blob: 019be60389e5db1ce9f34e7e1a6895a0760a3864 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/power_echo_model.h"
#include <array>
#include <string>
#include <vector>
#include "webrtc/base/random.h"
#include "webrtc/modules/audio_processing/aec3/aec_state.h"
#include "webrtc/modules/audio_processing/aec3/aec3_common.h"
#include "webrtc/modules/audio_processing/aec3/aec3_fft.h"
#include "webrtc/modules/audio_processing/aec3/echo_path_variability.h"
#include "webrtc/modules/audio_processing/test/echo_canceller_test_tools.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
namespace {
std::string ProduceDebugText(size_t delay, bool known_delay) {
std::ostringstream ss;
ss << "True delay: " << delay;
ss << ", Delay known: " << (known_delay ? "true" : "false");
return ss.str();
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output parameter works.
TEST(PowerEchoModel, NullEstimateEchoOutput) {
PowerEchoModel model;
std::array<float, kFftLengthBy2Plus1> Y2;
AecState aec_state;
FftBuffer X_buffer(Aec3Optimization::kNone, model.MinFarendBufferLength(),
std::vector<size_t>(1, model.MinFarendBufferLength()));
EXPECT_DEATH(model.EstimateEcho(X_buffer, Y2, aec_state, nullptr), "");
}
#endif
TEST(PowerEchoModel, BasicSetup) {
PowerEchoModel model;
Random random_generator(42U);
AecState aec_state;
Aec3Fft fft;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kFftLengthBy2Plus1> S2;
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> E2_shadow;
std::array<float, kBlockSize> x_old;
std::array<float, kBlockSize> y;
std::vector<float> x(kBlockSize, 0.f);
FftData X;
FftData Y;
x_old.fill(0.f);
FftBuffer X_buffer(Aec3Optimization::kNone, model.MinFarendBufferLength(),
std::vector<size_t>(1, model.MinFarendBufferLength()));
for (size_t delay_samples : {0, 64, 301}) {
DelayBuffer<float> delay_buffer(delay_samples);
auto model_applier = [&](int num_iterations, float y_scale,
bool known_delay) {
for (int k = 0; k < num_iterations; ++k) {
RandomizeSampleVector(&random_generator, x);
delay_buffer.Delay(x, y);
std::for_each(y.begin(), y.end(), [&](float& a) { a *= y_scale; });
fft.PaddedFft(x, x_old, &X);
X_buffer.Insert(X);
fft.ZeroPaddedFft(y, &Y);
Y.Spectrum(Aec3Optimization::kNone, &Y2);
aec_state.Update(std::vector<std::array<float, kFftLengthBy2Plus1>>(
10, std::array<float, kFftLengthBy2Plus1>()),
known_delay ? rtc::Optional<size_t>(delay_samples)
: rtc::Optional<size_t>(),
X_buffer, E2_main, E2_shadow, Y2, x,
EchoPathVariability(false, false), false);
model.EstimateEcho(X_buffer, Y2, aec_state, &S2);
}
};
for (int j = 0; j < 2; ++j) {
bool known_delay = j == 0;
SCOPED_TRACE(ProduceDebugText(delay_samples, known_delay));
// Verify that the echo path estimates converges downwards to a fairly
// tight bound estimate.
model_applier(600, 1.f, known_delay);
for (size_t k = 1; k < S2.size() - 1; ++k) {
EXPECT_LE(Y2[k], 2.f * S2[k]);
}
// Verify that stronger echo paths are detected immediately.
model_applier(100, 10.f, known_delay);
for (size_t k = 1; k < S2.size() - 1; ++k) {
EXPECT_LE(Y2[k], 5.f * S2[k]);
}
// Verify that there is a delay until a weaker echo path is detected.
model_applier(50, 100.f, known_delay);
model_applier(50, 1.f, known_delay);
for (size_t k = 1; k < S2.size() - 1; ++k) {
EXPECT_LE(100.f * Y2[k], S2[k]);
}
// Verify that an echo path change causes the echo path estimate to be
// reset.
model_applier(600, 0.1f, known_delay);
model.HandleEchoPathChange(EchoPathVariability(true, false));
model_applier(50, 0.1f, known_delay);
for (size_t k = 1; k < S2.size() - 1; ++k) {
EXPECT_LE(10.f * Y2[k], S2[k]);
}
}
}
}
} // namespace webrtc