blob: 028501c5c03bd3e3904710d275f65855d02be6f1 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/level_controller/level_controller.h"
#include <math.h>
#include <algorithm>
#include <numeric>
#include "webrtc/api/array_view.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/level_controller/gain_applier.h"
#include "webrtc/modules/audio_processing/level_controller/gain_selector.h"
#include "webrtc/modules/audio_processing/level_controller/noise_level_estimator.h"
#include "webrtc/modules/audio_processing/level_controller/peak_level_estimator.h"
#include "webrtc/modules/audio_processing/level_controller/saturating_gain_estimator.h"
#include "webrtc/modules/audio_processing/level_controller/signal_classifier.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
#include "webrtc/rtc_base/arraysize.h"
#include "webrtc/rtc_base/checks.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
void UpdateAndRemoveDcLevel(float forgetting_factor,
float* dc_level,
rtc::ArrayView<float> x) {
RTC_DCHECK(!x.empty());
float mean =
std::accumulate(x.begin(), x.end(), 0.0f) / static_cast<float>(x.size());
*dc_level += forgetting_factor * (mean - *dc_level);
for (float& v : x) {
v -= *dc_level;
}
}
float FrameEnergy(const AudioBuffer& audio) {
float energy = 0.f;
for (size_t k = 0; k < audio.num_channels(); ++k) {
float channel_energy =
std::accumulate(audio.channels_const_f()[k],
audio.channels_const_f()[k] + audio.num_frames(), 0,
[](float a, float b) -> float { return a + b * b; });
energy = std::max(channel_energy, energy);
}
return energy;
}
float PeakLevel(const AudioBuffer& audio) {
float peak_level = 0.f;
for (size_t k = 0; k < audio.num_channels(); ++k) {
auto* channel_peak_level = std::max_element(
audio.channels_const_f()[k],
audio.channels_const_f()[k] + audio.num_frames(),
[](float a, float b) { return std::abs(a) < std::abs(b); });
peak_level = std::max(*channel_peak_level, peak_level);
}
return peak_level;
}
const int kMetricsFrameInterval = 1000;
} // namespace
int LevelController::instance_count_ = 0;
void LevelController::Metrics::Initialize(int sample_rate_hz) {
RTC_DCHECK(sample_rate_hz == AudioProcessing::kSampleRate8kHz ||
sample_rate_hz == AudioProcessing::kSampleRate16kHz ||
sample_rate_hz == AudioProcessing::kSampleRate32kHz ||
sample_rate_hz == AudioProcessing::kSampleRate48kHz);
Reset();
frame_length_ = rtc::CheckedDivExact(sample_rate_hz, 100);
}
void LevelController::Metrics::Reset() {
metrics_frame_counter_ = 0;
gain_sum_ = 0.f;
peak_level_sum_ = 0.f;
noise_energy_sum_ = 0.f;
max_gain_ = 0.f;
max_peak_level_ = 0.f;
max_noise_energy_ = 0.f;
}
void LevelController::Metrics::Update(float long_term_peak_level,
float noise_energy,
float gain,
float frame_peak_level) {
const float kdBFSOffset = 90.3090f;
gain_sum_ += gain;
peak_level_sum_ += long_term_peak_level;
noise_energy_sum_ += noise_energy;
max_gain_ = std::max(max_gain_, gain);
max_peak_level_ = std::max(max_peak_level_, long_term_peak_level);
max_noise_energy_ = std::max(max_noise_energy_, noise_energy);
++metrics_frame_counter_;
if (metrics_frame_counter_ == kMetricsFrameInterval) {
RTC_DCHECK_LT(0, frame_length_);
RTC_DCHECK_LT(0, kMetricsFrameInterval);
const int max_noise_power_dbfs = static_cast<int>(
10 * log10(max_noise_energy_ / frame_length_ + 1e-10f) - kdBFSOffset);
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.MaxNoisePower",
max_noise_power_dbfs, -90, 0, 50);
const int average_noise_power_dbfs = static_cast<int>(
10 * log10(noise_energy_sum_ / (frame_length_ * kMetricsFrameInterval) +
1e-10f) -
kdBFSOffset);
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.AverageNoisePower",
average_noise_power_dbfs, -90, 0, 50);
const int max_peak_level_dbfs = static_cast<int>(
10 * log10(max_peak_level_ * max_peak_level_ + 1e-10f) - kdBFSOffset);
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.MaxPeakLevel",
max_peak_level_dbfs, -90, 0, 50);
const int average_peak_level_dbfs = static_cast<int>(
10 * log10(peak_level_sum_ * peak_level_sum_ /
(kMetricsFrameInterval * kMetricsFrameInterval) +
1e-10f) -
kdBFSOffset);
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.AveragePeakLevel",
average_peak_level_dbfs, -90, 0, 50);
RTC_DCHECK_LE(1.f, max_gain_);
RTC_DCHECK_LE(1.f, gain_sum_ / kMetricsFrameInterval);
const int max_gain_db = static_cast<int>(10 * log10(max_gain_ * max_gain_));
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.MaxGain", max_gain_db, 0,
33, 30);
const int average_gain_db = static_cast<int>(
10 * log10(gain_sum_ * gain_sum_ /
(kMetricsFrameInterval * kMetricsFrameInterval)));
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.LevelControl.AverageGain",
average_gain_db, 0, 33, 30);
const int long_term_peak_level_dbfs = static_cast<int>(
10 * log10(long_term_peak_level * long_term_peak_level + 1e-10f) -
kdBFSOffset);
const int frame_peak_level_dbfs = static_cast<int>(
10 * log10(frame_peak_level * frame_peak_level + 1e-10f) - kdBFSOffset);
LOG(LS_INFO) << "Level Controller metrics: {"
<< "Max noise power: " << max_noise_power_dbfs << " dBFS, "
<< "Average noise power: " << average_noise_power_dbfs
<< " dBFS, "
<< "Max long term peak level: " << max_peak_level_dbfs
<< " dBFS, "
<< "Average long term peak level: " << average_peak_level_dbfs
<< " dBFS, "
<< "Max gain: " << max_gain_db << " dB, "
<< "Average gain: " << average_gain_db << " dB, "
<< "Long term peak level: " << long_term_peak_level_dbfs
<< " dBFS, "
<< "Last frame peak level: " << frame_peak_level_dbfs
<< " dBFS"
<< "}";
Reset();
}
}
LevelController::LevelController()
: data_dumper_(new ApmDataDumper(instance_count_)),
gain_applier_(data_dumper_.get()),
signal_classifier_(data_dumper_.get()),
peak_level_estimator_(kTargetLcPeakLeveldBFS) {
Initialize(AudioProcessing::kSampleRate48kHz);
++instance_count_;
}
LevelController::~LevelController() {}
void LevelController::Initialize(int sample_rate_hz) {
RTC_DCHECK(sample_rate_hz == AudioProcessing::kSampleRate8kHz ||
sample_rate_hz == AudioProcessing::kSampleRate16kHz ||
sample_rate_hz == AudioProcessing::kSampleRate32kHz ||
sample_rate_hz == AudioProcessing::kSampleRate48kHz);
data_dumper_->InitiateNewSetOfRecordings();
gain_selector_.Initialize(sample_rate_hz);
gain_applier_.Initialize(sample_rate_hz);
signal_classifier_.Initialize(sample_rate_hz);
noise_level_estimator_.Initialize(sample_rate_hz);
peak_level_estimator_.Initialize(config_.initial_peak_level_dbfs);
saturating_gain_estimator_.Initialize();
metrics_.Initialize(sample_rate_hz);
last_gain_ = 1.0f;
sample_rate_hz_ = rtc::Optional<int>(sample_rate_hz);
dc_forgetting_factor_ = 0.01f * sample_rate_hz / 48000.f;
std::fill(dc_level_, dc_level_ + arraysize(dc_level_), 0.f);
}
void LevelController::Process(AudioBuffer* audio) {
RTC_DCHECK_LT(0, audio->num_channels());
RTC_DCHECK_GE(2, audio->num_channels());
RTC_DCHECK_NE(0.f, dc_forgetting_factor_);
RTC_DCHECK(sample_rate_hz_);
data_dumper_->DumpWav("lc_input", audio->num_frames(),
audio->channels_const_f()[0], *sample_rate_hz_, 1);
// Remove DC level.
for (size_t k = 0; k < audio->num_channels(); ++k) {
UpdateAndRemoveDcLevel(
dc_forgetting_factor_, &dc_level_[k],
rtc::ArrayView<float>(audio->channels_f()[k], audio->num_frames()));
}
SignalClassifier::SignalType signal_type;
signal_classifier_.Analyze(*audio, &signal_type);
int tmp = static_cast<int>(signal_type);
data_dumper_->DumpRaw("lc_signal_type", 1, &tmp);
// Estimate the noise energy.
float noise_energy =
noise_level_estimator_.Analyze(signal_type, FrameEnergy(*audio));
// Estimate the overall signal peak level.
const float frame_peak_level = PeakLevel(*audio);
const float long_term_peak_level =
peak_level_estimator_.Analyze(signal_type, frame_peak_level);
float saturating_gain = saturating_gain_estimator_.GetGain();
// Compute the new gain to apply.
last_gain_ =
gain_selector_.GetNewGain(long_term_peak_level, noise_energy,
saturating_gain, gain_jumpstart_, signal_type);
// Unflag the jumpstart of the gain as it should only happen once.
gain_jumpstart_ = false;
// Apply the gain to the signal.
int num_saturations = gain_applier_.Process(last_gain_, audio);
// Estimate the gain that saturates the overall signal.
saturating_gain_estimator_.Update(last_gain_, num_saturations);
// Update the metrics.
metrics_.Update(long_term_peak_level, noise_energy, last_gain_,
frame_peak_level);
data_dumper_->DumpRaw("lc_selected_gain", 1, &last_gain_);
data_dumper_->DumpRaw("lc_noise_energy", 1, &noise_energy);
data_dumper_->DumpRaw("lc_peak_level", 1, &long_term_peak_level);
data_dumper_->DumpRaw("lc_saturating_gain", 1, &saturating_gain);
data_dumper_->DumpWav("lc_output", audio->num_frames(),
audio->channels_f()[0], *sample_rate_hz_, 1);
}
void LevelController::ApplyConfig(
const AudioProcessing::Config::LevelController& config) {
RTC_DCHECK(Validate(config));
config_ = config;
peak_level_estimator_.Initialize(config_.initial_peak_level_dbfs);
gain_jumpstart_ = true;
}
std::string LevelController::ToString(
const AudioProcessing::Config::LevelController& config) {
std::stringstream ss;
ss << "{"
<< "enabled: " << (config.enabled ? "true" : "false") << ", "
<< "initial_peak_level_dbfs: " << config.initial_peak_level_dbfs << "}";
return ss.str();
}
bool LevelController::Validate(
const AudioProcessing::Config::LevelController& config) {
return (config.initial_peak_level_dbfs <
std::numeric_limits<float>::epsilon() &&
config.initial_peak_level_dbfs >
-(100.f + std::numeric_limits<float>::epsilon()));
}
} // namespace webrtc