| /* | 
 |  *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #if defined(_MSC_VER) && _MSC_VER < 1300 | 
 | #pragma warning(disable:4786) | 
 | #endif | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #ifdef MEMORY_SANITIZER | 
 | #include <sanitizer/msan_interface.h> | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | #include <string.h> | 
 | #include <errno.h> | 
 | #include <fcntl.h> | 
 | #include <sys/time.h> | 
 | #include <sys/select.h> | 
 | #include <unistd.h> | 
 | #include <signal.h> | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | #define WIN32_LEAN_AND_MEAN | 
 | #include <windows.h> | 
 | #include <winsock2.h> | 
 | #include <ws2tcpip.h> | 
 | #undef SetPort | 
 | #endif | 
 |  | 
 | #include <algorithm> | 
 | #include <map> | 
 |  | 
 | #include "webrtc/base/basictypes.h" | 
 | #include "webrtc/base/byteorder.h" | 
 | #include "webrtc/base/common.h" | 
 | #include "webrtc/base/logging.h" | 
 | #include "webrtc/base/nethelpers.h" | 
 | #include "webrtc/base/physicalsocketserver.h" | 
 | #include "webrtc/base/timeutils.h" | 
 | #include "webrtc/base/winping.h" | 
 | #include "webrtc/base/win32socketinit.h" | 
 |  | 
 | // stm: this will tell us if we are on OSX | 
 | #ifdef HAVE_CONFIG_H | 
 | #include "config.h" | 
 | #endif | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | #include <netinet/tcp.h>  // for TCP_NODELAY | 
 | #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h | 
 | typedef void* SockOptArg; | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | typedef char* SockOptArg; | 
 | #endif | 
 |  | 
 | namespace rtc { | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | // Standard MTUs, from RFC 1191 | 
 | const uint16 PACKET_MAXIMUMS[] = { | 
 |   65535,    // Theoretical maximum, Hyperchannel | 
 |   32000,    // Nothing | 
 |   17914,    // 16Mb IBM Token Ring | 
 |   8166,     // IEEE 802.4 | 
 |   //4464,   // IEEE 802.5 (4Mb max) | 
 |   4352,     // FDDI | 
 |   //2048,   // Wideband Network | 
 |   2002,     // IEEE 802.5 (4Mb recommended) | 
 |   //1536,   // Expermental Ethernet Networks | 
 |   //1500,   // Ethernet, Point-to-Point (default) | 
 |   1492,     // IEEE 802.3 | 
 |   1006,     // SLIP, ARPANET | 
 |   //576,    // X.25 Networks | 
 |   //544,    // DEC IP Portal | 
 |   //512,    // NETBIOS | 
 |   508,      // IEEE 802/Source-Rt Bridge, ARCNET | 
 |   296,      // Point-to-Point (low delay) | 
 |   68,       // Official minimum | 
 |   0,        // End of list marker | 
 | }; | 
 |  | 
 | static const int IP_HEADER_SIZE = 20u; | 
 | static const int IPV6_HEADER_SIZE = 40u; | 
 | static const int ICMP_HEADER_SIZE = 8u; | 
 | static const int ICMP_PING_TIMEOUT_MILLIS = 10000u; | 
 | #endif | 
 |  | 
 | class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> { | 
 |  public: | 
 |   PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET) | 
 |     : ss_(ss), s_(s), enabled_events_(0), error_(0), | 
 |       state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED), | 
 |       resolver_(NULL) { | 
 | #if defined(WEBRTC_WIN) | 
 |     // EnsureWinsockInit() ensures that winsock is initialized. The default | 
 |     // version of this function doesn't do anything because winsock is | 
 |     // initialized by constructor of a static object. If neccessary libjingle | 
 |     // users can link it with a different version of this function by replacing | 
 |     // win32socketinit.cc. See win32socketinit.cc for more details. | 
 |     EnsureWinsockInit(); | 
 | #endif | 
 |     if (s_ != INVALID_SOCKET) { | 
 |       enabled_events_ = DE_READ | DE_WRITE; | 
 |  | 
 |       int type = SOCK_STREAM; | 
 |       socklen_t len = sizeof(type); | 
 |       VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len)); | 
 |       udp_ = (SOCK_DGRAM == type); | 
 |     } | 
 |   } | 
 |  | 
 |   ~PhysicalSocket() override { | 
 |     Close(); | 
 |   } | 
 |  | 
 |   // Creates the underlying OS socket (same as the "socket" function). | 
 |   virtual bool Create(int family, int type) { | 
 |     Close(); | 
 |     s_ = ::socket(family, type, 0); | 
 |     udp_ = (SOCK_DGRAM == type); | 
 |     UpdateLastError(); | 
 |     if (udp_) | 
 |       enabled_events_ = DE_READ | DE_WRITE; | 
 |     return s_ != INVALID_SOCKET; | 
 |   } | 
 |  | 
 |   SocketAddress GetLocalAddress() const override { | 
 |     sockaddr_storage addr_storage = {0}; | 
 |     socklen_t addrlen = sizeof(addr_storage); | 
 |     sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |     int result = ::getsockname(s_, addr, &addrlen); | 
 |     SocketAddress address; | 
 |     if (result >= 0) { | 
 |       SocketAddressFromSockAddrStorage(addr_storage, &address); | 
 |     } else { | 
 |       LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket=" | 
 |                       << s_; | 
 |     } | 
 |     return address; | 
 |   } | 
 |  | 
 |   SocketAddress GetRemoteAddress() const override { | 
 |     sockaddr_storage addr_storage = {0}; | 
 |     socklen_t addrlen = sizeof(addr_storage); | 
 |     sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |     int result = ::getpeername(s_, addr, &addrlen); | 
 |     SocketAddress address; | 
 |     if (result >= 0) { | 
 |       SocketAddressFromSockAddrStorage(addr_storage, &address); | 
 |     } else { | 
 |       LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket=" | 
 |                       << s_; | 
 |     } | 
 |     return address; | 
 |   } | 
 |  | 
 |   int Bind(const SocketAddress& bind_addr) override { | 
 |     sockaddr_storage addr_storage; | 
 |     size_t len = bind_addr.ToSockAddrStorage(&addr_storage); | 
 |     sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |     int err = ::bind(s_, addr, static_cast<int>(len)); | 
 |     UpdateLastError(); | 
 | #ifdef _DEBUG | 
 |     if (0 == err) { | 
 |       dbg_addr_ = "Bound @ "; | 
 |       dbg_addr_.append(GetLocalAddress().ToString()); | 
 |     } | 
 | #endif  // _DEBUG | 
 |     return err; | 
 |   } | 
 |  | 
 |   int Connect(const SocketAddress& addr) override { | 
 |     // TODO: Implicit creation is required to reconnect... | 
 |     // ...but should we make it more explicit? | 
 |     if (state_ != CS_CLOSED) { | 
 |       SetError(EALREADY); | 
 |       return SOCKET_ERROR; | 
 |     } | 
 |     if (addr.IsUnresolved()) { | 
 |       LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect"; | 
 |       resolver_ = new AsyncResolver(); | 
 |       resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult); | 
 |       resolver_->Start(addr); | 
 |       state_ = CS_CONNECTING; | 
 |       return 0; | 
 |     } | 
 |  | 
 |     return DoConnect(addr); | 
 |   } | 
 |  | 
 |   int DoConnect(const SocketAddress& connect_addr) { | 
 |     if ((s_ == INVALID_SOCKET) && | 
 |         !Create(connect_addr.family(), SOCK_STREAM)) { | 
 |       return SOCKET_ERROR; | 
 |     } | 
 |     sockaddr_storage addr_storage; | 
 |     size_t len = connect_addr.ToSockAddrStorage(&addr_storage); | 
 |     sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |     int err = ::connect(s_, addr, static_cast<int>(len)); | 
 |     UpdateLastError(); | 
 |     if (err == 0) { | 
 |       state_ = CS_CONNECTED; | 
 |     } else if (IsBlockingError(GetError())) { | 
 |       state_ = CS_CONNECTING; | 
 |       enabled_events_ |= DE_CONNECT; | 
 |     } else { | 
 |       return SOCKET_ERROR; | 
 |     } | 
 |  | 
 |     enabled_events_ |= DE_READ | DE_WRITE; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int GetError() const override { | 
 |     CritScope cs(&crit_); | 
 |     return error_; | 
 |   } | 
 |  | 
 |   void SetError(int error) override { | 
 |     CritScope cs(&crit_); | 
 |     error_ = error; | 
 |   } | 
 |  | 
 |   ConnState GetState() const override { return state_; } | 
 |  | 
 |   int GetOption(Option opt, int* value) override { | 
 |     int slevel; | 
 |     int sopt; | 
 |     if (TranslateOption(opt, &slevel, &sopt) == -1) | 
 |       return -1; | 
 |     socklen_t optlen = sizeof(*value); | 
 |     int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen); | 
 |     if (ret != -1 && opt == OPT_DONTFRAGMENT) { | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |       *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0; | 
 | #endif | 
 |     } | 
 |     return ret; | 
 |   } | 
 |  | 
 |   int SetOption(Option opt, int value) override { | 
 |     int slevel; | 
 |     int sopt; | 
 |     if (TranslateOption(opt, &slevel, &sopt) == -1) | 
 |       return -1; | 
 |     if (opt == OPT_DONTFRAGMENT) { | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |       value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT; | 
 | #endif | 
 |     } | 
 |     return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value)); | 
 |   } | 
 |  | 
 |   int Send(const void* pv, size_t cb) override { | 
 |     int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb, | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |         // Suppress SIGPIPE. Without this, attempting to send on a socket whose | 
 |         // other end is closed will result in a SIGPIPE signal being raised to | 
 |         // our process, which by default will terminate the process, which we | 
 |         // don't want. By specifying this flag, we'll just get the error EPIPE | 
 |         // instead and can handle the error gracefully. | 
 |         MSG_NOSIGNAL | 
 | #else | 
 |         0 | 
 | #endif | 
 |         ); | 
 |     UpdateLastError(); | 
 |     MaybeRemapSendError(); | 
 |     // We have seen minidumps where this may be false. | 
 |     ASSERT(sent <= static_cast<int>(cb)); | 
 |     if ((sent < 0) && IsBlockingError(GetError())) { | 
 |       enabled_events_ |= DE_WRITE; | 
 |     } | 
 |     return sent; | 
 |   } | 
 |  | 
 |   int SendTo(const void* buffer, | 
 |              size_t length, | 
 |              const SocketAddress& addr) override { | 
 |     sockaddr_storage saddr; | 
 |     size_t len = addr.ToSockAddrStorage(&saddr); | 
 |     int sent = ::sendto( | 
 |         s_, static_cast<const char *>(buffer), static_cast<int>(length), | 
 | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
 |         // Suppress SIGPIPE. See above for explanation. | 
 |         MSG_NOSIGNAL, | 
 | #else | 
 |         0, | 
 | #endif | 
 |         reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len)); | 
 |     UpdateLastError(); | 
 |     MaybeRemapSendError(); | 
 |     // We have seen minidumps where this may be false. | 
 |     ASSERT(sent <= static_cast<int>(length)); | 
 |     if ((sent < 0) && IsBlockingError(GetError())) { | 
 |       enabled_events_ |= DE_WRITE; | 
 |     } | 
 |     return sent; | 
 |   } | 
 |  | 
 |   int Recv(void* buffer, size_t length) override { | 
 |     int received = ::recv(s_, static_cast<char*>(buffer), | 
 |                           static_cast<int>(length), 0); | 
 |     if ((received == 0) && (length != 0)) { | 
 |       // Note: on graceful shutdown, recv can return 0.  In this case, we | 
 |       // pretend it is blocking, and then signal close, so that simplifying | 
 |       // assumptions can be made about Recv. | 
 |       LOG(LS_WARNING) << "EOF from socket; deferring close event"; | 
 |       // Must turn this back on so that the select() loop will notice the close | 
 |       // event. | 
 |       enabled_events_ |= DE_READ; | 
 |       SetError(EWOULDBLOCK); | 
 |       return SOCKET_ERROR; | 
 |     } | 
 |     UpdateLastError(); | 
 |     int error = GetError(); | 
 |     bool success = (received >= 0) || IsBlockingError(error); | 
 |     if (udp_ || success) { | 
 |       enabled_events_ |= DE_READ; | 
 |     } | 
 |     if (!success) { | 
 |       LOG_F(LS_VERBOSE) << "Error = " << error; | 
 |     } | 
 |     return received; | 
 |   } | 
 |  | 
 |   int RecvFrom(void* buffer, size_t length, SocketAddress* out_addr) override { | 
 |     sockaddr_storage addr_storage; | 
 |     socklen_t addr_len = sizeof(addr_storage); | 
 |     sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |     int received = ::recvfrom(s_, static_cast<char*>(buffer), | 
 |                               static_cast<int>(length), 0, addr, &addr_len); | 
 |     UpdateLastError(); | 
 |     if ((received >= 0) && (out_addr != NULL)) | 
 |       SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |     int error = GetError(); | 
 |     bool success = (received >= 0) || IsBlockingError(error); | 
 |     if (udp_ || success) { | 
 |       enabled_events_ |= DE_READ; | 
 |     } | 
 |     if (!success) { | 
 |       LOG_F(LS_VERBOSE) << "Error = " << error; | 
 |     } | 
 |     return received; | 
 |   } | 
 |  | 
 |   int Listen(int backlog) override { | 
 |     int err = ::listen(s_, backlog); | 
 |     UpdateLastError(); | 
 |     if (err == 0) { | 
 |       state_ = CS_CONNECTING; | 
 |       enabled_events_ |= DE_ACCEPT; | 
 | #ifdef _DEBUG | 
 |       dbg_addr_ = "Listening @ "; | 
 |       dbg_addr_.append(GetLocalAddress().ToString()); | 
 | #endif  // _DEBUG | 
 |     } | 
 |     return err; | 
 |   } | 
 |  | 
 |   AsyncSocket* Accept(SocketAddress* out_addr) override { | 
 |     sockaddr_storage addr_storage; | 
 |     socklen_t addr_len = sizeof(addr_storage); | 
 |     sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
 |     SOCKET s = ::accept(s_, addr, &addr_len); | 
 |     UpdateLastError(); | 
 |     if (s == INVALID_SOCKET) | 
 |       return NULL; | 
 |     enabled_events_ |= DE_ACCEPT; | 
 |     if (out_addr != NULL) | 
 |       SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
 |     return ss_->WrapSocket(s); | 
 |   } | 
 |  | 
 |   int Close() override { | 
 |     if (s_ == INVALID_SOCKET) | 
 |       return 0; | 
 |     int err = ::closesocket(s_); | 
 |     UpdateLastError(); | 
 |     s_ = INVALID_SOCKET; | 
 |     state_ = CS_CLOSED; | 
 |     enabled_events_ = 0; | 
 |     if (resolver_) { | 
 |       resolver_->Destroy(false); | 
 |       resolver_ = NULL; | 
 |     } | 
 |     return err; | 
 |   } | 
 |  | 
 |   int EstimateMTU(uint16* mtu) override { | 
 |     SocketAddress addr = GetRemoteAddress(); | 
 |     if (addr.IsAny()) { | 
 |       SetError(ENOTCONN); | 
 |       return -1; | 
 |     } | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 |     // Gets the interface MTU (TTL=1) for the interface used to reach |addr|. | 
 |     WinPing ping; | 
 |     if (!ping.IsValid()) { | 
 |       SetError(EINVAL);  // can't think of a better error ID | 
 |       return -1; | 
 |     } | 
 |     int header_size = ICMP_HEADER_SIZE; | 
 |     if (addr.family() == AF_INET6) { | 
 |       header_size += IPV6_HEADER_SIZE; | 
 |     } else if (addr.family() == AF_INET) { | 
 |       header_size += IP_HEADER_SIZE; | 
 |     } | 
 |  | 
 |     for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) { | 
 |       int32 size = PACKET_MAXIMUMS[level] - header_size; | 
 |       WinPing::PingResult result = ping.Ping(addr.ipaddr(), size, | 
 |                                              ICMP_PING_TIMEOUT_MILLIS, | 
 |                                              1, false); | 
 |       if (result == WinPing::PING_FAIL) { | 
 |         SetError(EINVAL);  // can't think of a better error ID | 
 |         return -1; | 
 |       } else if (result != WinPing::PING_TOO_LARGE) { | 
 |         *mtu = PACKET_MAXIMUMS[level]; | 
 |         return 0; | 
 |       } | 
 |     } | 
 |  | 
 |     ASSERT(false); | 
 |     return -1; | 
 | #elif defined(WEBRTC_MAC) | 
 |     // No simple way to do this on Mac OS X. | 
 |     // SIOCGIFMTU would work if we knew which interface would be used, but | 
 |     // figuring that out is pretty complicated. For now we'll return an error | 
 |     // and let the caller pick a default MTU. | 
 |     SetError(EINVAL); | 
 |     return -1; | 
 | #elif defined(WEBRTC_LINUX) | 
 |     // Gets the path MTU. | 
 |     int value; | 
 |     socklen_t vlen = sizeof(value); | 
 |     int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen); | 
 |     if (err < 0) { | 
 |       UpdateLastError(); | 
 |       return err; | 
 |     } | 
 |  | 
 |     ASSERT((0 <= value) && (value <= 65536)); | 
 |     *mtu = value; | 
 |     return 0; | 
 | #elif defined(__native_client__) | 
 |     // Most socket operations, including this, will fail in NaCl's sandbox. | 
 |     error_ = EACCES; | 
 |     return -1; | 
 | #endif | 
 |   } | 
 |  | 
 |   SocketServer* socketserver() { return ss_; } | 
 |  | 
 |  protected: | 
 |   void OnResolveResult(AsyncResolverInterface* resolver) { | 
 |     if (resolver != resolver_) { | 
 |       return; | 
 |     } | 
 |  | 
 |     int error = resolver_->GetError(); | 
 |     if (error == 0) { | 
 |       error = DoConnect(resolver_->address()); | 
 |     } else { | 
 |       Close(); | 
 |     } | 
 |  | 
 |     if (error) { | 
 |       SetError(error); | 
 |       SignalCloseEvent(this, error); | 
 |     } | 
 |   } | 
 |  | 
 |   void UpdateLastError() { | 
 |     SetError(LAST_SYSTEM_ERROR); | 
 |   } | 
 |  | 
 |   void MaybeRemapSendError() { | 
 | #if defined(WEBRTC_MAC) | 
 |     // https://developer.apple.com/library/mac/documentation/Darwin/ | 
 |     // Reference/ManPages/man2/sendto.2.html | 
 |     // ENOBUFS - The output queue for a network interface is full. | 
 |     // This generally indicates that the interface has stopped sending, | 
 |     // but may be caused by transient congestion. | 
 |     if (GetError() == ENOBUFS) { | 
 |       SetError(EWOULDBLOCK); | 
 |     } | 
 | #endif | 
 |   } | 
 |  | 
 |   static int TranslateOption(Option opt, int* slevel, int* sopt) { | 
 |     switch (opt) { | 
 |       case OPT_DONTFRAGMENT: | 
 | #if defined(WEBRTC_WIN) | 
 |         *slevel = IPPROTO_IP; | 
 |         *sopt = IP_DONTFRAGMENT; | 
 |         break; | 
 | #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__) | 
 |         LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported."; | 
 |         return -1; | 
 | #elif defined(WEBRTC_POSIX) | 
 |         *slevel = IPPROTO_IP; | 
 |         *sopt = IP_MTU_DISCOVER; | 
 |         break; | 
 | #endif | 
 |       case OPT_RCVBUF: | 
 |         *slevel = SOL_SOCKET; | 
 |         *sopt = SO_RCVBUF; | 
 |         break; | 
 |       case OPT_SNDBUF: | 
 |         *slevel = SOL_SOCKET; | 
 |         *sopt = SO_SNDBUF; | 
 |         break; | 
 |       case OPT_NODELAY: | 
 |         *slevel = IPPROTO_TCP; | 
 |         *sopt = TCP_NODELAY; | 
 |         break; | 
 |       case OPT_DSCP: | 
 |         LOG(LS_WARNING) << "Socket::OPT_DSCP not supported."; | 
 |         return -1; | 
 |       case OPT_RTP_SENDTIME_EXTN_ID: | 
 |         return -1;  // No logging is necessary as this not a OS socket option. | 
 |       default: | 
 |         ASSERT(false); | 
 |         return -1; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   PhysicalSocketServer* ss_; | 
 |   SOCKET s_; | 
 |   uint8 enabled_events_; | 
 |   bool udp_; | 
 |   int error_; | 
 |   // Protects |error_| that is accessed from different threads. | 
 |   mutable CriticalSection crit_; | 
 |   ConnState state_; | 
 |   AsyncResolver* resolver_; | 
 |  | 
 | #ifdef _DEBUG | 
 |   std::string dbg_addr_; | 
 | #endif  // _DEBUG; | 
 | }; | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | class EventDispatcher : public Dispatcher { | 
 |  public: | 
 |   EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) { | 
 |     if (pipe(afd_) < 0) | 
 |       LOG(LERROR) << "pipe failed"; | 
 |     ss_->Add(this); | 
 |   } | 
 |  | 
 |   ~EventDispatcher() override { | 
 |     ss_->Remove(this); | 
 |     close(afd_[0]); | 
 |     close(afd_[1]); | 
 |   } | 
 |  | 
 |   virtual void Signal() { | 
 |     CritScope cs(&crit_); | 
 |     if (!fSignaled_) { | 
 |       const uint8 b[1] = { 0 }; | 
 |       if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) { | 
 |         fSignaled_ = true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   uint32 GetRequestedEvents() override { return DE_READ; } | 
 |  | 
 |   void OnPreEvent(uint32 ff) override { | 
 |     // It is not possible to perfectly emulate an auto-resetting event with | 
 |     // pipes.  This simulates it by resetting before the event is handled. | 
 |  | 
 |     CritScope cs(&crit_); | 
 |     if (fSignaled_) { | 
 |       uint8 b[4];  // Allow for reading more than 1 byte, but expect 1. | 
 |       VERIFY(1 == read(afd_[0], b, sizeof(b))); | 
 |       fSignaled_ = false; | 
 |     } | 
 |   } | 
 |  | 
 |   void OnEvent(uint32 ff, int err) override { ASSERT(false); } | 
 |  | 
 |   int GetDescriptor() override { return afd_[0]; } | 
 |  | 
 |   bool IsDescriptorClosed() override { return false; } | 
 |  | 
 |  private: | 
 |   PhysicalSocketServer *ss_; | 
 |   int afd_[2]; | 
 |   bool fSignaled_; | 
 |   CriticalSection crit_; | 
 | }; | 
 |  | 
 | // These two classes use the self-pipe trick to deliver POSIX signals to our | 
 | // select loop. This is the only safe, reliable, cross-platform way to do | 
 | // non-trivial things with a POSIX signal in an event-driven program (until | 
 | // proper pselect() implementations become ubiquitous). | 
 |  | 
 | class PosixSignalHandler { | 
 |  public: | 
 |   // POSIX only specifies 32 signals, but in principle the system might have | 
 |   // more and the programmer might choose to use them, so we size our array | 
 |   // for 128. | 
 |   static const int kNumPosixSignals = 128; | 
 |  | 
 |   // There is just a single global instance. (Signal handlers do not get any | 
 |   // sort of user-defined void * parameter, so they can't access anything that | 
 |   // isn't global.) | 
 |   static PosixSignalHandler* Instance() { | 
 |     RTC_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ()); | 
 |     return &instance; | 
 |   } | 
 |  | 
 |   // Returns true if the given signal number is set. | 
 |   bool IsSignalSet(int signum) const { | 
 |     ASSERT(signum < ARRAY_SIZE(received_signal_)); | 
 |     if (signum < ARRAY_SIZE(received_signal_)) { | 
 |       return received_signal_[signum]; | 
 |     } else { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Clears the given signal number. | 
 |   void ClearSignal(int signum) { | 
 |     ASSERT(signum < ARRAY_SIZE(received_signal_)); | 
 |     if (signum < ARRAY_SIZE(received_signal_)) { | 
 |       received_signal_[signum] = false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Returns the file descriptor to monitor for signal events. | 
 |   int GetDescriptor() const { | 
 |     return afd_[0]; | 
 |   } | 
 |  | 
 |   // This is called directly from our real signal handler, so it must be | 
 |   // signal-handler-safe. That means it cannot assume anything about the | 
 |   // user-level state of the process, since the handler could be executed at any | 
 |   // time on any thread. | 
 |   void OnPosixSignalReceived(int signum) { | 
 |     if (signum >= ARRAY_SIZE(received_signal_)) { | 
 |       // We don't have space in our array for this. | 
 |       return; | 
 |     } | 
 |     // Set a flag saying we've seen this signal. | 
 |     received_signal_[signum] = true; | 
 |     // Notify application code that we got a signal. | 
 |     const uint8 b[1] = { 0 }; | 
 |     if (-1 == write(afd_[1], b, sizeof(b))) { | 
 |       // Nothing we can do here. If there's an error somehow then there's | 
 |       // nothing we can safely do from a signal handler. | 
 |       // No, we can't even safely log it. | 
 |       // But, we still have to check the return value here. Otherwise, | 
 |       // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help. | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   PosixSignalHandler() { | 
 |     if (pipe(afd_) < 0) { | 
 |       LOG_ERR(LS_ERROR) << "pipe failed"; | 
 |       return; | 
 |     } | 
 |     if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) { | 
 |       LOG_ERR(LS_WARNING) << "fcntl #1 failed"; | 
 |     } | 
 |     if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) { | 
 |       LOG_ERR(LS_WARNING) << "fcntl #2 failed"; | 
 |     } | 
 |     memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)), | 
 |            0, | 
 |            sizeof(received_signal_)); | 
 |   } | 
 |  | 
 |   ~PosixSignalHandler() { | 
 |     int fd1 = afd_[0]; | 
 |     int fd2 = afd_[1]; | 
 |     // We clobber the stored file descriptor numbers here or else in principle | 
 |     // a signal that happens to be delivered during application termination | 
 |     // could erroneously write a zero byte to an unrelated file handle in | 
 |     // OnPosixSignalReceived() if some other file happens to be opened later | 
 |     // during shutdown and happens to be given the same file descriptor number | 
 |     // as our pipe had. Unfortunately even with this precaution there is still a | 
 |     // race where that could occur if said signal happens to be handled | 
 |     // concurrently with this code and happens to have already read the value of | 
 |     // afd_[1] from memory before we clobber it, but that's unlikely. | 
 |     afd_[0] = -1; | 
 |     afd_[1] = -1; | 
 |     close(fd1); | 
 |     close(fd2); | 
 |   } | 
 |  | 
 |   int afd_[2]; | 
 |   // These are boolean flags that will be set in our signal handler and read | 
 |   // and cleared from Wait(). There is a race involved in this, but it is | 
 |   // benign. The signal handler sets the flag before signaling the pipe, so | 
 |   // we'll never end up blocking in select() while a flag is still true. | 
 |   // However, if two of the same signal arrive close to each other then it's | 
 |   // possible that the second time the handler may set the flag while it's still | 
 |   // true, meaning that signal will be missed. But the first occurrence of it | 
 |   // will still be handled, so this isn't a problem. | 
 |   // Volatile is not necessary here for correctness, but this data _is_ volatile | 
 |   // so I've marked it as such. | 
 |   volatile uint8 received_signal_[kNumPosixSignals]; | 
 | }; | 
 |  | 
 | class PosixSignalDispatcher : public Dispatcher { | 
 |  public: | 
 |   PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) { | 
 |     owner_->Add(this); | 
 |   } | 
 |  | 
 |   ~PosixSignalDispatcher() override { | 
 |     owner_->Remove(this); | 
 |   } | 
 |  | 
 |   uint32 GetRequestedEvents() override { return DE_READ; } | 
 |  | 
 |   void OnPreEvent(uint32 ff) override { | 
 |     // Events might get grouped if signals come very fast, so we read out up to | 
 |     // 16 bytes to make sure we keep the pipe empty. | 
 |     uint8 b[16]; | 
 |     ssize_t ret = read(GetDescriptor(), b, sizeof(b)); | 
 |     if (ret < 0) { | 
 |       LOG_ERR(LS_WARNING) << "Error in read()"; | 
 |     } else if (ret == 0) { | 
 |       LOG(LS_WARNING) << "Should have read at least one byte"; | 
 |     } | 
 |   } | 
 |  | 
 |   void OnEvent(uint32 ff, int err) override { | 
 |     for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals; | 
 |          ++signum) { | 
 |       if (PosixSignalHandler::Instance()->IsSignalSet(signum)) { | 
 |         PosixSignalHandler::Instance()->ClearSignal(signum); | 
 |         HandlerMap::iterator i = handlers_.find(signum); | 
 |         if (i == handlers_.end()) { | 
 |           // This can happen if a signal is delivered to our process at around | 
 |           // the same time as we unset our handler for it. It is not an error | 
 |           // condition, but it's unusual enough to be worth logging. | 
 |           LOG(LS_INFO) << "Received signal with no handler: " << signum; | 
 |         } else { | 
 |           // Otherwise, execute our handler. | 
 |           (*i->second)(signum); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   int GetDescriptor() override { | 
 |     return PosixSignalHandler::Instance()->GetDescriptor(); | 
 |   } | 
 |  | 
 |   bool IsDescriptorClosed() override { return false; } | 
 |  | 
 |   void SetHandler(int signum, void (*handler)(int)) { | 
 |     handlers_[signum] = handler; | 
 |   } | 
 |  | 
 |   void ClearHandler(int signum) { | 
 |     handlers_.erase(signum); | 
 |   } | 
 |  | 
 |   bool HasHandlers() { | 
 |     return !handlers_.empty(); | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef std::map<int, void (*)(int)> HandlerMap; | 
 |  | 
 |   HandlerMap handlers_; | 
 |   // Our owner. | 
 |   PhysicalSocketServer *owner_; | 
 | }; | 
 |  | 
 | class SocketDispatcher : public Dispatcher, public PhysicalSocket { | 
 |  public: | 
 |   explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) { | 
 |   } | 
 |   SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) { | 
 |   } | 
 |  | 
 |   ~SocketDispatcher() override { | 
 |     Close(); | 
 |   } | 
 |  | 
 |   bool Initialize() { | 
 |     ss_->Add(this); | 
 |     fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK); | 
 |     return true; | 
 |   } | 
 |  | 
 |   virtual bool Create(int type) { | 
 |     return Create(AF_INET, type); | 
 |   } | 
 |  | 
 |   bool Create(int family, int type) override { | 
 |     // Change the socket to be non-blocking. | 
 |     if (!PhysicalSocket::Create(family, type)) | 
 |       return false; | 
 |  | 
 |     return Initialize(); | 
 |   } | 
 |  | 
 |   int GetDescriptor() override { return s_; } | 
 |  | 
 |   bool IsDescriptorClosed() override { | 
 |     // We don't have a reliable way of distinguishing end-of-stream | 
 |     // from readability.  So test on each readable call.  Is this | 
 |     // inefficient?  Probably. | 
 |     char ch; | 
 |     ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK); | 
 |     if (res > 0) { | 
 |       // Data available, so not closed. | 
 |       return false; | 
 |     } else if (res == 0) { | 
 |       // EOF, so closed. | 
 |       return true; | 
 |     } else {  // error | 
 |       switch (errno) { | 
 |         // Returned if we've already closed s_. | 
 |         case EBADF: | 
 |         // Returned during ungraceful peer shutdown. | 
 |         case ECONNRESET: | 
 |           return true; | 
 |         default: | 
 |           // Assume that all other errors are just blocking errors, meaning the | 
 |           // connection is still good but we just can't read from it right now. | 
 |           // This should only happen when connecting (and at most once), because | 
 |           // in all other cases this function is only called if the file | 
 |           // descriptor is already known to be in the readable state. However, | 
 |           // it's not necessary a problem if we spuriously interpret a | 
 |           // "connection lost"-type error as a blocking error, because typically | 
 |           // the next recv() will get EOF, so we'll still eventually notice that | 
 |           // the socket is closed. | 
 |           LOG_ERR(LS_WARNING) << "Assuming benign blocking error"; | 
 |           return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   uint32 GetRequestedEvents() override { return enabled_events_; } | 
 |  | 
 |   void OnPreEvent(uint32 ff) override { | 
 |     if ((ff & DE_CONNECT) != 0) | 
 |       state_ = CS_CONNECTED; | 
 |     if ((ff & DE_CLOSE) != 0) | 
 |       state_ = CS_CLOSED; | 
 |   } | 
 |  | 
 |   void OnEvent(uint32 ff, int err) override { | 
 |     // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
 |     // something like a READ followed by a CONNECT, which would be odd. | 
 |     if ((ff & DE_CONNECT) != 0) { | 
 |       enabled_events_ &= ~DE_CONNECT; | 
 |       SignalConnectEvent(this); | 
 |     } | 
 |     if ((ff & DE_ACCEPT) != 0) { | 
 |       enabled_events_ &= ~DE_ACCEPT; | 
 |       SignalReadEvent(this); | 
 |     } | 
 |     if ((ff & DE_READ) != 0) { | 
 |       enabled_events_ &= ~DE_READ; | 
 |       SignalReadEvent(this); | 
 |     } | 
 |     if ((ff & DE_WRITE) != 0) { | 
 |       enabled_events_ &= ~DE_WRITE; | 
 |       SignalWriteEvent(this); | 
 |     } | 
 |     if ((ff & DE_CLOSE) != 0) { | 
 |       // The socket is now dead to us, so stop checking it. | 
 |       enabled_events_ = 0; | 
 |       SignalCloseEvent(this, err); | 
 |     } | 
 |   } | 
 |  | 
 |   int Close() override { | 
 |     if (s_ == INVALID_SOCKET) | 
 |       return 0; | 
 |  | 
 |     ss_->Remove(this); | 
 |     return PhysicalSocket::Close(); | 
 |   } | 
 | }; | 
 |  | 
 | class FileDispatcher: public Dispatcher, public AsyncFile { | 
 |  public: | 
 |   FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) { | 
 |     set_readable(true); | 
 |  | 
 |     ss_->Add(this); | 
 |  | 
 |     fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK); | 
 |   } | 
 |  | 
 |   ~FileDispatcher() override { | 
 |     ss_->Remove(this); | 
 |   } | 
 |  | 
 |   SocketServer* socketserver() { return ss_; } | 
 |  | 
 |   int GetDescriptor() override { return fd_; } | 
 |  | 
 |   bool IsDescriptorClosed() override { return false; } | 
 |  | 
 |   uint32 GetRequestedEvents() override { return flags_; } | 
 |  | 
 |   void OnPreEvent(uint32 ff) override {} | 
 |  | 
 |   void OnEvent(uint32 ff, int err) override { | 
 |     if ((ff & DE_READ) != 0) | 
 |       SignalReadEvent(this); | 
 |     if ((ff & DE_WRITE) != 0) | 
 |       SignalWriteEvent(this); | 
 |     if ((ff & DE_CLOSE) != 0) | 
 |       SignalCloseEvent(this, err); | 
 |   } | 
 |  | 
 |   bool readable() override { return (flags_ & DE_READ) != 0; } | 
 |  | 
 |   void set_readable(bool value) override { | 
 |     flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ); | 
 |   } | 
 |  | 
 |   bool writable() override { return (flags_ & DE_WRITE) != 0; } | 
 |  | 
 |   void set_writable(bool value) override { | 
 |     flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE); | 
 |   } | 
 |  | 
 |  private: | 
 |   PhysicalSocketServer* ss_; | 
 |   int fd_; | 
 |   int flags_; | 
 | }; | 
 |  | 
 | AsyncFile* PhysicalSocketServer::CreateFile(int fd) { | 
 |   return new FileDispatcher(fd, this); | 
 | } | 
 |  | 
 | #endif // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | static uint32 FlagsToEvents(uint32 events) { | 
 |   uint32 ffFD = FD_CLOSE; | 
 |   if (events & DE_READ) | 
 |     ffFD |= FD_READ; | 
 |   if (events & DE_WRITE) | 
 |     ffFD |= FD_WRITE; | 
 |   if (events & DE_CONNECT) | 
 |     ffFD |= FD_CONNECT; | 
 |   if (events & DE_ACCEPT) | 
 |     ffFD |= FD_ACCEPT; | 
 |   return ffFD; | 
 | } | 
 |  | 
 | class EventDispatcher : public Dispatcher { | 
 |  public: | 
 |   EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) { | 
 |     hev_ = WSACreateEvent(); | 
 |     if (hev_) { | 
 |       ss_->Add(this); | 
 |     } | 
 |   } | 
 |  | 
 |   ~EventDispatcher() { | 
 |     if (hev_ != NULL) { | 
 |       ss_->Remove(this); | 
 |       WSACloseEvent(hev_); | 
 |       hev_ = NULL; | 
 |     } | 
 |   } | 
 |  | 
 |   virtual void Signal() { | 
 |     if (hev_ != NULL) | 
 |       WSASetEvent(hev_); | 
 |   } | 
 |  | 
 |   virtual uint32 GetRequestedEvents() { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   virtual void OnPreEvent(uint32 ff) { | 
 |     WSAResetEvent(hev_); | 
 |   } | 
 |  | 
 |   virtual void OnEvent(uint32 ff, int err) { | 
 |   } | 
 |  | 
 |   virtual WSAEVENT GetWSAEvent() { | 
 |     return hev_; | 
 |   } | 
 |  | 
 |   virtual SOCKET GetSocket() { | 
 |     return INVALID_SOCKET; | 
 |   } | 
 |  | 
 |   virtual bool CheckSignalClose() { return false; } | 
 |  | 
 | private: | 
 |   PhysicalSocketServer* ss_; | 
 |   WSAEVENT hev_; | 
 | }; | 
 |  | 
 | class SocketDispatcher : public Dispatcher, public PhysicalSocket { | 
 |  public: | 
 |   static int next_id_; | 
 |   int id_; | 
 |   bool signal_close_; | 
 |   int signal_err_; | 
 |  | 
 |   SocketDispatcher(PhysicalSocketServer* ss) | 
 |       : PhysicalSocket(ss), | 
 |         id_(0), | 
 |         signal_close_(false) { | 
 |   } | 
 |  | 
 |   SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) | 
 |       : PhysicalSocket(ss, s), | 
 |         id_(0), | 
 |         signal_close_(false) { | 
 |   } | 
 |  | 
 |   virtual ~SocketDispatcher() { | 
 |     Close(); | 
 |   } | 
 |  | 
 |   bool Initialize() { | 
 |     ASSERT(s_ != INVALID_SOCKET); | 
 |     // Must be a non-blocking | 
 |     u_long argp = 1; | 
 |     ioctlsocket(s_, FIONBIO, &argp); | 
 |     ss_->Add(this); | 
 |     return true; | 
 |   } | 
 |  | 
 |   virtual bool Create(int type) { | 
 |     return Create(AF_INET, type); | 
 |   } | 
 |  | 
 |   virtual bool Create(int family, int type) { | 
 |     // Create socket | 
 |     if (!PhysicalSocket::Create(family, type)) | 
 |       return false; | 
 |  | 
 |     if (!Initialize()) | 
 |       return false; | 
 |  | 
 |     do { id_ = ++next_id_; } while (id_ == 0); | 
 |     return true; | 
 |   } | 
 |  | 
 |   virtual int Close() { | 
 |     if (s_ == INVALID_SOCKET) | 
 |       return 0; | 
 |  | 
 |     id_ = 0; | 
 |     signal_close_ = false; | 
 |     ss_->Remove(this); | 
 |     return PhysicalSocket::Close(); | 
 |   } | 
 |  | 
 |   virtual uint32 GetRequestedEvents() { | 
 |     return enabled_events_; | 
 |   } | 
 |  | 
 |   virtual void OnPreEvent(uint32 ff) { | 
 |     if ((ff & DE_CONNECT) != 0) | 
 |       state_ = CS_CONNECTED; | 
 |     // We set CS_CLOSED from CheckSignalClose. | 
 |   } | 
 |  | 
 |   virtual void OnEvent(uint32 ff, int err) { | 
 |     int cache_id = id_; | 
 |     // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
 |     // something like a READ followed by a CONNECT, which would be odd. | 
 |     if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) { | 
 |       if (ff != DE_CONNECT) | 
 |         LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff; | 
 |       enabled_events_ &= ~DE_CONNECT; | 
 | #ifdef _DEBUG | 
 |       dbg_addr_ = "Connected @ "; | 
 |       dbg_addr_.append(GetRemoteAddress().ToString()); | 
 | #endif  // _DEBUG | 
 |       SignalConnectEvent(this); | 
 |     } | 
 |     if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) { | 
 |       enabled_events_ &= ~DE_ACCEPT; | 
 |       SignalReadEvent(this); | 
 |     } | 
 |     if ((ff & DE_READ) != 0) { | 
 |       enabled_events_ &= ~DE_READ; | 
 |       SignalReadEvent(this); | 
 |     } | 
 |     if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) { | 
 |       enabled_events_ &= ~DE_WRITE; | 
 |       SignalWriteEvent(this); | 
 |     } | 
 |     if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) { | 
 |       signal_close_ = true; | 
 |       signal_err_ = err; | 
 |     } | 
 |   } | 
 |  | 
 |   virtual WSAEVENT GetWSAEvent() { | 
 |     return WSA_INVALID_EVENT; | 
 |   } | 
 |  | 
 |   virtual SOCKET GetSocket() { | 
 |     return s_; | 
 |   } | 
 |  | 
 |   virtual bool CheckSignalClose() { | 
 |     if (!signal_close_) | 
 |       return false; | 
 |  | 
 |     char ch; | 
 |     if (recv(s_, &ch, 1, MSG_PEEK) > 0) | 
 |       return false; | 
 |  | 
 |     state_ = CS_CLOSED; | 
 |     signal_close_ = false; | 
 |     SignalCloseEvent(this, signal_err_); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | int SocketDispatcher::next_id_ = 0; | 
 |  | 
 | #endif  // WEBRTC_WIN  | 
 |  | 
 | // Sets the value of a boolean value to false when signaled. | 
 | class Signaler : public EventDispatcher { | 
 |  public: | 
 |   Signaler(PhysicalSocketServer* ss, bool* pf) | 
 |       : EventDispatcher(ss), pf_(pf) { | 
 |   } | 
 |   ~Signaler() override { } | 
 |  | 
 |   void OnEvent(uint32 ff, int err) override { | 
 |     if (pf_) | 
 |       *pf_ = false; | 
 |   } | 
 |  | 
 |  private: | 
 |   bool *pf_; | 
 | }; | 
 |  | 
 | PhysicalSocketServer::PhysicalSocketServer() | 
 |     : fWait_(false) { | 
 |   signal_wakeup_ = new Signaler(this, &fWait_); | 
 | #if defined(WEBRTC_WIN) | 
 |   socket_ev_ = WSACreateEvent(); | 
 | #endif | 
 | } | 
 |  | 
 | PhysicalSocketServer::~PhysicalSocketServer() { | 
 | #if defined(WEBRTC_WIN) | 
 |   WSACloseEvent(socket_ev_); | 
 | #endif | 
 | #if defined(WEBRTC_POSIX) | 
 |   signal_dispatcher_.reset(); | 
 | #endif | 
 |   delete signal_wakeup_; | 
 |   ASSERT(dispatchers_.empty()); | 
 | } | 
 |  | 
 | void PhysicalSocketServer::WakeUp() { | 
 |   signal_wakeup_->Signal(); | 
 | } | 
 |  | 
 | Socket* PhysicalSocketServer::CreateSocket(int type) { | 
 |   return CreateSocket(AF_INET, type); | 
 | } | 
 |  | 
 | Socket* PhysicalSocketServer::CreateSocket(int family, int type) { | 
 |   PhysicalSocket* socket = new PhysicalSocket(this); | 
 |   if (socket->Create(family, type)) { | 
 |     return socket; | 
 |   } else { | 
 |     delete socket; | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) { | 
 |   return CreateAsyncSocket(AF_INET, type); | 
 | } | 
 |  | 
 | AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) { | 
 |   SocketDispatcher* dispatcher = new SocketDispatcher(this); | 
 |   if (dispatcher->Create(family, type)) { | 
 |     return dispatcher; | 
 |   } else { | 
 |     delete dispatcher; | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) { | 
 |   SocketDispatcher* dispatcher = new SocketDispatcher(s, this); | 
 |   if (dispatcher->Initialize()) { | 
 |     return dispatcher; | 
 |   } else { | 
 |     delete dispatcher; | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Add(Dispatcher *pdispatcher) { | 
 |   CritScope cs(&crit_); | 
 |   // Prevent duplicates. This can cause dead dispatchers to stick around. | 
 |   DispatcherList::iterator pos = std::find(dispatchers_.begin(), | 
 |                                            dispatchers_.end(), | 
 |                                            pdispatcher); | 
 |   if (pos != dispatchers_.end()) | 
 |     return; | 
 |   dispatchers_.push_back(pdispatcher); | 
 | } | 
 |  | 
 | void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) { | 
 |   CritScope cs(&crit_); | 
 |   DispatcherList::iterator pos = std::find(dispatchers_.begin(), | 
 |                                            dispatchers_.end(), | 
 |                                            pdispatcher); | 
 |   // We silently ignore duplicate calls to Add, so we should silently ignore | 
 |   // the (expected) symmetric calls to Remove. Note that this may still hide | 
 |   // a real issue, so we at least log a warning about it. | 
 |   if (pos == dispatchers_.end()) { | 
 |     LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown " | 
 |                     << "dispatcher, potentially from a duplicate call to Add."; | 
 |     return; | 
 |   } | 
 |   size_t index = pos - dispatchers_.begin(); | 
 |   dispatchers_.erase(pos); | 
 |   for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end(); | 
 |        ++it) { | 
 |     if (index < **it) { | 
 |       --**it; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if defined(WEBRTC_POSIX) | 
 | bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { | 
 |   // Calculate timing information | 
 |  | 
 |   struct timeval *ptvWait = NULL; | 
 |   struct timeval tvWait; | 
 |   struct timeval tvStop; | 
 |   if (cmsWait != kForever) { | 
 |     // Calculate wait timeval | 
 |     tvWait.tv_sec = cmsWait / 1000; | 
 |     tvWait.tv_usec = (cmsWait % 1000) * 1000; | 
 |     ptvWait = &tvWait; | 
 |  | 
 |     // Calculate when to return in a timeval | 
 |     gettimeofday(&tvStop, NULL); | 
 |     tvStop.tv_sec += tvWait.tv_sec; | 
 |     tvStop.tv_usec += tvWait.tv_usec; | 
 |     if (tvStop.tv_usec >= 1000000) { | 
 |       tvStop.tv_usec -= 1000000; | 
 |       tvStop.tv_sec += 1; | 
 |     } | 
 |   } | 
 |  | 
 |   // Zero all fd_sets. Don't need to do this inside the loop since | 
 |   // select() zeros the descriptors not signaled | 
 |  | 
 |   fd_set fdsRead; | 
 |   FD_ZERO(&fdsRead); | 
 |   fd_set fdsWrite; | 
 |   FD_ZERO(&fdsWrite); | 
 |   // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the | 
 |   // inline assembly in FD_ZERO. | 
 |   // http://crbug.com/344505 | 
 | #ifdef MEMORY_SANITIZER | 
 |   __msan_unpoison(&fdsRead, sizeof(fdsRead)); | 
 |   __msan_unpoison(&fdsWrite, sizeof(fdsWrite)); | 
 | #endif | 
 |  | 
 |   fWait_ = true; | 
 |  | 
 |   while (fWait_) { | 
 |     int fdmax = -1; | 
 |     { | 
 |       CritScope cr(&crit_); | 
 |       for (size_t i = 0; i < dispatchers_.size(); ++i) { | 
 |         // Query dispatchers for read and write wait state | 
 |         Dispatcher *pdispatcher = dispatchers_[i]; | 
 |         ASSERT(pdispatcher); | 
 |         if (!process_io && (pdispatcher != signal_wakeup_)) | 
 |           continue; | 
 |         int fd = pdispatcher->GetDescriptor(); | 
 |         if (fd > fdmax) | 
 |           fdmax = fd; | 
 |  | 
 |         uint32 ff = pdispatcher->GetRequestedEvents(); | 
 |         if (ff & (DE_READ | DE_ACCEPT)) | 
 |           FD_SET(fd, &fdsRead); | 
 |         if (ff & (DE_WRITE | DE_CONNECT)) | 
 |           FD_SET(fd, &fdsWrite); | 
 |       } | 
 |     } | 
 |  | 
 |     // Wait then call handlers as appropriate | 
 |     // < 0 means error | 
 |     // 0 means timeout | 
 |     // > 0 means count of descriptors ready | 
 |     int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait); | 
 |  | 
 |     // If error, return error. | 
 |     if (n < 0) { | 
 |       if (errno != EINTR) { | 
 |         LOG_E(LS_ERROR, EN, errno) << "select"; | 
 |         return false; | 
 |       } | 
 |       // Else ignore the error and keep going. If this EINTR was for one of the | 
 |       // signals managed by this PhysicalSocketServer, the | 
 |       // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
 |       // iteration. | 
 |     } else if (n == 0) { | 
 |       // If timeout, return success | 
 |       return true; | 
 |     } else { | 
 |       // We have signaled descriptors | 
 |       CritScope cr(&crit_); | 
 |       for (size_t i = 0; i < dispatchers_.size(); ++i) { | 
 |         Dispatcher *pdispatcher = dispatchers_[i]; | 
 |         int fd = pdispatcher->GetDescriptor(); | 
 |         uint32 ff = 0; | 
 |         int errcode = 0; | 
 |  | 
 |         // Reap any error code, which can be signaled through reads or writes. | 
 |         // TODO: Should we set errcode if getsockopt fails? | 
 |         if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) { | 
 |           socklen_t len = sizeof(errcode); | 
 |           ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len); | 
 |         } | 
 |  | 
 |         // Check readable descriptors. If we're waiting on an accept, signal | 
 |         // that. Otherwise we're waiting for data, check to see if we're | 
 |         // readable or really closed. | 
 |         // TODO: Only peek at TCP descriptors. | 
 |         if (FD_ISSET(fd, &fdsRead)) { | 
 |           FD_CLR(fd, &fdsRead); | 
 |           if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) { | 
 |             ff |= DE_ACCEPT; | 
 |           } else if (errcode || pdispatcher->IsDescriptorClosed()) { | 
 |             ff |= DE_CLOSE; | 
 |           } else { | 
 |             ff |= DE_READ; | 
 |           } | 
 |         } | 
 |  | 
 |         // Check writable descriptors. If we're waiting on a connect, detect | 
 |         // success versus failure by the reaped error code. | 
 |         if (FD_ISSET(fd, &fdsWrite)) { | 
 |           FD_CLR(fd, &fdsWrite); | 
 |           if (pdispatcher->GetRequestedEvents() & DE_CONNECT) { | 
 |             if (!errcode) { | 
 |               ff |= DE_CONNECT; | 
 |             } else { | 
 |               ff |= DE_CLOSE; | 
 |             } | 
 |           } else { | 
 |             ff |= DE_WRITE; | 
 |           } | 
 |         } | 
 |  | 
 |         // Tell the descriptor about the event. | 
 |         if (ff != 0) { | 
 |           pdispatcher->OnPreEvent(ff); | 
 |           pdispatcher->OnEvent(ff, errcode); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Recalc the time remaining to wait. Doing it here means it doesn't get | 
 |     // calced twice the first time through the loop | 
 |     if (ptvWait) { | 
 |       ptvWait->tv_sec = 0; | 
 |       ptvWait->tv_usec = 0; | 
 |       struct timeval tvT; | 
 |       gettimeofday(&tvT, NULL); | 
 |       if ((tvStop.tv_sec > tvT.tv_sec) | 
 |           || ((tvStop.tv_sec == tvT.tv_sec) | 
 |               && (tvStop.tv_usec > tvT.tv_usec))) { | 
 |         ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec; | 
 |         ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec; | 
 |         if (ptvWait->tv_usec < 0) { | 
 |           ASSERT(ptvWait->tv_sec > 0); | 
 |           ptvWait->tv_usec += 1000000; | 
 |           ptvWait->tv_sec -= 1; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void GlobalSignalHandler(int signum) { | 
 |   PosixSignalHandler::Instance()->OnPosixSignalReceived(signum); | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::SetPosixSignalHandler(int signum, | 
 |                                                  void (*handler)(int)) { | 
 |   // If handler is SIG_IGN or SIG_DFL then clear our user-level handler, | 
 |   // otherwise set one. | 
 |   if (handler == SIG_IGN || handler == SIG_DFL) { | 
 |     if (!InstallSignal(signum, handler)) { | 
 |       return false; | 
 |     } | 
 |     if (signal_dispatcher_) { | 
 |       signal_dispatcher_->ClearHandler(signum); | 
 |       if (!signal_dispatcher_->HasHandlers()) { | 
 |         signal_dispatcher_.reset(); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (!signal_dispatcher_) { | 
 |       signal_dispatcher_.reset(new PosixSignalDispatcher(this)); | 
 |     } | 
 |     signal_dispatcher_->SetHandler(signum, handler); | 
 |     if (!InstallSignal(signum, &GlobalSignalHandler)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | Dispatcher* PhysicalSocketServer::signal_dispatcher() { | 
 |   return signal_dispatcher_.get(); | 
 | } | 
 |  | 
 | bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) { | 
 |   struct sigaction act; | 
 |   // It doesn't really matter what we set this mask to. | 
 |   if (sigemptyset(&act.sa_mask) != 0) { | 
 |     LOG_ERR(LS_ERROR) << "Couldn't set mask"; | 
 |     return false; | 
 |   } | 
 |   act.sa_handler = handler; | 
 | #if !defined(__native_client__) | 
 |   // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it | 
 |   // and it's a nuisance. Though some syscalls still return EINTR and there's no | 
 |   // real standard for which ones. :( | 
 |   act.sa_flags = SA_RESTART; | 
 | #else | 
 |   act.sa_flags = 0; | 
 | #endif | 
 |   if (sigaction(signum, &act, NULL) != 0) { | 
 |     LOG_ERR(LS_ERROR) << "Couldn't set sigaction"; | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 | #endif  // WEBRTC_POSIX | 
 |  | 
 | #if defined(WEBRTC_WIN) | 
 | bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { | 
 |   int cmsTotal = cmsWait; | 
 |   int cmsElapsed = 0; | 
 |   uint32 msStart = Time(); | 
 |  | 
 |   fWait_ = true; | 
 |   while (fWait_) { | 
 |     std::vector<WSAEVENT> events; | 
 |     std::vector<Dispatcher *> event_owners; | 
 |  | 
 |     events.push_back(socket_ev_); | 
 |  | 
 |     { | 
 |       CritScope cr(&crit_); | 
 |       size_t i = 0; | 
 |       iterators_.push_back(&i); | 
 |       // Don't track dispatchers_.size(), because we want to pick up any new | 
 |       // dispatchers that were added while processing the loop. | 
 |       while (i < dispatchers_.size()) { | 
 |         Dispatcher* disp = dispatchers_[i++]; | 
 |         if (!process_io && (disp != signal_wakeup_)) | 
 |           continue; | 
 |         SOCKET s = disp->GetSocket(); | 
 |         if (disp->CheckSignalClose()) { | 
 |           // We just signalled close, don't poll this socket | 
 |         } else if (s != INVALID_SOCKET) { | 
 |           WSAEventSelect(s, | 
 |                          events[0], | 
 |                          FlagsToEvents(disp->GetRequestedEvents())); | 
 |         } else { | 
 |           events.push_back(disp->GetWSAEvent()); | 
 |           event_owners.push_back(disp); | 
 |         } | 
 |       } | 
 |       ASSERT(iterators_.back() == &i); | 
 |       iterators_.pop_back(); | 
 |     } | 
 |  | 
 |     // Which is shorter, the delay wait or the asked wait? | 
 |  | 
 |     int cmsNext; | 
 |     if (cmsWait == kForever) { | 
 |       cmsNext = cmsWait; | 
 |     } else { | 
 |       cmsNext = std::max(0, cmsTotal - cmsElapsed); | 
 |     } | 
 |  | 
 |     // Wait for one of the events to signal | 
 |     DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), | 
 |                                         &events[0], | 
 |                                         false, | 
 |                                         cmsNext, | 
 |                                         false); | 
 |  | 
 |     if (dw == WSA_WAIT_FAILED) { | 
 |       // Failed? | 
 |       // TODO: need a better strategy than this! | 
 |       WSAGetLastError(); | 
 |       ASSERT(false); | 
 |       return false; | 
 |     } else if (dw == WSA_WAIT_TIMEOUT) { | 
 |       // Timeout? | 
 |       return true; | 
 |     } else { | 
 |       // Figure out which one it is and call it | 
 |       CritScope cr(&crit_); | 
 |       int index = dw - WSA_WAIT_EVENT_0; | 
 |       if (index > 0) { | 
 |         --index; // The first event is the socket event | 
 |         event_owners[index]->OnPreEvent(0); | 
 |         event_owners[index]->OnEvent(0, 0); | 
 |       } else if (process_io) { | 
 |         size_t i = 0, end = dispatchers_.size(); | 
 |         iterators_.push_back(&i); | 
 |         iterators_.push_back(&end);  // Don't iterate over new dispatchers. | 
 |         while (i < end) { | 
 |           Dispatcher* disp = dispatchers_[i++]; | 
 |           SOCKET s = disp->GetSocket(); | 
 |           if (s == INVALID_SOCKET) | 
 |             continue; | 
 |  | 
 |           WSANETWORKEVENTS wsaEvents; | 
 |           int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents); | 
 |           if (err == 0) { | 
 |  | 
 | #if LOGGING | 
 |             { | 
 |               if ((wsaEvents.lNetworkEvents & FD_READ) && | 
 |                   wsaEvents.iErrorCode[FD_READ_BIT] != 0) { | 
 |                 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error " | 
 |                              << wsaEvents.iErrorCode[FD_READ_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_WRITE) && | 
 |                   wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) { | 
 |                 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error " | 
 |                              << wsaEvents.iErrorCode[FD_WRITE_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_CONNECT) && | 
 |                   wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) { | 
 |                 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error " | 
 |                              << wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && | 
 |                   wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) { | 
 |                 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error " | 
 |                              << wsaEvents.iErrorCode[FD_ACCEPT_BIT]; | 
 |               } | 
 |               if ((wsaEvents.lNetworkEvents & FD_CLOSE) && | 
 |                   wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) { | 
 |                 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error " | 
 |                              << wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
 |               } | 
 |             } | 
 | #endif | 
 |             uint32 ff = 0; | 
 |             int errcode = 0; | 
 |             if (wsaEvents.lNetworkEvents & FD_READ) | 
 |               ff |= DE_READ; | 
 |             if (wsaEvents.lNetworkEvents & FD_WRITE) | 
 |               ff |= DE_WRITE; | 
 |             if (wsaEvents.lNetworkEvents & FD_CONNECT) { | 
 |               if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) { | 
 |                 ff |= DE_CONNECT; | 
 |               } else { | 
 |                 ff |= DE_CLOSE; | 
 |                 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
 |               } | 
 |             } | 
 |             if (wsaEvents.lNetworkEvents & FD_ACCEPT) | 
 |               ff |= DE_ACCEPT; | 
 |             if (wsaEvents.lNetworkEvents & FD_CLOSE) { | 
 |               ff |= DE_CLOSE; | 
 |               errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
 |             } | 
 |             if (ff != 0) { | 
 |               disp->OnPreEvent(ff); | 
 |               disp->OnEvent(ff, errcode); | 
 |             } | 
 |           } | 
 |         } | 
 |         ASSERT(iterators_.back() == &end); | 
 |         iterators_.pop_back(); | 
 |         ASSERT(iterators_.back() == &i); | 
 |         iterators_.pop_back(); | 
 |       } | 
 |  | 
 |       // Reset the network event until new activity occurs | 
 |       WSAResetEvent(socket_ev_); | 
 |     } | 
 |  | 
 |     // Break? | 
 |     if (!fWait_) | 
 |       break; | 
 |     cmsElapsed = TimeSince(msStart); | 
 |     if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) { | 
 |        break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Done | 
 |   return true; | 
 | } | 
 | #endif  // WEBRTC_WIN  | 
 |  | 
 | }  // namespace rtc |