| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/test/fake_encoder.h" |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| #include "webrtc/modules/video_coding/codecs/interface/video_codec_interface.h" |
| #include "webrtc/system_wrappers/interface/sleep.h" |
| |
| namespace webrtc { |
| namespace test { |
| |
| FakeEncoder::FakeEncoder(Clock* clock) |
| : clock_(clock), |
| callback_(NULL), |
| target_bitrate_kbps_(0), |
| max_target_bitrate_kbps_(-1), |
| last_encode_time_ms_(0) { |
| // Generate some arbitrary not-all-zero data |
| for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) { |
| encoded_buffer_[i] = static_cast<uint8_t>(i); |
| } |
| } |
| |
| FakeEncoder::~FakeEncoder() {} |
| |
| void FakeEncoder::SetMaxBitrate(int max_kbps) { |
| assert(max_kbps >= -1); // max_kbps == -1 disables it. |
| max_target_bitrate_kbps_ = max_kbps; |
| } |
| |
| int32_t FakeEncoder::InitEncode(const VideoCodec* config, |
| int32_t number_of_cores, |
| size_t max_payload_size) { |
| config_ = *config; |
| target_bitrate_kbps_ = config_.startBitrate; |
| return 0; |
| } |
| |
| int32_t FakeEncoder::Encode( |
| const I420VideoFrame& input_image, |
| const CodecSpecificInfo* codec_specific_info, |
| const std::vector<VideoFrameType>* frame_types) { |
| assert(config_.maxFramerate > 0); |
| int64_t time_since_last_encode_ms = 1000 / config_.maxFramerate; |
| int64_t time_now_ms = clock_->TimeInMilliseconds(); |
| const bool first_encode = last_encode_time_ms_ == 0; |
| if (!first_encode) { |
| // For all frames but the first we can estimate the display time by looking |
| // at the display time of the previous frame. |
| time_since_last_encode_ms = time_now_ms - last_encode_time_ms_; |
| } |
| |
| size_t bits_available = |
| static_cast<size_t>(target_bitrate_kbps_ * time_since_last_encode_ms); |
| size_t min_bits = static_cast<size_t>( |
| config_.simulcastStream[0].minBitrate * time_since_last_encode_ms); |
| if (bits_available < min_bits) |
| bits_available = min_bits; |
| size_t max_bits = |
| static_cast<size_t>(max_target_bitrate_kbps_ * time_since_last_encode_ms); |
| if (max_bits > 0 && max_bits < bits_available) |
| bits_available = max_bits; |
| last_encode_time_ms_ = time_now_ms; |
| |
| assert(config_.numberOfSimulcastStreams > 0); |
| for (unsigned char i = 0; i < config_.numberOfSimulcastStreams; ++i) { |
| CodecSpecificInfo specifics; |
| memset(&specifics, 0, sizeof(specifics)); |
| specifics.codecType = kVideoCodecGeneric; |
| specifics.codecSpecific.generic.simulcast_idx = i; |
| size_t min_stream_bits = static_cast<size_t>( |
| config_.simulcastStream[i].minBitrate * time_since_last_encode_ms); |
| size_t max_stream_bits = static_cast<size_t>( |
| config_.simulcastStream[i].maxBitrate * time_since_last_encode_ms); |
| size_t stream_bits = (bits_available > max_stream_bits) ? max_stream_bits : |
| bits_available; |
| size_t stream_bytes = (stream_bits + 7) / 8; |
| if (first_encode) { |
| // The first frame is a key frame and should be larger. |
| // TODO(holmer): The FakeEncoder should store the bits_available between |
| // encodes so that it can compensate for oversized frames. |
| stream_bytes *= 10; |
| } |
| if (stream_bytes > sizeof(encoded_buffer_)) |
| stream_bytes = sizeof(encoded_buffer_); |
| |
| EncodedImage encoded( |
| encoded_buffer_, stream_bytes, sizeof(encoded_buffer_)); |
| encoded._timeStamp = input_image.timestamp(); |
| encoded.capture_time_ms_ = input_image.render_time_ms(); |
| encoded._frameType = (*frame_types)[i]; |
| // Always encode something on the first frame. |
| if (min_stream_bits > bits_available && i > 0) { |
| encoded._length = 0; |
| encoded._frameType = kSkipFrame; |
| } |
| assert(callback_ != NULL); |
| if (callback_->Encoded(encoded, &specifics, NULL) != 0) |
| return -1; |
| bits_available -= std::min(encoded._length * 8, bits_available); |
| } |
| return 0; |
| } |
| |
| int32_t FakeEncoder::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| callback_ = callback; |
| return 0; |
| } |
| |
| int32_t FakeEncoder::Release() { return 0; } |
| |
| int32_t FakeEncoder::SetChannelParameters(uint32_t packet_loss, int rtt) { |
| return 0; |
| } |
| |
| int32_t FakeEncoder::SetRates(uint32_t new_target_bitrate, uint32_t framerate) { |
| target_bitrate_kbps_ = new_target_bitrate; |
| return 0; |
| } |
| |
| FakeH264Encoder::FakeH264Encoder(Clock* clock) |
| : FakeEncoder(clock), callback_(NULL), idr_counter_(0) { |
| FakeEncoder::RegisterEncodeCompleteCallback(this); |
| } |
| |
| int32_t FakeH264Encoder::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| callback_ = callback; |
| return 0; |
| } |
| |
| int32_t FakeH264Encoder::Encoded(EncodedImage& encoded_image, |
| const CodecSpecificInfo* codec_specific_info, |
| const RTPFragmentationHeader* fragments) { |
| const size_t kSpsSize = 8; |
| const size_t kPpsSize = 11; |
| const int kIdrFrequency = 10; |
| RTPFragmentationHeader fragmentation; |
| if (idr_counter_++ % kIdrFrequency == 0 && |
| encoded_image._length > kSpsSize + kPpsSize + 1) { |
| const size_t kNumSlices = 3; |
| fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = kSpsSize; |
| fragmentation.fragmentationOffset[1] = kSpsSize; |
| fragmentation.fragmentationLength[1] = kPpsSize; |
| fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize; |
| fragmentation.fragmentationLength[2] = |
| encoded_image._length - (kSpsSize + kPpsSize); |
| const size_t kSpsNalHeader = 0x37; |
| const size_t kPpsNalHeader = 0x38; |
| const size_t kIdrNalHeader = 0x15; |
| encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader; |
| encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader; |
| encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader; |
| } else { |
| const size_t kNumSlices = 1; |
| fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = encoded_image._length; |
| const size_t kNalHeader = 0x11; |
| encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader; |
| } |
| uint8_t value = 0; |
| int fragment_counter = 0; |
| for (size_t i = 0; i < encoded_image._length; ++i) { |
| if (fragment_counter == fragmentation.fragmentationVectorSize || |
| i != fragmentation.fragmentationOffset[fragment_counter]) { |
| encoded_image._buffer[i] = value++; |
| } else { |
| ++fragment_counter; |
| } |
| } |
| return callback_->Encoded(encoded_image, NULL, &fragmentation); |
| } |
| |
| DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms) |
| : test::FakeEncoder(clock), |
| delay_ms_(delay_ms) {} |
| |
| int32_t DelayedEncoder::Encode(const I420VideoFrame& input_image, |
| const CodecSpecificInfo* codec_specific_info, |
| const std::vector<VideoFrameType>* frame_types) { |
| SleepMs(delay_ms_); |
| return FakeEncoder::Encode(input_image, codec_specific_info, frame_types); |
| } |
| } // namespace test |
| } // namespace webrtc |