|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/audio_coding/neteq/payload_splitter.h" | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "webrtc/modules/audio_coding/neteq/decoder_database.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | // The method loops through a list of packets {A, B, C, ...}. Each packet is | 
|  | // split into its corresponding RED payloads, {A1, A2, ...}, which is | 
|  | // temporarily held in the list |new_packets|. | 
|  | // When the first packet in |packet_list| has been processed, the orignal packet | 
|  | // is replaced by the new ones in |new_packets|, so that |packet_list| becomes: | 
|  | // {A1, A2, ..., B, C, ...}. The method then continues with B, and C, until all | 
|  | // the original packets have been replaced by their split payloads. | 
|  | int PayloadSplitter::SplitRed(PacketList* packet_list) { | 
|  | int ret = kOK; | 
|  | PacketList::iterator it = packet_list->begin(); | 
|  | while (it != packet_list->end()) { | 
|  | PacketList new_packets;  // An empty list to store the split packets in. | 
|  | Packet* red_packet = (*it); | 
|  | assert(red_packet->payload); | 
|  | uint8_t* payload_ptr = red_packet->payload; | 
|  |  | 
|  | // Read RED headers (according to RFC 2198): | 
|  | // | 
|  | //    0                   1                   2                   3 | 
|  | //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | 
|  | //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | //   |F|   block PT  |  timestamp offset         |   block length    | | 
|  | //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
|  | // Last RED header: | 
|  | //    0 1 2 3 4 5 6 7 | 
|  | //   +-+-+-+-+-+-+-+-+ | 
|  | //   |0|   Block PT  | | 
|  | //   +-+-+-+-+-+-+-+-+ | 
|  |  | 
|  | bool last_block = false; | 
|  | size_t sum_length = 0; | 
|  | while (!last_block) { | 
|  | Packet* new_packet = new Packet; | 
|  | new_packet->header = red_packet->header; | 
|  | // Check the F bit. If F == 0, this was the last block. | 
|  | last_block = ((*payload_ptr & 0x80) == 0); | 
|  | // Bits 1 through 7 are payload type. | 
|  | new_packet->header.payloadType = payload_ptr[0] & 0x7F; | 
|  | if (last_block) { | 
|  | // No more header data to read. | 
|  | ++sum_length;  // Account for RED header size of 1 byte. | 
|  | new_packet->payload_length = red_packet->payload_length - sum_length; | 
|  | new_packet->primary = true;  // Last block is always primary. | 
|  | payload_ptr += 1;  // Advance to first payload byte. | 
|  | } else { | 
|  | // Bits 8 through 21 are timestamp offset. | 
|  | int timestamp_offset = (payload_ptr[1] << 6) + | 
|  | ((payload_ptr[2] & 0xFC) >> 2); | 
|  | new_packet->header.timestamp = red_packet->header.timestamp - | 
|  | timestamp_offset; | 
|  | // Bits 22 through 31 are payload length. | 
|  | new_packet->payload_length = ((payload_ptr[2] & 0x03) << 8) + | 
|  | payload_ptr[3]; | 
|  | new_packet->primary = false; | 
|  | payload_ptr += 4;  // Advance to next RED header. | 
|  | } | 
|  | sum_length += new_packet->payload_length; | 
|  | sum_length += 4;  // Account for RED header size of 4 bytes. | 
|  | // Store in new list of packets. | 
|  | new_packets.push_back(new_packet); | 
|  | } | 
|  |  | 
|  | // Populate the new packets with payload data. | 
|  | // |payload_ptr| now points at the first payload byte. | 
|  | PacketList::iterator new_it; | 
|  | for (new_it = new_packets.begin(); new_it != new_packets.end(); ++new_it) { | 
|  | size_t payload_length = (*new_it)->payload_length; | 
|  | if (payload_ptr + payload_length > | 
|  | red_packet->payload + red_packet->payload_length) { | 
|  | // The block lengths in the RED headers do not match the overall packet | 
|  | // length. Something is corrupt. Discard this and the remaining | 
|  | // payloads from this packet. | 
|  | while (new_it != new_packets.end()) { | 
|  | // Payload should not have been allocated yet. | 
|  | assert(!(*new_it)->payload); | 
|  | delete (*new_it); | 
|  | new_it = new_packets.erase(new_it); | 
|  | } | 
|  | ret = kRedLengthMismatch; | 
|  | break; | 
|  | } | 
|  | (*new_it)->payload = new uint8_t[payload_length]; | 
|  | memcpy((*new_it)->payload, payload_ptr, payload_length); | 
|  | payload_ptr += payload_length; | 
|  | } | 
|  | // Reverse the order of the new packets, so that the primary payload is | 
|  | // always first. | 
|  | new_packets.reverse(); | 
|  | // Insert new packets into original list, before the element pointed to by | 
|  | // iterator |it|. | 
|  | packet_list->splice(it, new_packets, new_packets.begin(), | 
|  | new_packets.end()); | 
|  | // Delete old packet payload. | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | // Remove |it| from the packet list. This operation effectively moves the | 
|  | // iterator |it| to the next packet in the list. Thus, we do not have to | 
|  | // increment it manually. | 
|  | it = packet_list->erase(it); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int PayloadSplitter::SplitFec(PacketList* packet_list, | 
|  | DecoderDatabase* decoder_database) { | 
|  | PacketList::iterator it = packet_list->begin(); | 
|  | // Iterate through all packets in |packet_list|. | 
|  | while (it != packet_list->end()) { | 
|  | Packet* packet = (*it);  // Just to make the notation more intuitive. | 
|  | // Get codec type for this payload. | 
|  | uint8_t payload_type = packet->header.payloadType; | 
|  | const DecoderDatabase::DecoderInfo* info = | 
|  | decoder_database->GetDecoderInfo(payload_type); | 
|  | if (!info) { | 
|  | return kUnknownPayloadType; | 
|  | } | 
|  | // No splitting for a sync-packet. | 
|  | if (packet->sync_packet) { | 
|  | ++it; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Not an FEC packet. | 
|  | AudioDecoder* decoder = decoder_database->GetDecoder(payload_type); | 
|  | // decoder should not return NULL. | 
|  | assert(decoder != NULL); | 
|  | if (!decoder || | 
|  | !decoder->PacketHasFec(packet->payload, packet->payload_length)) { | 
|  | ++it; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (info->codec_type) { | 
|  | case kDecoderOpus: | 
|  | case kDecoderOpus_2ch: { | 
|  | Packet* new_packet = new Packet; | 
|  |  | 
|  | new_packet->header = packet->header; | 
|  | int duration = decoder-> | 
|  | PacketDurationRedundant(packet->payload, packet->payload_length); | 
|  | new_packet->header.timestamp -= duration; | 
|  | new_packet->payload = new uint8_t[packet->payload_length]; | 
|  | memcpy(new_packet->payload, packet->payload, packet->payload_length); | 
|  | new_packet->payload_length = packet->payload_length; | 
|  | new_packet->primary = false; | 
|  | new_packet->waiting_time = packet->waiting_time; | 
|  | new_packet->sync_packet = packet->sync_packet; | 
|  |  | 
|  | packet_list->insert(it, new_packet); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | return kFecSplitError; | 
|  | } | 
|  | } | 
|  |  | 
|  | ++it; | 
|  | } | 
|  | return kOK; | 
|  | } | 
|  |  | 
|  | int PayloadSplitter::CheckRedPayloads(PacketList* packet_list, | 
|  | const DecoderDatabase& decoder_database) { | 
|  | PacketList::iterator it = packet_list->begin(); | 
|  | int main_payload_type = -1; | 
|  | int num_deleted_packets = 0; | 
|  | while (it != packet_list->end()) { | 
|  | uint8_t this_payload_type = (*it)->header.payloadType; | 
|  | if (!decoder_database.IsDtmf(this_payload_type) && | 
|  | !decoder_database.IsComfortNoise(this_payload_type)) { | 
|  | if (main_payload_type == -1) { | 
|  | // This is the first packet in the list which is non-DTMF non-CNG. | 
|  | main_payload_type = this_payload_type; | 
|  | } else { | 
|  | if (this_payload_type != main_payload_type) { | 
|  | // We do not allow redundant payloads of a different type. | 
|  | // Discard this payload. | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | // Remove |it| from the packet list. This operation effectively | 
|  | // moves the iterator |it| to the next packet in the list. Thus, we | 
|  | // do not have to increment it manually. | 
|  | it = packet_list->erase(it); | 
|  | ++num_deleted_packets; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | ++it; | 
|  | } | 
|  | return num_deleted_packets; | 
|  | } | 
|  |  | 
|  | int PayloadSplitter::SplitAudio(PacketList* packet_list, | 
|  | const DecoderDatabase& decoder_database) { | 
|  | PacketList::iterator it = packet_list->begin(); | 
|  | // Iterate through all packets in |packet_list|. | 
|  | while (it != packet_list->end()) { | 
|  | Packet* packet = (*it);  // Just to make the notation more intuitive. | 
|  | // Get codec type for this payload. | 
|  | const DecoderDatabase::DecoderInfo* info = | 
|  | decoder_database.GetDecoderInfo(packet->header.payloadType); | 
|  | if (!info) { | 
|  | return kUnknownPayloadType; | 
|  | } | 
|  | // No splitting for a sync-packet. | 
|  | if (packet->sync_packet) { | 
|  | ++it; | 
|  | continue; | 
|  | } | 
|  | PacketList new_packets; | 
|  | switch (info->codec_type) { | 
|  | case kDecoderPCMu: | 
|  | case kDecoderPCMa: { | 
|  | // 8 bytes per ms; 8 timestamps per ms. | 
|  | SplitBySamples(packet, 8, 8, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCMu_2ch: | 
|  | case kDecoderPCMa_2ch: { | 
|  | // 2 * 8 bytes per ms; 8 timestamps per ms. | 
|  | SplitBySamples(packet, 2 * 8, 8, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderG722: { | 
|  | // 8 bytes per ms; 16 timestamps per ms. | 
|  | SplitBySamples(packet, 8, 16, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16B: { | 
|  | // 16 bytes per ms; 8 timestamps per ms. | 
|  | SplitBySamples(packet, 16, 8, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16Bwb: { | 
|  | // 32 bytes per ms; 16 timestamps per ms. | 
|  | SplitBySamples(packet, 32, 16, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16Bswb32kHz: { | 
|  | // 64 bytes per ms; 32 timestamps per ms. | 
|  | SplitBySamples(packet, 64, 32, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16Bswb48kHz: { | 
|  | // 96 bytes per ms; 48 timestamps per ms. | 
|  | SplitBySamples(packet, 96, 48, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16B_2ch: { | 
|  | // 2 * 16 bytes per ms; 8 timestamps per ms. | 
|  | SplitBySamples(packet, 2 * 16, 8, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16Bwb_2ch: { | 
|  | // 2 * 32 bytes per ms; 16 timestamps per ms. | 
|  | SplitBySamples(packet, 2 * 32, 16, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16Bswb32kHz_2ch: { | 
|  | // 2 * 64 bytes per ms; 32 timestamps per ms. | 
|  | SplitBySamples(packet, 2 * 64, 32, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16Bswb48kHz_2ch: { | 
|  | // 2 * 96 bytes per ms; 48 timestamps per ms. | 
|  | SplitBySamples(packet, 2 * 96, 48, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderPCM16B_5ch: { | 
|  | // 5 * 16 bytes per ms; 8 timestamps per ms. | 
|  | SplitBySamples(packet, 5 * 16, 8, &new_packets); | 
|  | break; | 
|  | } | 
|  | case kDecoderILBC: { | 
|  | size_t bytes_per_frame; | 
|  | int timestamps_per_frame; | 
|  | if (packet->payload_length >= 950) { | 
|  | return kTooLargePayload; | 
|  | } | 
|  | if (packet->payload_length % 38 == 0) { | 
|  | // 20 ms frames. | 
|  | bytes_per_frame = 38; | 
|  | timestamps_per_frame = 160; | 
|  | } else if (packet->payload_length % 50 == 0) { | 
|  | // 30 ms frames. | 
|  | bytes_per_frame = 50; | 
|  | timestamps_per_frame = 240; | 
|  | } else { | 
|  | return kFrameSplitError; | 
|  | } | 
|  | int ret = SplitByFrames(packet, bytes_per_frame, timestamps_per_frame, | 
|  | &new_packets); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret == kNoSplit) { | 
|  | // Do not split at all. Simply advance to the next packet in the list. | 
|  | ++it; | 
|  | // We do not have any new packets to insert, and should not delete the | 
|  | // old one. Skip the code after the switch case, and jump straight to | 
|  | // the next packet in the while loop. | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | // Do not split at all. Simply advance to the next packet in the list. | 
|  | ++it; | 
|  | // We do not have any new packets to insert, and should not delete the | 
|  | // old one. Skip the code after the switch case, and jump straight to | 
|  | // the next packet in the while loop. | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // Insert new packets into original list, before the element pointed to by | 
|  | // iterator |it|. | 
|  | packet_list->splice(it, new_packets, new_packets.begin(), | 
|  | new_packets.end()); | 
|  | // Delete old packet payload. | 
|  | delete [] (*it)->payload; | 
|  | delete (*it); | 
|  | // Remove |it| from the packet list. This operation effectively moves the | 
|  | // iterator |it| to the next packet in the list. Thus, we do not have to | 
|  | // increment it manually. | 
|  | it = packet_list->erase(it); | 
|  | } | 
|  | return kOK; | 
|  | } | 
|  |  | 
|  | void PayloadSplitter::SplitBySamples(const Packet* packet, | 
|  | size_t bytes_per_ms, | 
|  | uint32_t timestamps_per_ms, | 
|  | PacketList* new_packets) { | 
|  | assert(packet); | 
|  | assert(new_packets); | 
|  |  | 
|  | size_t split_size_bytes = packet->payload_length; | 
|  |  | 
|  | // Find a "chunk size" >= 20 ms and < 40 ms. | 
|  | size_t min_chunk_size = bytes_per_ms * 20; | 
|  | // Reduce the split size by half as long as |split_size_bytes| is at least | 
|  | // twice the minimum chunk size (so that the resulting size is at least as | 
|  | // large as the minimum chunk size). | 
|  | while (split_size_bytes >= 2 * min_chunk_size) { | 
|  | split_size_bytes >>= 1; | 
|  | } | 
|  | uint32_t timestamps_per_chunk = static_cast<uint32_t>( | 
|  | split_size_bytes * timestamps_per_ms / bytes_per_ms); | 
|  | uint32_t timestamp = packet->header.timestamp; | 
|  |  | 
|  | uint8_t* payload_ptr = packet->payload; | 
|  | size_t len = packet->payload_length; | 
|  | while (len >= (2 * split_size_bytes)) { | 
|  | Packet* new_packet = new Packet; | 
|  | new_packet->payload_length = split_size_bytes; | 
|  | new_packet->header = packet->header; | 
|  | new_packet->header.timestamp = timestamp; | 
|  | timestamp += timestamps_per_chunk; | 
|  | new_packet->primary = packet->primary; | 
|  | new_packet->payload = new uint8_t[split_size_bytes]; | 
|  | memcpy(new_packet->payload, payload_ptr, split_size_bytes); | 
|  | payload_ptr += split_size_bytes; | 
|  | new_packets->push_back(new_packet); | 
|  | len -= split_size_bytes; | 
|  | } | 
|  |  | 
|  | if (len > 0) { | 
|  | Packet* new_packet = new Packet; | 
|  | new_packet->payload_length = len; | 
|  | new_packet->header = packet->header; | 
|  | new_packet->header.timestamp = timestamp; | 
|  | new_packet->primary = packet->primary; | 
|  | new_packet->payload = new uint8_t[len]; | 
|  | memcpy(new_packet->payload, payload_ptr, len); | 
|  | new_packets->push_back(new_packet); | 
|  | } | 
|  | } | 
|  |  | 
|  | int PayloadSplitter::SplitByFrames(const Packet* packet, | 
|  | size_t bytes_per_frame, | 
|  | uint32_t timestamps_per_frame, | 
|  | PacketList* new_packets) { | 
|  | if (packet->payload_length % bytes_per_frame != 0) { | 
|  | return kFrameSplitError; | 
|  | } | 
|  |  | 
|  | if (packet->payload_length == bytes_per_frame) { | 
|  | // Special case. Do not split the payload. | 
|  | return kNoSplit; | 
|  | } | 
|  |  | 
|  | uint32_t timestamp = packet->header.timestamp; | 
|  | uint8_t* payload_ptr = packet->payload; | 
|  | size_t len = packet->payload_length; | 
|  | while (len > 0) { | 
|  | assert(len >= bytes_per_frame); | 
|  | Packet* new_packet = new Packet; | 
|  | new_packet->payload_length = bytes_per_frame; | 
|  | new_packet->header = packet->header; | 
|  | new_packet->header.timestamp = timestamp; | 
|  | timestamp += timestamps_per_frame; | 
|  | new_packet->primary = packet->primary; | 
|  | new_packet->payload = new uint8_t[bytes_per_frame]; | 
|  | memcpy(new_packet->payload, payload_ptr, bytes_per_frame); | 
|  | payload_ptr += bytes_per_frame; | 
|  | new_packets->push_back(new_packet); | 
|  | len -= bytes_per_frame; | 
|  | } | 
|  | return kOK; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |