| /* | 
 |  *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "webrtc/modules/audio_processing/aec3/suppression_gain.h" | 
 |  | 
 | #include "webrtc/typedefs.h" | 
 | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
 | #include <emmintrin.h> | 
 | #endif | 
 | #include <math.h> | 
 | #include <algorithm> | 
 | #include <functional> | 
 |  | 
 | #include "webrtc/base/checks.h" | 
 |  | 
 | namespace webrtc { | 
 | namespace { | 
 |  | 
 | void GainPostProcessing(std::array<float, kFftLengthBy2Plus1>* gain_squared) { | 
 |   // Limit the low frequency gains to avoid the impact of the high-pass filter | 
 |   // on the lower-frequency gain influencing the overall achieved gain. | 
 |   (*gain_squared)[1] = std::min((*gain_squared)[1], (*gain_squared)[2]); | 
 |   (*gain_squared)[0] = (*gain_squared)[1]; | 
 |  | 
 |   // Limit the high frequency gains to avoid the impact of the anti-aliasing | 
 |   // filter on the upper-frequency gains influencing the overall achieved | 
 |   // gain. TODO(peah): Update this when new anti-aliasing filters are | 
 |   // implemented. | 
 |   constexpr size_t kAntiAliasingImpactLimit = 64 * 0.7f; | 
 |   std::for_each(gain_squared->begin() + kAntiAliasingImpactLimit, | 
 |                 gain_squared->end(), | 
 |                 [gain_squared, kAntiAliasingImpactLimit](float& a) { | 
 |                   a = std::min(a, (*gain_squared)[kAntiAliasingImpactLimit]); | 
 |                 }); | 
 |   (*gain_squared)[kFftLengthBy2] = (*gain_squared)[kFftLengthBy2Minus1]; | 
 | } | 
 |  | 
 | constexpr int kNumIterations = 2; | 
 | constexpr float kEchoMaskingMargin = 1.f / 10.f; | 
 | constexpr float kBandMaskingFactor = 1.f / 2.f; | 
 | constexpr float kTimeMaskingFactor = 1.f / 10.f; | 
 |  | 
 | }  // namespace | 
 |  | 
 | namespace aec3 { | 
 |  | 
 | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
 |  | 
 | // Optimized SSE2 code for the gain computation. | 
 | // TODO(peah): Add further optimizations, in particular for the divisions. | 
 | void ComputeGains_SSE2( | 
 |     const std::array<float, kFftLengthBy2Plus1>& nearend_power, | 
 |     const std::array<float, kFftLengthBy2Plus1>& residual_echo_power, | 
 |     const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power, | 
 |     float strong_nearend_margin, | 
 |     std::array<float, kFftLengthBy2Minus1>* previous_gain_squared, | 
 |     std::array<float, kFftLengthBy2Minus1>* previous_masker, | 
 |     std::array<float, kFftLengthBy2Plus1>* gain) { | 
 |   std::array<float, kFftLengthBy2Minus1> masker; | 
 |   std::array<float, kFftLengthBy2Minus1> same_band_masker; | 
 |   std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power; | 
 |   std::array<bool, kFftLengthBy2Minus1> strong_nearend; | 
 |   std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker; | 
 |   std::array<float, kFftLengthBy2Plus1>* gain_squared = gain; | 
 |  | 
 |   // Precompute 1/residual_echo_power. | 
 |   std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1, | 
 |                  one_by_residual_echo_power.begin(), | 
 |                  [](float a) { return a > 0.f ? 1.f / a : -1.f; }); | 
 |  | 
 |   // Precompute indicators for bands with strong nearend. | 
 |   std::transform( | 
 |       residual_echo_power.begin() + 1, residual_echo_power.end() - 1, | 
 |       nearend_power.begin() + 1, strong_nearend.begin(), | 
 |       [&](float a, float b) { return a <= strong_nearend_margin * b; }); | 
 |  | 
 |   //  Precompute masker for the same band. | 
 |   std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1, | 
 |                  previous_masker->begin(), same_band_masker.begin(), | 
 |                  [&](float a, float b) { return a + kTimeMaskingFactor * b; }); | 
 |  | 
 |   for (int k = 0; k < kNumIterations; ++k) { | 
 |     if (k == 0) { | 
 |       // Add masker from the same band. | 
 |       std::copy(same_band_masker.begin(), same_band_masker.end(), | 
 |                 masker.begin()); | 
 |     } else { | 
 |       // Add masker for neighboring bands. | 
 |       std::transform(nearend_power.begin(), nearend_power.end(), | 
 |                      gain_squared->begin(), neighboring_bands_masker.begin(), | 
 |                      std::multiplies<float>()); | 
 |       std::transform(neighboring_bands_masker.begin(), | 
 |                      neighboring_bands_masker.end(), | 
 |                      comfort_noise_power.begin(), | 
 |                      neighboring_bands_masker.begin(), std::plus<float>()); | 
 |       std::transform( | 
 |           neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2, | 
 |           neighboring_bands_masker.begin() + 2, masker.begin(), | 
 |           [&](float a, float b) { return kBandMaskingFactor * (a + b); }); | 
 |  | 
 |       // Add masker from the same band. | 
 |       std::transform(same_band_masker.begin(), same_band_masker.end(), | 
 |                      masker.begin(), masker.begin(), std::plus<float>()); | 
 |     } | 
 |  | 
 |     // Compute new gain as: | 
 |     // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) * | 
 |     //           kTimeMaskingFactor | 
 |     //           * kEchoMaskingMargin / residual_echo_power(t,f). | 
 |     // or | 
 |     // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) * | 
 |     //             nearend_power(t-1)) * kTimeMaskingFactor + | 
 |     //            (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) + | 
 |     //             (G2(t,f-1)*nearend_power(t, f-1) + | 
 |     //              G2(t,f+1)*nearend_power(t, f+1)) * | 
 |     //             kTimeMaskingFactor) * kBandMaskingFactor) | 
 |     //           * kEchoMaskingMargin / residual_echo_power(t,f). | 
 |     std::transform( | 
 |         masker.begin(), masker.end(), one_by_residual_echo_power.begin(), | 
 |         gain_squared->begin() + 1, [&](float a, float b) { | 
 |           return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f; | 
 |         }); | 
 |  | 
 |     // Limit gain for bands with strong nearend. | 
 |     std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |                    strong_nearend.begin(), gain_squared->begin() + 1, | 
 |                    [](float a, bool b) { return b ? 1.f : a; }); | 
 |  | 
 |     // Limit the allowed gain update over time. | 
 |     std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |                    previous_gain_squared->begin(), gain_squared->begin() + 1, | 
 |                    [](float a, float b) { | 
 |                      return b < 0.0001f ? std::min(a, 0.0001f) | 
 |                                         : std::min(a, b * 2.f); | 
 |                    }); | 
 |  | 
 |     // Process the gains to avoid artefacts caused by gain realization in the | 
 |     // filterbank and impact of external pre-processing of the signal. | 
 |     GainPostProcessing(gain_squared); | 
 |   } | 
 |  | 
 |   std::copy(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |             previous_gain_squared->begin()); | 
 |  | 
 |   std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |                  nearend_power.begin() + 1, previous_masker->begin(), | 
 |                  std::multiplies<float>()); | 
 |   std::transform(previous_masker->begin(), previous_masker->end(), | 
 |                  comfort_noise_power.begin() + 1, previous_masker->begin(), | 
 |                  std::plus<float>()); | 
 |  | 
 |   for (size_t k = 0; k < kFftLengthBy2; k += 4) { | 
 |     __m128 g = _mm_loadu_ps(&(*gain_squared)[k]); | 
 |     g = _mm_sqrt_ps(g); | 
 |     _mm_storeu_ps(&(*gain)[k], g); | 
 |   } | 
 |  | 
 |   (*gain)[kFftLengthBy2] = sqrtf((*gain)[kFftLengthBy2]); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | void ComputeGains( | 
 |     const std::array<float, kFftLengthBy2Plus1>& nearend_power, | 
 |     const std::array<float, kFftLengthBy2Plus1>& residual_echo_power, | 
 |     const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power, | 
 |     float strong_nearend_margin, | 
 |     std::array<float, kFftLengthBy2Minus1>* previous_gain_squared, | 
 |     std::array<float, kFftLengthBy2Minus1>* previous_masker, | 
 |     std::array<float, kFftLengthBy2Plus1>* gain) { | 
 |   std::array<float, kFftLengthBy2Minus1> masker; | 
 |   std::array<float, kFftLengthBy2Minus1> same_band_masker; | 
 |   std::array<float, kFftLengthBy2Minus1> one_by_residual_echo_power; | 
 |   std::array<bool, kFftLengthBy2Minus1> strong_nearend; | 
 |   std::array<float, kFftLengthBy2Plus1> neighboring_bands_masker; | 
 |   std::array<float, kFftLengthBy2Plus1>* gain_squared = gain; | 
 |  | 
 |   // Precompute 1/residual_echo_power. | 
 |   std::transform(residual_echo_power.begin() + 1, residual_echo_power.end() - 1, | 
 |                  one_by_residual_echo_power.begin(), | 
 |                  [](float a) { return a > 0.f ? 1.f / a : -1.f; }); | 
 |  | 
 |   // Precompute indicators for bands with strong nearend. | 
 |   std::transform( | 
 |       residual_echo_power.begin() + 1, residual_echo_power.end() - 1, | 
 |       nearend_power.begin() + 1, strong_nearend.begin(), | 
 |       [&](float a, float b) { return a <= strong_nearend_margin * b; }); | 
 |  | 
 |   //  Precompute masker for the same band. | 
 |   std::transform(comfort_noise_power.begin() + 1, comfort_noise_power.end() - 1, | 
 |                  previous_masker->begin(), same_band_masker.begin(), | 
 |                  [&](float a, float b) { return a + kTimeMaskingFactor * b; }); | 
 |  | 
 |   for (int k = 0; k < kNumIterations; ++k) { | 
 |     if (k == 0) { | 
 |       // Add masker from the same band. | 
 |       std::copy(same_band_masker.begin(), same_band_masker.end(), | 
 |                 masker.begin()); | 
 |     } else { | 
 |       // Add masker for neightboring bands. | 
 |       std::transform(nearend_power.begin(), nearend_power.end(), | 
 |                      gain_squared->begin(), neighboring_bands_masker.begin(), | 
 |                      std::multiplies<float>()); | 
 |       std::transform(neighboring_bands_masker.begin(), | 
 |                      neighboring_bands_masker.end(), | 
 |                      comfort_noise_power.begin(), | 
 |                      neighboring_bands_masker.begin(), std::plus<float>()); | 
 |       std::transform( | 
 |           neighboring_bands_masker.begin(), neighboring_bands_masker.end() - 2, | 
 |           neighboring_bands_masker.begin() + 2, masker.begin(), | 
 |           [&](float a, float b) { return kBandMaskingFactor * (a + b); }); | 
 |  | 
 |       // Add masker from the same band. | 
 |       std::transform(same_band_masker.begin(), same_band_masker.end(), | 
 |                      masker.begin(), masker.begin(), std::plus<float>()); | 
 |     } | 
 |  | 
 |     // Compute new gain as: | 
 |     // G2(t,f) = (comfort_noise_power(t,f) + G2(t-1)*nearend_power(t-1)) * | 
 |     //           kTimeMaskingFactor | 
 |     //           * kEchoMaskingMargin / residual_echo_power(t,f). | 
 |     // or | 
 |     // G2(t,f) = ((comfort_noise_power(t,f) + G2(t-1) * | 
 |     //             nearend_power(t-1)) * kTimeMaskingFactor + | 
 |     //            (comfort_noise_power(t, f-1) + comfort_noise_power(t, f+1) + | 
 |     //             (G2(t,f-1)*nearend_power(t, f-1) + | 
 |     //              G2(t,f+1)*nearend_power(t, f+1)) * | 
 |     //             kTimeMaskingFactor) * kBandMaskingFactor) | 
 |     //           * kEchoMaskingMargin / residual_echo_power(t,f). | 
 |     std::transform( | 
 |         masker.begin(), masker.end(), one_by_residual_echo_power.begin(), | 
 |         gain_squared->begin() + 1, [&](float a, float b) { | 
 |           return b >= 0 ? std::min(kEchoMaskingMargin * a * b, 1.f) : 1.f; | 
 |         }); | 
 |  | 
 |     // Limit gain for bands with strong nearend. | 
 |     std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |                    strong_nearend.begin(), gain_squared->begin() + 1, | 
 |                    [](float a, bool b) { return b ? 1.f : a; }); | 
 |  | 
 |     // Limit the allowed gain update over time. | 
 |     std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |                    previous_gain_squared->begin(), gain_squared->begin() + 1, | 
 |                    [](float a, float b) { | 
 |                      return b < 0.0001f ? std::min(a, 0.0001f) | 
 |                                         : std::min(a, b * 2.f); | 
 |                    }); | 
 |  | 
 |     // Process the gains to avoid artefacts caused by gain realization in the | 
 |     // filterbank and impact of external pre-processing of the signal. | 
 |     GainPostProcessing(gain_squared); | 
 |   } | 
 |  | 
 |   std::copy(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |             previous_gain_squared->begin()); | 
 |  | 
 |   std::transform(gain_squared->begin() + 1, gain_squared->end() - 1, | 
 |                  nearend_power.begin() + 1, previous_masker->begin(), | 
 |                  std::multiplies<float>()); | 
 |   std::transform(previous_masker->begin(), previous_masker->end(), | 
 |                  comfort_noise_power.begin() + 1, previous_masker->begin(), | 
 |                  std::plus<float>()); | 
 |  | 
 |   std::transform(gain_squared->begin(), gain_squared->end(), gain->begin(), | 
 |                  [](float a) { return sqrtf(a); }); | 
 | } | 
 |  | 
 | }  // namespace aec3 | 
 |  | 
 | SuppressionGain::SuppressionGain(Aec3Optimization optimization) | 
 |     : optimization_(optimization) { | 
 |   previous_gain_squared_.fill(1.f); | 
 |   previous_masker_.fill(0.f); | 
 | } | 
 |  | 
 | void SuppressionGain::GetGain( | 
 |     const std::array<float, kFftLengthBy2Plus1>& nearend_power, | 
 |     const std::array<float, kFftLengthBy2Plus1>& residual_echo_power, | 
 |     const std::array<float, kFftLengthBy2Plus1>& comfort_noise_power, | 
 |     float strong_nearend_margin, | 
 |     std::array<float, kFftLengthBy2Plus1>* gain) { | 
 |   RTC_DCHECK(gain); | 
 |   switch (optimization_) { | 
 | #if defined(WEBRTC_ARCH_X86_FAMILY) | 
 |     case Aec3Optimization::kSse2: | 
 |       aec3::ComputeGains_SSE2(nearend_power, residual_echo_power, | 
 |                               comfort_noise_power, strong_nearend_margin, | 
 |                               &previous_gain_squared_, &previous_masker_, gain); | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       aec3::ComputeGains(nearend_power, residual_echo_power, | 
 |                          comfort_noise_power, strong_nearend_margin, | 
 |                          &previous_gain_squared_, &previous_masker_, gain); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace webrtc |