blob: 4303b6474c8b03bc1ac42147aeee622d177e8e48 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <list>
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/pacing/include/paced_sender.h"
#include "webrtc/system_wrappers/interface/clock.h"
using testing::_;
using testing::Return;
namespace webrtc {
namespace test {
static const int kTargetBitrate = 800;
static const float kPaceMultiplier = 1.5f;
class MockPacedSenderCallback : public PacedSender::Callback {
public:
MOCK_METHOD4(TimeToSendPacket,
bool(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission));
MOCK_METHOD1(TimeToSendPadding,
size_t(size_t bytes));
};
class PacedSenderPadding : public PacedSender::Callback {
public:
PacedSenderPadding() : padding_sent_(0) {}
bool TimeToSendPacket(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission) {
return true;
}
size_t TimeToSendPadding(size_t bytes) {
const size_t kPaddingPacketSize = 224;
size_t num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize;
padding_sent_ += kPaddingPacketSize * num_packets;
return kPaddingPacketSize * num_packets;
}
size_t padding_sent() { return padding_sent_; }
private:
size_t padding_sent_;
};
class PacedSenderProbing : public PacedSender::Callback {
public:
PacedSenderProbing(const std::list<int>& expected_deltas, Clock* clock)
: prev_packet_time_ms_(-1),
expected_deltas_(expected_deltas),
packets_sent_(0),
clock_(clock) {}
bool TimeToSendPacket(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission) {
++packets_sent_;
EXPECT_FALSE(expected_deltas_.empty());
if (expected_deltas_.empty())
return false;
int64_t now_ms = clock_->TimeInMilliseconds();
if (prev_packet_time_ms_ >= 0) {
EXPECT_EQ(expected_deltas_.front(), now_ms - prev_packet_time_ms_);
expected_deltas_.pop_front();
}
prev_packet_time_ms_ = now_ms;
return true;
}
size_t TimeToSendPadding(size_t bytes) {
EXPECT_TRUE(false);
return bytes;
}
int packets_sent() const { return packets_sent_; }
private:
int64_t prev_packet_time_ms_;
std::list<int> expected_deltas_;
int packets_sent_;
Clock* clock_;
};
class PacedSenderTest : public ::testing::Test {
protected:
PacedSenderTest() : clock_(123456) {
srand(0);
// Need to initialize PacedSender after we initialize clock.
send_bucket_.reset(new PacedSender(&clock_,
&callback_,
kTargetBitrate,
kPaceMultiplier * kTargetBitrate,
0));
}
void SendAndExpectPacket(PacedSender::Priority priority,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t size,
bool retransmission) {
EXPECT_FALSE(send_bucket_->SendPacket(priority, ssrc,
sequence_number, capture_time_ms, size, retransmission));
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false))
.Times(1)
.WillRepeatedly(Return(true));
}
SimulatedClock clock_;
MockPacedSenderCallback callback_;
scoped_ptr<PacedSender> send_bucket_;
};
TEST_F(PacedSenderTest, QueuePacket) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
// Due to the multiplicative factor we can send 3 packets not 2 packets.
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, queued_packet_timestamp, 250, false));
send_bucket_->Process();
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
clock_.AdvanceTimeMilliseconds(4);
EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(1);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_CALL(
callback_,
TimeToSendPacket(ssrc, sequence_number++, queued_packet_timestamp, false))
.Times(1)
.WillRepeatedly(Return(true));
send_bucket_->Process();
sequence_number++;
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
send_bucket_->Process();
}
TEST_F(PacedSenderTest, PaceQueuedPackets) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
// Due to the multiplicative factor we can send 3 packets not 2 packets.
for (int i = 0; i < 3; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
}
for (int j = 0; j < 30; ++j) {
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
}
send_bucket_->Process();
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
for (int k = 0; k < 10; ++k) {
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false))
.Times(3)
.WillRepeatedly(Return(true));
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
}
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, clock_.TimeInMilliseconds(), 250, false));
send_bucket_->Process();
}
TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
uint16_t queued_sequence_number;
// Due to the multiplicative factor we can send 3 packets not 2 packets.
for (int i = 0; i < 3; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
}
queued_sequence_number = sequence_number;
for (int j = 0; j < 30; ++j) {
// Send in duplicate packets.
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, clock_.TimeInMilliseconds(), 250, false));
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
}
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
send_bucket_->Process();
for (int k = 0; k < 10; ++k) {
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
for (int i = 0; i < 3; ++i) {
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc, queued_sequence_number++, _, false))
.Times(1)
.WillRepeatedly(Return(true));
}
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
}
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(), 250, false));
send_bucket_->Process();
}
TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number,
clock_.TimeInMilliseconds(),
250,
false);
// Expect packet on second ssrc to be queued and sent as well.
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc + 1,
sequence_number,
clock_.TimeInMilliseconds(),
250,
false);
clock_.AdvanceTimeMilliseconds(1000);
send_bucket_->Process();
}
TEST_F(PacedSenderTest, Padding) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
send_bucket_->UpdateBitrate(
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
// Due to the multiplicative factor we can send 3 packets not 2 packets.
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
250,
false);
// No padding is expected since we have sent too much already.
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
// 5 milliseconds later we have enough budget to send some padding.
EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1).
WillOnce(Return(250));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
}
TEST_F(PacedSenderTest, NoPaddingWhenDisabled) {
send_bucket_->SetStatus(false);
send_bucket_->UpdateBitrate(
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
// No padding is expected since the pacer is disabled.
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
}
TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
const int kTimeStep = 5;
const int64_t kBitrateWindow = 100;
send_bucket_->UpdateBitrate(
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
int64_t start_time = clock_.TimeInMilliseconds();
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
capture_time_ms,
250,
false);
clock_.AdvanceTimeMilliseconds(kTimeStep);
EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1).
WillOnce(Return(250));
send_bucket_->Process();
}
}
TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
const int kTimeStep = 5;
const int64_t kBitrateWindow = 10000;
PacedSenderPadding callback;
send_bucket_.reset(new PacedSender(
&clock_, &callback, kTargetBitrate, kPaceMultiplier * kTargetBitrate, 0));
send_bucket_->UpdateBitrate(
kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate);
int64_t start_time = clock_.TimeInMilliseconds();
size_t media_bytes = 0;
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
size_t media_payload = rand() % 100 + 200; // [200, 300] bytes.
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, capture_time_ms,
media_payload, false));
media_bytes += media_payload;
clock_.AdvanceTimeMilliseconds(kTimeStep);
send_bucket_->Process();
}
EXPECT_NEAR(kTargetBitrate,
static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
kBitrateWindow), 1);
}
TEST_F(PacedSenderTest, Priority) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
int64_t capture_time_ms_low_priority = 1234567;
// Due to the multiplicative factor we can send 3 packets not 2 packets.
SendAndExpectPacket(PacedSender::kLowPriority,
ssrc,
sequence_number++,
capture_time_ms,
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
capture_time_ms,
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
capture_time_ms,
250,
false);
send_bucket_->Process();
// Expect normal and low priority to be queued and high to pass through.
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority,
ssrc_low_priority, sequence_number++, capture_time_ms_low_priority, 250,
false));
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
ssrc, sequence_number++, capture_time_ms, 250, false));
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
ssrc, sequence_number++, capture_time_ms, 250, false));
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority,
ssrc, sequence_number++, capture_time_ms, 250, false));
// Expect all high and normal priority to be sent out first.
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false))
.Times(3)
.WillRepeatedly(Return(true));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
EXPECT_CALL(callback_,
TimeToSendPacket(
ssrc_low_priority, _, capture_time_ms_low_priority, false))
.Times(1)
.WillRepeatedly(Return(true));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
}
TEST_F(PacedSenderTest, Pause) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = clock_.TimeInMilliseconds();
EXPECT_EQ(0, send_bucket_->QueueInMs());
// Due to the multiplicative factor we can send 3 packets not 2 packets.
SendAndExpectPacket(PacedSender::kLowPriority,
ssrc,
sequence_number++,
capture_time_ms,
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
capture_time_ms,
250,
false);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
capture_time_ms,
250,
false);
send_bucket_->Process();
send_bucket_->Pause();
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
ssrc, sequence_number++, capture_time_ms, 250, false));
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
ssrc, sequence_number++, capture_time_ms, 250, false));
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority,
ssrc, sequence_number++, capture_time_ms, 250, false));
clock_.AdvanceTimeMilliseconds(10000);
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
// Expect everything to be queued.
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority,
ssrc_low_priority, sequence_number++, second_capture_time_ms, 250,
false));
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
send_bucket_->QueueInMs());
// Expect no packet to come out while paused.
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _)).Times(0);
for (int i = 0; i < 10; ++i) {
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
}
// Expect high prio packets to come out first followed by all packets in the
// way they were added.
EXPECT_CALL(callback_, TimeToSendPacket(_, _, capture_time_ms, false))
.Times(3)
.WillRepeatedly(Return(true));
send_bucket_->Resume();
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
EXPECT_CALL(callback_, TimeToSendPacket(_, _, second_capture_time_ms, false))
.Times(1)
.WillRepeatedly(Return(true));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0, send_bucket_->Process());
EXPECT_EQ(0, send_bucket_->QueueInMs());
}
TEST_F(PacedSenderTest, ResendPacket) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = clock_.TimeInMilliseconds();
EXPECT_EQ(0, send_bucket_->QueueInMs());
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number,
capture_time_ms,
250,
false));
clock_.AdvanceTimeMilliseconds(1);
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number + 1,
capture_time_ms + 1,
250,
false));
clock_.AdvanceTimeMilliseconds(9999);
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
send_bucket_->QueueInMs());
// Fails to send first packet so only one call.
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false))
.Times(1)
.WillOnce(Return(false));
clock_.AdvanceTimeMilliseconds(10000);
send_bucket_->Process();
// Queue remains unchanged.
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
send_bucket_->QueueInMs());
// Fails to send second packet.
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false))
.Times(1)
.WillOnce(Return(true));
EXPECT_CALL(
callback_,
TimeToSendPacket(ssrc, sequence_number + 1, capture_time_ms + 1, false))
.Times(1)
.WillOnce(Return(false));
clock_.AdvanceTimeMilliseconds(10000);
send_bucket_->Process();
// Queue is reduced by 1 packet.
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms - 1,
send_bucket_->QueueInMs());
// Send second packet and queue becomes empty.
EXPECT_CALL(
callback_,
TimeToSendPacket(ssrc, sequence_number + 1, capture_time_ms + 1, false))
.Times(1)
.WillOnce(Return(true));
clock_.AdvanceTimeMilliseconds(10000);
send_bucket_->Process();
EXPECT_EQ(0, send_bucket_->QueueInMs());
}
TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kNumPackets = 60;
const size_t kPacketSize = 1200;
const int32_t kMaxBitrate = kPaceMultiplier * 30;
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
send_bucket_->UpdateBitrate(30, kMaxBitrate, 0);
for (size_t i = 0; i < kNumPackets; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false);
}
// Queue in ms = 1000 * (bytes in queue) / (kbit per second * 1000 / 8)
int64_t queue_in_ms =
static_cast<int64_t>(kNumPackets * kPacketSize * 8 / kMaxBitrate);
EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs());
int64_t time_start = clock_.TimeInMilliseconds();
while (send_bucket_->QueueSizePackets() > 0) {
int time_until_process = send_bucket_->TimeUntilNextProcess();
if (time_until_process <= 0) {
send_bucket_->Process();
} else {
clock_.AdvanceTimeMilliseconds(time_until_process);
}
}
int64_t duration = clock_.TimeInMilliseconds() - time_start;
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
// Allow for aliasing, duration should be in [expected(n - 1), expected(n)].
EXPECT_LE(duration, queue_in_ms);
EXPECT_GE(duration,
queue_in_ms - static_cast<int64_t>(kPacketSize * 8 / kMaxBitrate));
}
TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
EXPECT_EQ(0, send_bucket_->QueueInMs());
send_bucket_->UpdateBitrate(30, kPaceMultiplier * 30, 0);
SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number,
clock_.TimeInMilliseconds(),
1200,
false);
clock_.AdvanceTimeMilliseconds(500);
EXPECT_EQ(500, send_bucket_->QueueInMs());
send_bucket_->Process();
EXPECT_EQ(0, send_bucket_->QueueInMs());
}
class ProbingPacedSender : public PacedSender {
public:
ProbingPacedSender(Clock* clock,
Callback* callback,
int bitrate_kbps,
int max_bitrate_kbps,
int min_bitrate_kbps)
: PacedSender(clock,
callback,
bitrate_kbps,
max_bitrate_kbps,
min_bitrate_kbps) {}
virtual bool ProbingExperimentIsEnabled() const OVERRIDE { return true; }
};
TEST_F(PacedSenderTest, ProbingWithInitialFrame) {
const int kNumPackets = 11;
const int kNumDeltas = kNumPackets - 1;
const size_t kPacketSize = 1200;
const int kInitialBitrateKbps = 300;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const int expected_deltas[kNumDeltas] = {
10, 10, 10, 10, 10, 5, 5, 5, 5, 5};
std::list<int> expected_deltas_list(expected_deltas,
expected_deltas + kNumPackets - 1);
PacedSenderProbing callback(expected_deltas_list, &clock_);
send_bucket_.reset(
new ProbingPacedSender(&clock_,
&callback,
kInitialBitrateKbps,
kPaceMultiplier * kInitialBitrateKbps,
0));
for (int i = 0; i < kNumPackets; ++i) {
EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority,
ssrc,
sequence_number++,
clock_.TimeInMilliseconds(),
kPacketSize,
false));
}
while (callback.packets_sent() < kNumPackets) {
int time_until_process = send_bucket_->TimeUntilNextProcess();
if (time_until_process <= 0) {
send_bucket_->Process();
} else {
clock_.AdvanceTimeMilliseconds(time_until_process);
}
}
}
TEST_F(PacedSenderTest, PriorityInversion) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
EXPECT_FALSE(send_bucket_->SendPacket(
PacedSender::kHighPriority, ssrc, sequence_number + 3,
clock_.TimeInMilliseconds() + 33, kPacketSize, true));
EXPECT_FALSE(send_bucket_->SendPacket(
PacedSender::kHighPriority, ssrc, sequence_number + 2,
clock_.TimeInMilliseconds() + 33, kPacketSize, true));
EXPECT_FALSE(send_bucket_->SendPacket(
PacedSender::kHighPriority, ssrc, sequence_number,
clock_.TimeInMilliseconds(), kPacketSize, true));
EXPECT_FALSE(send_bucket_->SendPacket(
PacedSender::kHighPriority, ssrc, sequence_number + 1,
clock_.TimeInMilliseconds(), kPacketSize, true));
// Packets from earlier frames should be sent first.
{
::testing::InSequence sequence;
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
clock_.TimeInMilliseconds(), true))
.WillOnce(Return(true));
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
clock_.TimeInMilliseconds(), true))
.WillOnce(Return(true));
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 3,
clock_.TimeInMilliseconds() + 33,
true)).WillOnce(Return(true));
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 2,
clock_.TimeInMilliseconds() + 33,
true)).WillOnce(Return(true));
while (send_bucket_->QueueSizePackets() > 0) {
int time_until_process = send_bucket_->TimeUntilNextProcess();
if (time_until_process <= 0) {
send_bucket_->Process();
} else {
clock_.AdvanceTimeMilliseconds(time_until_process);
}
}
}
}
TEST_F(PacedSenderTest, PaddingOveruse) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
// Min bitrate 0 => no padding, padding budget will stay at 0.
send_bucket_->UpdateBitrate(60, 90, 0);
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false);
send_bucket_->Process();
// Add 30kbit padding. When increasing budget, media budget will increase from
// negative (overuse) while padding budget will increase form 0.
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->UpdateBitrate(60, 90, 30);
EXPECT_FALSE(send_bucket_->SendPacket(
PacedSender::kHighPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false));
// Don't send padding if queue is non-empty, even if padding budget > 0.
EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0);
send_bucket_->Process();
}
} // namespace test
} // namespace webrtc