blob: eef43055910a0830a61dbec687c3806feb287b91 [file] [log] [blame]
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
#include <deque>
#include <memory>
#include <string>
#include <vector>
#include "webrtc/p2p/base/port.h"
#include "webrtc/p2p/base/portinterface.h"
#include "webrtc/rtc_base/helpers.h"
#include "webrtc/rtc_base/proxyinfo.h"
#include "webrtc/rtc_base/sigslot.h"
#include "webrtc/rtc_base/thread.h"
namespace webrtc {
class MetricsObserverInterface;
namespace cricket {
// PortAllocator is responsible for allocating Port types for a given
// P2PSocket. It also handles port freeing.
// Clients can override this class to control port allocation, including
// what kinds of ports are allocated.
enum {
// Disable local UDP ports. This doesn't impact how we connect to relay
// servers.
// Disable local TCP ports. This doesn't impact how we connect to relay
// servers.
// TODO(pthatcher): Remove this once it's no longer used in:
// remoting/client/plugin/
// remoting/protocol/
// remoting/test/
// It's a no-op and is no longer needed.
// When specified, we'll only allocate the STUN candidate for the public
// interface as seen by regular http traffic and the HOST candidate associated
// with the default local interface.
// default local candidate mentioned above will not be allocated. Only the
// STUN candidate will be.
// Disallow use of UDP when connecting to a relay server. Since proxy servers
// usually don't handle UDP, using UDP will leak the IP address.
// When multiple networks exist, do not gather candidates on the ones with
// high cost. So if both Wi-Fi and cellular networks exist, gather only on the
// Wi-Fi network. If a network type is "unknown", it has a cost lower than
// cellular but higher than Wi-Fi/Ethernet. So if an unknown network exists,
// cellular networks will not be used to gather candidates and if a Wi-Fi
// network is present, "unknown" networks will not be usd to gather
// candidates. Doing so ensures that even if a cellular network type was not
// detected initially, it would not be used if a Wi-Fi network is present.
// When specified, do not collect IPv6 ICE candidates on Wi-Fi.
// When this flag is set, ports not bound to any specific network interface
// will be used, in addition to normal ports bound to the enumerated
// interfaces. Without this flag, these "any address" ports would only be
// used when network enumeration fails or is disabled. But under certain
// conditions, these ports may succeed where others fail, so they may allow
// the application to work in a wider variety of environments, at the expense
// of having to allocate additional candidates.
// Defines various reasons that have caused ICE regathering.
enum class IceRegatheringReason {
NETWORK_CHANGE, // Network interfaces on the device changed
NETWORK_FAILURE, // Regather only on networks that have failed
OCCASIONAL_REFRESH, // Periodic regather on all networks
const uint32_t kDefaultPortAllocatorFlags = 0;
const uint32_t kDefaultStepDelay = 1000; // 1 sec step delay.
// As per RFC 5245 Appendix B.1, STUN transactions need to be paced at certain
// internal. Less than 20ms is not acceptable. We choose 50ms as our default.
const uint32_t kMinimumStepDelay = 50;
// Turning on IPv6 could make many IPv6 interfaces available for connectivity
// check and delay the call setup time. kDefaultMaxIPv6Networks is the default
// upper limit of IPv6 networks but could be changed by
// set_max_ipv6_networks().
constexpr int kDefaultMaxIPv6Networks = 5;
enum {
CF_NONE = 0x0,
CF_HOST = 0x1,
CF_RELAY = 0x4,
CF_ALL = 0x7,
// TLS certificate policy.
enum class TlsCertPolicy {
// For TLS based protocols, ensure the connection is secure by not
// circumventing certificate validation.
// For TLS based protocols, disregard security completely by skipping
// certificate validation. This is insecure and should never be used unless
// security is irrelevant in that particular context.
// TODO(deadbeef): Rename to TurnCredentials (and username to ufrag).
struct RelayCredentials {
RelayCredentials() {}
RelayCredentials(const std::string& username, const std::string& password)
: username(username), password(password) {}
bool operator==(const RelayCredentials& o) const {
return username == o.username && password == o.password;
bool operator!=(const RelayCredentials& o) const { return !(*this == o); }
std::string username;
std::string password;
typedef std::vector<ProtocolAddress> PortList;
// TODO(deadbeef): Rename to TurnServerConfig.
struct RelayServerConfig {
RelayServerConfig(RelayType type) : type(type) {}
RelayServerConfig(const rtc::SocketAddress& address,
const std::string& username,
const std::string& password,
ProtocolType proto)
: type(RELAY_TURN), credentials(username, password) {
ports.push_back(ProtocolAddress(address, proto));
RelayServerConfig(const std::string& address,
int port,
const std::string& username,
const std::string& password,
ProtocolType proto)
: RelayServerConfig(rtc::SocketAddress(address, port),
proto) {}
// Legacy constructor where "secure" and PROTO_TCP implies PROTO_TLS.
RelayServerConfig(const std::string& address,
int port,
const std::string& username,
const std::string& password,
ProtocolType proto,
bool secure)
: RelayServerConfig(address,
(proto == PROTO_TCP && secure ? PROTO_TLS : proto)) {}
bool operator==(const RelayServerConfig& o) const {
return type == o.type && ports == o.ports && credentials == o.credentials &&
priority == o.priority;
bool operator!=(const RelayServerConfig& o) const { return !(*this == o); }
RelayType type;
PortList ports;
RelayCredentials credentials;
int priority = 0;
TlsCertPolicy tls_cert_policy = TlsCertPolicy::TLS_CERT_POLICY_SECURE;
std::vector<std::string> tls_alpn_protocols;
class PortAllocatorSession : public sigslot::has_slots<> {
// Content name passed in mostly for logging and debugging.
PortAllocatorSession(const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd,
uint32_t flags);
// Subclasses should clean up any ports created.
virtual ~PortAllocatorSession() {}
uint32_t flags() const { return flags_; }
void set_flags(uint32_t flags) { flags_ = flags; }
std::string content_name() const { return content_name_; }
int component() const { return component_; }
const std::string& ice_ufrag() const { return ice_ufrag_; }
const std::string& ice_pwd() const { return ice_pwd_; }
bool pooled() const { return ice_ufrag_.empty(); }
// Setting this filter should affect not only candidates gathered in the
// future, but candidates already gathered and ports already "ready",
// which would be returned by ReadyCandidates() and ReadyPorts().
// Default filter should be CF_ALL.
virtual void SetCandidateFilter(uint32_t filter) = 0;
// Starts gathering ports and ICE candidates.
virtual void StartGettingPorts() = 0;
// Completely stops gathering. Will not gather again unless StartGettingPorts
// is called again.
virtual void StopGettingPorts() = 0;
// Whether the session is actively getting ports.
virtual bool IsGettingPorts() = 0;
// NOTE: The group of methods below is only used for continual gathering.
// ClearGettingPorts should have the same immediate effect as
// StopGettingPorts, but if the implementation supports continual gathering,
// ClearGettingPorts allows additional ports/candidates to be gathered if the
// network conditions change.
virtual void ClearGettingPorts() = 0;
// Whether it is in the state where the existing gathering process is stopped,
// but new ones may be started (basically after calling ClearGettingPorts).
virtual bool IsCleared() const { return false; }
// Whether the session has completely stopped.
virtual bool IsStopped() const { return false; }
// Re-gathers candidates on networks that do not have any connections. More
// precisely, a network interface may have more than one IP addresses (e.g.,
// IPv4 and IPv6 addresses). Each address subnet will be used to create a
// network. Only if all networks of an interface have no connection, the
// implementation should start re-gathering on all networks of that interface.
virtual void RegatherOnFailedNetworks() {}
// Re-gathers candidates on all networks.
virtual void RegatherOnAllNetworks() {}
// Another way of getting the information provided by the signals below.
// Ports and candidates are not guaranteed to be in the same order as the
// signals were emitted in.
virtual std::vector<PortInterface*> ReadyPorts() const = 0;
virtual std::vector<Candidate> ReadyCandidates() const = 0;
virtual bool CandidatesAllocationDone() const = 0;
// Marks all ports in the current session as "pruned" so that they may be
// destroyed if no connection is using them.
virtual void PruneAllPorts() {}
sigslot::signal2<PortAllocatorSession*, PortInterface*> SignalPortReady;
// Fires this signal when the network of the ports failed (either because the
// interface is down, or because there is no connection on the interface),
// or when TURN ports are pruned because a higher-priority TURN port becomes
// ready(pairable).
sigslot::signal2<PortAllocatorSession*, const std::vector<PortInterface*>&>
const std::vector<Candidate>&> SignalCandidatesReady;
// Candidates should be signaled to be removed when the port that generated
// the candidates is removed.
sigslot::signal2<PortAllocatorSession*, const std::vector<Candidate>&>
sigslot::signal1<PortAllocatorSession*> SignalCandidatesAllocationDone;
sigslot::signal2<PortAllocatorSession*, IceRegatheringReason>
virtual uint32_t generation() { return generation_; }
virtual void set_generation(uint32_t generation) { generation_ = generation; }
sigslot::signal1<PortAllocatorSession*> SignalDestroyed;
// This method is called when a pooled session (which doesn't have these
// properties initially) is returned by PortAllocator::TakePooledSession,
// and the content name, component, and ICE ufrag/pwd are updated.
// A subclass may need to override this method to perform additional actions,
// such as applying the updated information to ports and candidates.
virtual void UpdateIceParametersInternal() {}
// TODO(deadbeef): Get rid of these when everyone switches to ice_ufrag and
// ice_pwd.
const std::string& username() const { return ice_ufrag_; }
const std::string& password() const { return ice_pwd_; }
void SetIceParameters(const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd) {
content_name_ = content_name;
component_ = component;
ice_ufrag_ = ice_ufrag;
ice_pwd_ = ice_pwd;
uint32_t flags_;
uint32_t generation_;
std::string content_name_;
int component_;
std::string ice_ufrag_;
std::string ice_pwd_;
// SetIceParameters is an implementation detail which only PortAllocator
// should be able to call.
friend class PortAllocator;
// Every method of PortAllocator (including the destructor) must be called on
// the same thread, except for the constructor which may be called on any
// thread.
// This allows constructing a PortAllocator subclass on one thread and
// passing it into an object that uses it on a different thread.
class PortAllocator : public sigslot::has_slots<> {
: flags_(kDefaultPortAllocatorFlags),
candidate_filter_(CF_ALL) {}
virtual ~PortAllocator() {}
// This should be called on the PortAllocator's thread before the
// PortAllocator is used. Subclasses may override this if necessary.
virtual void Initialize() {}
// Set STUN and TURN servers to be used in future sessions, and set
// candidate pool size, as described in JSEP.
// If the servers are changing, and the candidate pool size is nonzero, and
// FreezeCandidatePool hasn't been called, existing pooled sessions will be
// destroyed and new ones created.
// If the servers are not changing but the candidate pool size is, and
// FreezeCandidatePool hasn't been called, pooled sessions will be either
// created or destroyed as necessary.
// Returns true if the configuration could successfully be changed.
bool SetConfiguration(const ServerAddresses& stun_servers,
const std::vector<RelayServerConfig>& turn_servers,
int candidate_pool_size,
bool prune_turn_ports);
const ServerAddresses& stun_servers() const { return stun_servers_; }
const std::vector<RelayServerConfig>& turn_servers() const {
return turn_servers_;
int candidate_pool_size() const { return candidate_pool_size_; }
// Sets the network types to ignore.
// Values are defined by the AdapterType enum.
// For instance, calling this with
// loopback interfaces.
virtual void SetNetworkIgnoreMask(int network_ignore_mask) = 0;
std::unique_ptr<PortAllocatorSession> CreateSession(
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd);
// Get an available pooled session and set the transport information on it.
// Caller takes ownership of the returned session.
// If no pooled sessions are available, returns null.
std::unique_ptr<PortAllocatorSession> TakePooledSession(
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd);
// Returns the next session that would be returned by TakePooledSession.
const PortAllocatorSession* GetPooledSession() const;
// After FreezeCandidatePool is called, changing the candidate pool size will
// no longer be allowed, and changing ICE servers will not cause pooled
// sessions to be recreated.
// Expected to be called when SetLocalDescription is called on a
// PeerConnection. Can be called safely on any thread as long as not
// simultaneously with SetConfiguration.
void FreezeCandidatePool();
// Discard any remaining pooled sessions.
void DiscardCandidatePool();
uint32_t flags() const { return flags_; }
void set_flags(uint32_t flags) { flags_ = flags; }
// These three methods are deprecated. If connections need to go through a
// proxy, the application should create a BasicPortAllocator given a custom
// PacketSocketFactory that creates proxy sockets.
const std::string& user_agent() const { return agent_; }
const rtc::ProxyInfo& proxy() const { return proxy_; }
void set_proxy(const std::string& agent, const rtc::ProxyInfo& proxy) {
agent_ = agent;
proxy_ = proxy;
// Gets/Sets the port range to use when choosing client ports.
int min_port() const { return min_port_; }
int max_port() const { return max_port_; }
bool SetPortRange(int min_port, int max_port) {
if (min_port > max_port) {
return false;
min_port_ = min_port;
max_port_ = max_port;
return true;
// Can be used to change the default numer of IPv6 network interfaces used
// (5). Can set to INT_MAX to effectively disable the limit.
// TODO(deadbeef): Applications shouldn't have to arbitrarily limit the
// number of available IPv6 network interfaces just because they could slow
// ICE down. We should work on making our ICE logic smarter (for example,
// prioritizing pinging connections that are most likely to work) so that
// every network interface can be used without impacting ICE's speed.
void set_max_ipv6_networks(int networks) { max_ipv6_networks_ = networks; }
int max_ipv6_networks() { return max_ipv6_networks_; }
uint32_t step_delay() const { return step_delay_; }
void set_step_delay(uint32_t delay) { step_delay_ = delay; }
bool allow_tcp_listen() const { return allow_tcp_listen_; }
void set_allow_tcp_listen(bool allow_tcp_listen) {
allow_tcp_listen_ = allow_tcp_listen;
uint32_t candidate_filter() { return candidate_filter_; }
void set_candidate_filter(uint32_t filter) {
candidate_filter_ = filter;
bool prune_turn_ports() const { return prune_turn_ports_; }
// Gets/Sets the Origin value used for WebRTC STUN requests.
const std::string& origin() const { return origin_; }
void set_origin(const std::string& origin) { origin_ = origin; }
void SetMetricsObserver(webrtc::MetricsObserverInterface* observer) {
metrics_observer_ = observer;
virtual PortAllocatorSession* CreateSessionInternal(
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd) = 0;
webrtc::MetricsObserverInterface* metrics_observer() {
return metrics_observer_;
const std::deque<std::unique_ptr<PortAllocatorSession>>& pooled_sessions() {
return pooled_sessions_;
uint32_t flags_;
std::string agent_;
rtc::ProxyInfo proxy_;
int min_port_;
int max_port_;
int max_ipv6_networks_;
uint32_t step_delay_;
bool allow_tcp_listen_;
uint32_t candidate_filter_;
std::string origin_;
ServerAddresses stun_servers_;
std::vector<RelayServerConfig> turn_servers_;
int candidate_pool_size_ = 0; // Last value passed into SetConfiguration.
std::deque<std::unique_ptr<PortAllocatorSession>> pooled_sessions_;
bool candidate_pool_frozen_ = false;
bool prune_turn_ports_ = false;
webrtc::MetricsObserverInterface* metrics_observer_ = nullptr;
} // namespace cricket