AsyncSocket> socket_; |
| std::vector<SocketTestClient*> clients_; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Unittest predicates which are similar to STREQ, but for raw memory |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| inline AssertionResult CmpHelperMemEq(const char* expected_expression, |
| const char* expected_length_expression, |
| const char* actual_expression, |
| const char* actual_length_expression, |
| const void* expected, |
| size_t expected_length, |
| const void* actual, |
| size_t actual_length) |
| { |
| if ((expected_length == actual_length) |
| && (0 == memcmp(expected, actual, expected_length))) { |
| return AssertionSuccess(); |
| } |
| |
| Message msg; |
| msg << "Value of: " << actual_expression |
| << " [" << actual_length_expression << "]"; |
| if (true) { //!actual_value.Equals(actual_expression)) { |
| size_t buffer_size = actual_length * 2 + 1; |
| char* buffer = STACK_ARRAY(char, buffer_size); |
| hex_encode(buffer, buffer_size, |
| reinterpret_cast<const char*>(actual), actual_length); |
| msg << "\n Actual: " << buffer << " [" << actual_length << "]"; |
| } |
| |
| msg << "\nExpected: " << expected_expression |
| << " [" << expected_length_expression << "]"; |
| if (true) { //!expected_value.Equals(expected_expression)) { |
| size_t buffer_size = expected_length * 2 + 1; |
| char* buffer = STACK_ARRAY(char, buffer_size); |
| hex_encode(buffer, buffer_size, |
| reinterpret_cast<const char*>(expected), expected_length); |
| msg << "\nWhich is: " << buffer << " [" << expected_length << "]"; |
| } |
| |
| return AssertionFailure(msg); |
| } |
| |
| #define EXPECT_MEMEQ(expected, expected_length, actual, actual_length) \ |
| EXPECT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \ |
| actual, actual_length) |
| |
| #define ASSERT_MEMEQ(expected, expected_length, actual, actual_length) \ |
| ASSERT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \ |
| actual, actual_length) |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Helpers for initializing constant memory with integers in a particular byte |
| // order |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define BYTE_CAST(x) static_cast<uint8_t>((x)&0xFF) |
| |
| // Declare a N-bit integer as a little-endian sequence of bytes |
| #define LE16(x) BYTE_CAST(((uint16_t)x) >> 0), BYTE_CAST(((uint16_t)x) >> 8) |
| |
| #define LE32(x) \ |
| BYTE_CAST(((uint32_t)x) >> 0), BYTE_CAST(((uint32_t)x) >> 8), \ |
| BYTE_CAST(((uint32_t)x) >> 16), BYTE_CAST(((uint32_t)x) >> 24) |
| |
| #define LE64(x) \ |
| BYTE_CAST(((uint64_t)x) >> 0), BYTE_CAST(((uint64_t)x) >> 8), \ |
| BYTE_CAST(((uint64_t)x) >> 16), BYTE_CAST(((uint64_t)x) >> 24), \ |
| BYTE_CAST(((uint64_t)x) >> 32), BYTE_CAST(((uint64_t)x) >> 40), \ |
| BYTE_CAST(((uint64_t)x) >> 48), BYTE_CAST(((uint64_t)x) >> 56) |
| |
| // Declare a N-bit integer as a big-endian (Internet) sequence of bytes |
| #define BE16(x) BYTE_CAST(((uint16_t)x) >> 8), BYTE_CAST(((uint16_t)x) >> 0) |
| |
| #define BE32(x) \ |
| BYTE_CAST(((uint32_t)x) >> 24), BYTE_CAST(((uint32_t)x) >> 16), \ |
| BYTE_CAST(((uint32_t)x) >> 8), BYTE_CAST(((uint32_t)x) >> 0) |
| |
| #define BE64(x) \ |
| BYTE_CAST(((uint64_t)x) >> 56), BYTE_CAST(((uint64_t)x) >> 48), \ |
| BYTE_CAST(((uint64_t)x) >> 40), BYTE_CAST(((uint64_t)x) >> 32), \ |
| BYTE_CAST(((uint64_t)x) >> 24), BYTE_CAST(((uint64_t)x) >> 16), \ |
| BYTE_CAST(((uint64_t)x) >> 8), BYTE_CAST(((uint64_t)x) >> 0) |
| |
| // Declare a N-bit integer as a this-endian (local machine) sequence of bytes |
| #ifndef BIG_ENDIAN |
| #define BIG_ENDIAN 1 |
| #endif // BIG_ENDIAN |
| |
| #if BIG_ENDIAN |
| #define TE16 BE16 |
| #define TE32 BE32 |
| #define TE64 BE64 |
| #else // !BIG_ENDIAN |
| #define TE16 LE16 |
| #define TE32 LE32 |
| #define TE64 LE64 |
| #endif // !BIG_ENDIAN |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Helpers for determining if X/screencasting is available (on linux). |
| |
| #define MAYBE_SKIP_SCREENCAST_TEST() \ |
| if (!testing::IsScreencastingAvailable()) { \ |
| LOG(LS_WARNING) << "Skipping test, since it doesn't have the requisite " \ |
| << "X environment for screen capture."; \ |
| return; \ |
| } \ |
| |
| #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) |
| struct XDisplay { |
| XDisplay() : display_(XOpenDisplay(NULL)) { } |
| ~XDisplay() { if (display_) XCloseDisplay(display_); } |
| bool IsValid() const { return display_ != NULL; } |
| operator Display*() { return display_; } |
| private: |
| Display* display_; |
| }; |
| #endif |
| |
| // Returns true if screencasting is available. When false, anything that uses |
| // screencasting features may fail. |
| inline bool IsScreencastingAvailable() { |
| #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) |
| XDisplay display; |
| if (!display.IsValid()) { |
| LOG(LS_WARNING) << "No X Display available."; |
| return false; |
| } |
| int ignored_int, major_version, minor_version; |
| if (!XRRQueryExtension(display, &ignored_int, &ignored_int) || |
| !XRRQueryVersion(display, &major_version, &minor_version) || |
| major_version < 1 || |
| (major_version < 2 && minor_version < 3)) { |
| LOG(LS_WARNING) << "XRandr version: " << major_version << "." |
| << minor_version; |
| LOG(LS_WARNING) << "XRandr is not supported or is too old (pre 1.3)."; |
| return false; |
| } |
| #endif |
| return true; |
| } |
| } // namespace testing |
| |
| #endif // WEBRTC_BASE_TESTUTILS_H__ |