|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/base/win32.h" | 
|  |  | 
|  | #include <winsock2.h> | 
|  | #include <ws2tcpip.h> | 
|  | #include <algorithm> | 
|  |  | 
|  | #include "webrtc/base/basictypes.h" | 
|  | #include "webrtc/base/byteorder.h" | 
|  | #include "webrtc/base/common.h" | 
|  | #include "webrtc/base/logging.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | // Helper function declarations for inet_ntop/inet_pton. | 
|  | static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size); | 
|  | static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size); | 
|  | static int inet_pton_v4(const char* src, void* dst); | 
|  | static int inet_pton_v6(const char* src, void* dst); | 
|  |  | 
|  | // Implementation of inet_ntop (create a printable representation of an | 
|  | // ip address). XP doesn't have its own inet_ntop, and | 
|  | // WSAAddressToString requires both IPv6 to be  installed and for Winsock | 
|  | // to be initialized. | 
|  | const char* win32_inet_ntop(int af, const void *src, | 
|  | char* dst, socklen_t size) { | 
|  | if (!src || !dst) { | 
|  | return NULL; | 
|  | } | 
|  | switch (af) { | 
|  | case AF_INET: { | 
|  | return inet_ntop_v4(src, dst, size); | 
|  | } | 
|  | case AF_INET6: { | 
|  | return inet_ntop_v6(src, dst, size); | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // As above, but for inet_pton. Implements inet_pton for v4 and v6. | 
|  | // Note that our inet_ntop will output normal 'dotted' v4 addresses only. | 
|  | int win32_inet_pton(int af, const char* src, void* dst) { | 
|  | if (!src || !dst) { | 
|  | return 0; | 
|  | } | 
|  | if (af == AF_INET) { | 
|  | return inet_pton_v4(src, dst); | 
|  | } else if (af == AF_INET6) { | 
|  | return inet_pton_v6(src, dst); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Helper function for inet_ntop for IPv4 addresses. | 
|  | // Outputs "dotted-quad" decimal notation. | 
|  | const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) { | 
|  | if (size < INET_ADDRSTRLEN) { | 
|  | return NULL; | 
|  | } | 
|  | const struct in_addr* as_in_addr = | 
|  | reinterpret_cast<const struct in_addr*>(src); | 
|  | rtc::sprintfn(dst, size, "%d.%d.%d.%d", | 
|  | as_in_addr->S_un.S_un_b.s_b1, | 
|  | as_in_addr->S_un.S_un_b.s_b2, | 
|  | as_in_addr->S_un.S_un_b.s_b3, | 
|  | as_in_addr->S_un.S_un_b.s_b4); | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | // Helper function for inet_ntop for IPv6 addresses. | 
|  | const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) { | 
|  | if (size < INET6_ADDRSTRLEN) { | 
|  | return NULL; | 
|  | } | 
|  | const uint16* as_shorts = | 
|  | reinterpret_cast<const uint16*>(src); | 
|  | int runpos[8]; | 
|  | int current = 1; | 
|  | int max = 0; | 
|  | int maxpos = -1; | 
|  | int run_array_size = ARRAY_SIZE(runpos); | 
|  | // Run over the address marking runs of 0s. | 
|  | for (int i = 0; i < run_array_size; ++i) { | 
|  | if (as_shorts[i] == 0) { | 
|  | runpos[i] = current; | 
|  | if (current > max) { | 
|  | maxpos = i; | 
|  | max = current; | 
|  | } | 
|  | ++current; | 
|  | } else { | 
|  | runpos[i] = -1; | 
|  | current = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (max > 0) { | 
|  | int tmpmax = maxpos; | 
|  | // Run back through, setting -1 for all but the longest run. | 
|  | for (int i = run_array_size - 1; i >= 0; i--) { | 
|  | if (i > tmpmax) { | 
|  | runpos[i] = -1; | 
|  | } else if (runpos[i] == -1) { | 
|  | // We're less than maxpos, we hit a -1, so the 'good' run is done. | 
|  | // Setting tmpmax -1 means all remaining positions get set to -1. | 
|  | tmpmax = -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | char* cursor = dst; | 
|  | // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper. | 
|  | // These addresses have an initial run of either eight zero-bytes followed | 
|  | // by 0xFFFF, or an initial run of ten zero-bytes. | 
|  | if (runpos[0] == 1 && (maxpos == 5 || | 
|  | (maxpos == 4 && as_shorts[5] == 0xFFFF))) { | 
|  | *cursor++ = ':'; | 
|  | *cursor++ = ':'; | 
|  | if (maxpos == 4) { | 
|  | cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:"); | 
|  | } | 
|  | const struct in_addr* as_v4 = | 
|  | reinterpret_cast<const struct in_addr*>(&(as_shorts[6])); | 
|  | inet_ntop_v4(as_v4, cursor, | 
|  | static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst))); | 
|  | } else { | 
|  | for (int i = 0; i < run_array_size; ++i) { | 
|  | if (runpos[i] == -1) { | 
|  | cursor += rtc::sprintfn(cursor, | 
|  | INET6_ADDRSTRLEN - (cursor - dst), | 
|  | "%x", NetworkToHost16(as_shorts[i])); | 
|  | if (i != 7 && runpos[i + 1] != 1) { | 
|  | *cursor++ = ':'; | 
|  | } | 
|  | } else if (runpos[i] == 1) { | 
|  | // Entered the run; print the colons and skip the run. | 
|  | *cursor++ = ':'; | 
|  | *cursor++ = ':'; | 
|  | i += (max - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | // Helper function for inet_pton for IPv4 addresses. | 
|  | // |src| points to a character string containing an IPv4 network address in | 
|  | // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number | 
|  | // of up to three digits in the range 0 to 255. | 
|  | // The address is converted and copied to dst, | 
|  | // which must be sizeof(struct in_addr) (4) bytes (32 bits) long. | 
|  | int inet_pton_v4(const char* src, void* dst) { | 
|  | const int kIpv4AddressSize = 4; | 
|  | int found = 0; | 
|  | const char* src_pos = src; | 
|  | unsigned char result[kIpv4AddressSize] = {0}; | 
|  |  | 
|  | while (*src_pos != '\0') { | 
|  | // strtol won't treat whitespace characters in the begining as an error, | 
|  | // so check to ensure this is started with digit before passing to strtol. | 
|  | if (!isdigit(*src_pos)) { | 
|  | return 0; | 
|  | } | 
|  | char* end_pos; | 
|  | long value = strtol(src_pos, &end_pos, 10); | 
|  | if (value < 0 || value > 255 || src_pos == end_pos) { | 
|  | return 0; | 
|  | } | 
|  | ++found; | 
|  | if (found > kIpv4AddressSize) { | 
|  | return 0; | 
|  | } | 
|  | result[found - 1] = static_cast<unsigned char>(value); | 
|  | src_pos = end_pos; | 
|  | if (*src_pos == '.') { | 
|  | // There's more. | 
|  | ++src_pos; | 
|  | } else if (*src_pos != '\0') { | 
|  | // If it's neither '.' nor '\0' then return fail. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (found != kIpv4AddressSize) { | 
|  | return 0; | 
|  | } | 
|  | memcpy(dst, result, sizeof(result)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Helper function for inet_pton for IPv6 addresses. | 
|  | int inet_pton_v6(const char* src, void* dst) { | 
|  | // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex. | 
|  | // Check for literal x in the input string. | 
|  | const char* readcursor = src; | 
|  | char c = *readcursor++; | 
|  | while (c) { | 
|  | if (c == 'x') { | 
|  | return 0; | 
|  | } | 
|  | c = *readcursor++; | 
|  | } | 
|  | readcursor = src; | 
|  |  | 
|  | struct in6_addr an_addr; | 
|  | memset(&an_addr, 0, sizeof(an_addr)); | 
|  |  | 
|  | uint16* addr_cursor = reinterpret_cast<uint16*>(&an_addr.s6_addr[0]); | 
|  | uint16* addr_end = reinterpret_cast<uint16*>(&an_addr.s6_addr[16]); | 
|  | bool seencompressed = false; | 
|  |  | 
|  | // Addresses that start with "::" (i.e., a run of initial zeros) or | 
|  | // "::ffff:" can potentially be IPv4 mapped or compatibility addresses. | 
|  | // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1"). | 
|  | if (*readcursor == ':' && *(readcursor+1) == ':' && | 
|  | *(readcursor + 2) != 0) { | 
|  | // Check for periods, which we'll take as a sign of v4 addresses. | 
|  | const char* addrstart = readcursor + 2; | 
|  | if (rtc::strchr(addrstart, ".")) { | 
|  | const char* colon = rtc::strchr(addrstart, "::"); | 
|  | if (colon) { | 
|  | uint16 a_short; | 
|  | int bytesread = 0; | 
|  | if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 || | 
|  | a_short != 0xFFFF || bytesread != 4) { | 
|  | // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't. | 
|  | return 0; | 
|  | } else { | 
|  | an_addr.s6_addr[10] = 0xFF; | 
|  | an_addr.s6_addr[11] = 0xFF; | 
|  | addrstart = colon + 1; | 
|  | } | 
|  | } | 
|  | struct in_addr v4; | 
|  | if (inet_pton_v4(addrstart, &v4.s_addr)) { | 
|  | memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4)); | 
|  | memcpy(dst, &an_addr, sizeof(an_addr)); | 
|  | return 1; | 
|  | } else { | 
|  | // Invalid v4 address. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // For addresses without a trailing IPv4 component ('normal' IPv6 addresses). | 
|  | while (*readcursor != 0 && addr_cursor < addr_end) { | 
|  | if (*readcursor == ':') { | 
|  | if (*(readcursor + 1) == ':') { | 
|  | if (seencompressed) { | 
|  | // Can only have one compressed run of zeroes ("::") per address. | 
|  | return 0; | 
|  | } | 
|  | // Hit a compressed run. Count colons to figure out how much of the | 
|  | // address is skipped. | 
|  | readcursor += 2; | 
|  | const char* coloncounter = readcursor; | 
|  | int coloncount = 0; | 
|  | if (*coloncounter == 0) { | 
|  | // Special case - trailing ::. | 
|  | addr_cursor = addr_end; | 
|  | } else { | 
|  | while (*coloncounter) { | 
|  | if (*coloncounter == ':') { | 
|  | ++coloncount; | 
|  | } | 
|  | ++coloncounter; | 
|  | } | 
|  | // (coloncount + 1) is the number of shorts left in the address. | 
|  | addr_cursor = addr_end - (coloncount + 1); | 
|  | seencompressed = true; | 
|  | } | 
|  | } else { | 
|  | ++readcursor; | 
|  | } | 
|  | } else { | 
|  | uint16 word; | 
|  | int bytesread = 0; | 
|  | if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) { | 
|  | return 0; | 
|  | } else { | 
|  | *addr_cursor = HostToNetwork16(word); | 
|  | ++addr_cursor; | 
|  | readcursor += bytesread; | 
|  | if (*readcursor != ':' && *readcursor != '\0') { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (*readcursor != '\0' || addr_cursor < addr_end) { | 
|  | // Catches addresses too short or too long. | 
|  | return 0; | 
|  | } | 
|  | memcpy(dst, &an_addr, sizeof(an_addr)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Unix time is in seconds relative to 1/1/1970.  So we compute the windows | 
|  | // FILETIME of that time/date, then we add/subtract in appropriate units to | 
|  | // convert to/from unix time. | 
|  | // The units of FILETIME are 100ns intervals, so by multiplying by or dividing | 
|  | // by 10000000, we can convert to/from seconds. | 
|  | // | 
|  | // FileTime = UnixTime*10000000 + FileTime(1970) | 
|  | // UnixTime = (FileTime-FileTime(1970))/10000000 | 
|  | // | 
|  |  | 
|  | void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) { | 
|  | ASSERT(NULL != ut); | 
|  |  | 
|  | // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off | 
|  | // the difference. | 
|  | SYSTEMTIME base_st; | 
|  | memset(&base_st, 0, sizeof(base_st)); | 
|  | base_st.wDay = 1; | 
|  | base_st.wMonth = 1; | 
|  | base_st.wYear = 1970; | 
|  |  | 
|  | FILETIME base_ft; | 
|  | SystemTimeToFileTime(&base_st, &base_ft); | 
|  |  | 
|  | ULARGE_INTEGER base_ul, current_ul; | 
|  | memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | 
|  | memcpy(¤t_ul, &ft, sizeof(FILETIME)); | 
|  |  | 
|  | // Divide by big number to convert to seconds, then subtract out the 1970 | 
|  | // base date value. | 
|  | const ULONGLONG RATIO = 10000000; | 
|  | *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO); | 
|  | } | 
|  |  | 
|  | void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) { | 
|  | ASSERT(NULL != ft); | 
|  |  | 
|  | // FILETIME has an earlier date base than time_t (1/1/1970), so add in | 
|  | // the difference. | 
|  | SYSTEMTIME base_st; | 
|  | memset(&base_st, 0, sizeof(base_st)); | 
|  | base_st.wDay = 1; | 
|  | base_st.wMonth = 1; | 
|  | base_st.wYear = 1970; | 
|  |  | 
|  | FILETIME base_ft; | 
|  | SystemTimeToFileTime(&base_st, &base_ft); | 
|  |  | 
|  | ULARGE_INTEGER base_ul; | 
|  | memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | 
|  |  | 
|  | // Multiply by big number to convert to 100ns units, then add in the 1970 | 
|  | // base date value. | 
|  | const ULONGLONG RATIO = 10000000; | 
|  | ULARGE_INTEGER current_ul; | 
|  | current_ul.QuadPart = base_ul.QuadPart + static_cast<int64>(ut) * RATIO; | 
|  | memcpy(ft, ¤t_ul, sizeof(FILETIME)); | 
|  | } | 
|  |  | 
|  | bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) { | 
|  | // TODO: Integrate into fileutils.h | 
|  | // TODO: Handle wide and non-wide cases via TCHAR? | 
|  | // TODO: Skip \\?\ processing if the length is not > MAX_PATH? | 
|  | // TODO: Write unittests | 
|  |  | 
|  | // Convert to Utf16 | 
|  | int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | 
|  | static_cast<int>(utf8.length() + 1), NULL, | 
|  | 0); | 
|  | if (0 == wlen) { | 
|  | return false; | 
|  | } | 
|  | wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen); | 
|  | if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | 
|  | static_cast<int>(utf8.length() + 1), | 
|  | wfilename, wlen)) { | 
|  | return false; | 
|  | } | 
|  | // Replace forward slashes with backslashes | 
|  | std::replace(wfilename, wfilename + wlen, L'/', L'\\'); | 
|  | // Convert to complete filename | 
|  | DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL); | 
|  | if (0 == full_len) { | 
|  | return false; | 
|  | } | 
|  | wchar_t* filepart = NULL; | 
|  | wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6); | 
|  | wchar_t* start = full_filename + 6; | 
|  | if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) { | 
|  | return false; | 
|  | } | 
|  | // Add long-path prefix | 
|  | const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC"; | 
|  | if ((start[0] != L'\\') || (start[1] != L'\\')) { | 
|  | // Non-unc path:     <pathname> | 
|  | //      Becomes: \\?\<pathname> | 
|  | start -= 4; | 
|  | ASSERT(start >= full_filename); | 
|  | memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t)); | 
|  | } else if (start[2] != L'?') { | 
|  | // Unc path:       \\<server>\<pathname> | 
|  | //  Becomes: \\?\UNC\<server>\<pathname> | 
|  | start -= 6; | 
|  | ASSERT(start >= full_filename); | 
|  | memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t)); | 
|  | } else { | 
|  | // Already in long-path form. | 
|  | } | 
|  | filename->assign(start); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GetOsVersion(int* major, int* minor, int* build) { | 
|  | OSVERSIONINFO info = {0}; | 
|  | info.dwOSVersionInfoSize = sizeof(info); | 
|  | if (GetVersionEx(&info)) { | 
|  | if (major) *major = info.dwMajorVersion; | 
|  | if (minor) *minor = info.dwMinorVersion; | 
|  | if (build) *build = info.dwBuildNumber; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool GetCurrentProcessIntegrityLevel(int* level) { | 
|  | bool ret = false; | 
|  | HANDLE process = ::GetCurrentProcess(), token; | 
|  | if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) { | 
|  | DWORD size; | 
|  | if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) && | 
|  | GetLastError() == ERROR_INSUFFICIENT_BUFFER) { | 
|  |  | 
|  | char* buf = STACK_ARRAY(char, size); | 
|  | TOKEN_MANDATORY_LABEL* til = | 
|  | reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf); | 
|  | if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) { | 
|  |  | 
|  | DWORD count = *GetSidSubAuthorityCount(til->Label.Sid); | 
|  | *level = *GetSidSubAuthority(til->Label.Sid, count - 1); | 
|  | ret = true; | 
|  | } | 
|  | } | 
|  | CloseHandle(token); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |