| /* | 
 |  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | /* analog_agc.c | 
 |  * | 
 |  * Using a feedback system, determines an appropriate analog volume level | 
 |  * given an input signal and current volume level. Targets a conservative | 
 |  * signal level and is intended for use with a digital AGC to apply | 
 |  * additional gain. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "webrtc/modules/audio_processing/agc/legacy/analog_agc.h" | 
 |  | 
 | #include <assert.h> | 
 | #include <stdlib.h> | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 | #include <stdio.h> | 
 | #endif | 
 |  | 
 | /* The slope of in Q13*/ | 
 | static const int16_t kSlope1[8] = {21793, 12517, 7189, 4129, 2372, 1362, 472, 78}; | 
 |  | 
 | /* The offset in Q14 */ | 
 | static const int16_t kOffset1[8] = {25395, 23911, 22206, 20737, 19612, 18805, 17951, | 
 |         17367}; | 
 |  | 
 | /* The slope of in Q13*/ | 
 | static const int16_t kSlope2[8] = {2063, 1731, 1452, 1218, 1021, 857, 597, 337}; | 
 |  | 
 | /* The offset in Q14 */ | 
 | static const int16_t kOffset2[8] = {18432, 18379, 18290, 18177, 18052, 17920, 17670, | 
 |         17286}; | 
 |  | 
 | static const int16_t kMuteGuardTimeMs = 8000; | 
 | static const int16_t kInitCheck = 42; | 
 | static const int16_t kNumSubframes = 10; | 
 |  | 
 | /* Default settings if config is not used */ | 
 | #define AGC_DEFAULT_TARGET_LEVEL 3 | 
 | #define AGC_DEFAULT_COMP_GAIN 9 | 
 | /* This is the target level for the analog part in ENV scale. To convert to RMS scale you | 
 |  * have to add OFFSET_ENV_TO_RMS. | 
 |  */ | 
 | #define ANALOG_TARGET_LEVEL 11 | 
 | #define ANALOG_TARGET_LEVEL_2 5 // ANALOG_TARGET_LEVEL / 2 | 
 | /* Offset between RMS scale (analog part) and ENV scale (digital part). This value actually | 
 |  * varies with the FIXED_ANALOG_TARGET_LEVEL, hence we should in the future replace it with | 
 |  * a table. | 
 |  */ | 
 | #define OFFSET_ENV_TO_RMS 9 | 
 | /* The reference input level at which the digital part gives an output of targetLevelDbfs | 
 |  * (desired level) if we have no compression gain. This level should be set high enough not | 
 |  * to compress the peaks due to the dynamics. | 
 |  */ | 
 | #define DIGITAL_REF_AT_0_COMP_GAIN 4 | 
 | /* Speed of reference level decrease. | 
 |  */ | 
 | #define DIFF_REF_TO_ANALOG 5 | 
 |  | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 | #define NUM_BLOCKS_IN_SAT_BEFORE_CHANGE_TARGET 7 | 
 | #endif | 
 | /* Size of analog gain table */ | 
 | #define GAIN_TBL_LEN 32 | 
 | /* Matlab code: | 
 |  * fprintf(1, '\t%i, %i, %i, %i,\n', round(10.^(linspace(0,10,32)/20) * 2^12)); | 
 |  */ | 
 | /* Q12 */ | 
 | static const uint16_t kGainTableAnalog[GAIN_TBL_LEN] = {4096, 4251, 4412, 4579, 4752, | 
 |         4932, 5118, 5312, 5513, 5722, 5938, 6163, 6396, 6638, 6889, 7150, 7420, 7701, 7992, | 
 |         8295, 8609, 8934, 9273, 9623, 9987, 10365, 10758, 11165, 11587, 12025, 12480, 12953}; | 
 |  | 
 | /* Gain/Suppression tables for virtual Mic (in Q10) */ | 
 | static const uint16_t kGainTableVirtualMic[128] = {1052, 1081, 1110, 1141, 1172, 1204, | 
 |         1237, 1271, 1305, 1341, 1378, 1416, 1454, 1494, 1535, 1577, 1620, 1664, 1710, 1757, | 
 |         1805, 1854, 1905, 1957, 2010, 2065, 2122, 2180, 2239, 2301, 2364, 2428, 2495, 2563, | 
 |         2633, 2705, 2779, 2855, 2933, 3013, 3096, 3180, 3267, 3357, 3449, 3543, 3640, 3739, | 
 |         3842, 3947, 4055, 4166, 4280, 4397, 4517, 4640, 4767, 4898, 5032, 5169, 5311, 5456, | 
 |         5605, 5758, 5916, 6078, 6244, 6415, 6590, 6770, 6956, 7146, 7341, 7542, 7748, 7960, | 
 |         8178, 8402, 8631, 8867, 9110, 9359, 9615, 9878, 10148, 10426, 10711, 11004, 11305, | 
 |         11614, 11932, 12258, 12593, 12938, 13292, 13655, 14029, 14412, 14807, 15212, 15628, | 
 |         16055, 16494, 16945, 17409, 17885, 18374, 18877, 19393, 19923, 20468, 21028, 21603, | 
 |         22194, 22801, 23425, 24065, 24724, 25400, 26095, 26808, 27541, 28295, 29069, 29864, | 
 |         30681, 31520, 32382}; | 
 | static const uint16_t kSuppressionTableVirtualMic[128] = {1024, 1006, 988, 970, 952, | 
 |         935, 918, 902, 886, 870, 854, 839, 824, 809, 794, 780, 766, 752, 739, 726, 713, 700, | 
 |         687, 675, 663, 651, 639, 628, 616, 605, 594, 584, 573, 563, 553, 543, 533, 524, 514, | 
 |         505, 496, 487, 478, 470, 461, 453, 445, 437, 429, 421, 414, 406, 399, 392, 385, 378, | 
 |         371, 364, 358, 351, 345, 339, 333, 327, 321, 315, 309, 304, 298, 293, 288, 283, 278, | 
 |         273, 268, 263, 258, 254, 249, 244, 240, 236, 232, 227, 223, 219, 215, 211, 208, 204, | 
 |         200, 197, 193, 190, 186, 183, 180, 176, 173, 170, 167, 164, 161, 158, 155, 153, 150, | 
 |         147, 145, 142, 139, 137, 134, 132, 130, 127, 125, 123, 121, 118, 116, 114, 112, 110, | 
 |         108, 106, 104, 102}; | 
 |  | 
 | /* Table for target energy levels. Values in Q(-7) | 
 |  * Matlab code | 
 |  * targetLevelTable = fprintf('%d,\t%d,\t%d,\t%d,\n', round((32767*10.^(-(0:63)'/20)).^2*16/2^7) */ | 
 |  | 
 | static const int32_t kTargetLevelTable[64] = {134209536, 106606424, 84680493, 67264106, | 
 |         53429779, 42440782, 33711911, 26778323, 21270778, 16895980, 13420954, 10660642, | 
 |         8468049, 6726411, 5342978, 4244078, 3371191, 2677832, 2127078, 1689598, 1342095, | 
 |         1066064, 846805, 672641, 534298, 424408, 337119, 267783, 212708, 168960, 134210, | 
 |         106606, 84680, 67264, 53430, 42441, 33712, 26778, 21271, 16896, 13421, 10661, 8468, | 
 |         6726, 5343, 4244, 3371, 2678, 2127, 1690, 1342, 1066, 847, 673, 534, 424, 337, 268, | 
 |         213, 169, 134, 107, 85, 67}; | 
 |  | 
 | int WebRtcAgc_AddMic(void *state, int16_t* const* in_mic, int16_t num_bands, | 
 |                      int16_t samples) | 
 | { | 
 |     int32_t nrg, max_nrg, sample, tmp32; | 
 |     int32_t *ptr; | 
 |     uint16_t targetGainIdx, gain; | 
 |     int16_t i, n, L, tmp16, tmp_speech[16]; | 
 |     LegacyAgc* stt; | 
 |     stt = (LegacyAgc*)state; | 
 |  | 
 |     if (stt->fs == 8000) { | 
 |         L = 8; | 
 |         if (samples != 80) { | 
 |             return -1; | 
 |         } | 
 |     } else { | 
 |         L = 16; | 
 |         if (samples != 160) { | 
 |             return -1; | 
 |         } | 
 |     } | 
 |  | 
 |     /* apply slowly varying digital gain */ | 
 |     if (stt->micVol > stt->maxAnalog) | 
 |     { | 
 |         /* |maxLevel| is strictly >= |micVol|, so this condition should be | 
 |          * satisfied here, ensuring there is no divide-by-zero. */ | 
 |         assert(stt->maxLevel > stt->maxAnalog); | 
 |  | 
 |         /* Q1 */ | 
 |         tmp16 = (int16_t)(stt->micVol - stt->maxAnalog); | 
 |         tmp32 = (GAIN_TBL_LEN - 1) * tmp16; | 
 |         tmp16 = (int16_t)(stt->maxLevel - stt->maxAnalog); | 
 |         targetGainIdx = tmp32 / tmp16; | 
 |         assert(targetGainIdx < GAIN_TBL_LEN); | 
 |  | 
 |         /* Increment through the table towards the target gain. | 
 |          * If micVol drops below maxAnalog, we allow the gain | 
 |          * to be dropped immediately. */ | 
 |         if (stt->gainTableIdx < targetGainIdx) | 
 |         { | 
 |             stt->gainTableIdx++; | 
 |         } else if (stt->gainTableIdx > targetGainIdx) | 
 |         { | 
 |             stt->gainTableIdx--; | 
 |         } | 
 |  | 
 |         /* Q12 */ | 
 |         gain = kGainTableAnalog[stt->gainTableIdx]; | 
 |  | 
 |         for (i = 0; i < samples; i++) | 
 |         { | 
 |             int j; | 
 |             for (j = 0; j < num_bands; ++j) | 
 |             { | 
 |                 sample = (in_mic[j][i] * gain) >> 12; | 
 |                 if (sample > 32767) | 
 |                 { | 
 |                     in_mic[j][i] = 32767; | 
 |                 } else if (sample < -32768) | 
 |                 { | 
 |                     in_mic[j][i] = -32768; | 
 |                 } else | 
 |                 { | 
 |                     in_mic[j][i] = (int16_t)sample; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } else | 
 |     { | 
 |         stt->gainTableIdx = 0; | 
 |     } | 
 |  | 
 |     /* compute envelope */ | 
 |     if (stt->inQueue > 0) | 
 |     { | 
 |         ptr = stt->env[1]; | 
 |     } else | 
 |     { | 
 |         ptr = stt->env[0]; | 
 |     } | 
 |  | 
 |     for (i = 0; i < kNumSubframes; i++) | 
 |     { | 
 |         /* iterate over samples */ | 
 |         max_nrg = 0; | 
 |         for (n = 0; n < L; n++) | 
 |         { | 
 |             nrg = in_mic[0][i * L + n] * in_mic[0][i * L + n]; | 
 |             if (nrg > max_nrg) | 
 |             { | 
 |                 max_nrg = nrg; | 
 |             } | 
 |         } | 
 |         ptr[i] = max_nrg; | 
 |     } | 
 |  | 
 |     /* compute energy */ | 
 |     if (stt->inQueue > 0) | 
 |     { | 
 |         ptr = stt->Rxx16w32_array[1]; | 
 |     } else | 
 |     { | 
 |         ptr = stt->Rxx16w32_array[0]; | 
 |     } | 
 |  | 
 |     for (i = 0; i < kNumSubframes / 2; i++) | 
 |     { | 
 |         if (stt->fs == 16000) | 
 |         { | 
 |             WebRtcSpl_DownsampleBy2(&in_mic[0][i * 32], | 
 |                                     32, | 
 |                                     tmp_speech, | 
 |                                     stt->filterState); | 
 |         } else | 
 |         { | 
 |             memcpy(tmp_speech, &in_mic[0][i * 16], 16 * sizeof(short)); | 
 |         } | 
 |         /* Compute energy in blocks of 16 samples */ | 
 |         ptr[i] = WebRtcSpl_DotProductWithScale(tmp_speech, tmp_speech, 16, 4); | 
 |     } | 
 |  | 
 |     /* update queue information */ | 
 |     if (stt->inQueue == 0) | 
 |     { | 
 |         stt->inQueue = 1; | 
 |     } else | 
 |     { | 
 |         stt->inQueue = 2; | 
 |     } | 
 |  | 
 |     /* call VAD (use low band only) */ | 
 |     WebRtcAgc_ProcessVad(&stt->vadMic, in_mic[0], samples); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int WebRtcAgc_AddFarend(void *state, const int16_t *in_far, int16_t samples) | 
 | { | 
 |   LegacyAgc* stt; | 
 |   stt = (LegacyAgc*)state; | 
 |  | 
 |     if (stt == NULL) | 
 |     { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (stt->fs == 8000) | 
 |     { | 
 |         if (samples != 80) | 
 |         { | 
 |             return -1; | 
 |         } | 
 |     } else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) | 
 |     { | 
 |         if (samples != 160) | 
 |         { | 
 |             return -1; | 
 |         } | 
 |     } else | 
 |     { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     return WebRtcAgc_AddFarendToDigital(&stt->digitalAgc, in_far, samples); | 
 | } | 
 |  | 
 | int WebRtcAgc_VirtualMic(void *agcInst, int16_t* const* in_near, | 
 |                          int16_t num_bands, int16_t samples, int32_t micLevelIn, | 
 |                          int32_t *micLevelOut) | 
 | { | 
 |     int32_t tmpFlt, micLevelTmp, gainIdx; | 
 |     uint16_t gain; | 
 |     int16_t ii, j; | 
 |     LegacyAgc* stt; | 
 |  | 
 |     uint32_t nrg; | 
 |     int16_t sampleCntr; | 
 |     uint32_t frameNrg = 0; | 
 |     uint32_t frameNrgLimit = 5500; | 
 |     int16_t numZeroCrossing = 0; | 
 |     const int16_t kZeroCrossingLowLim = 15; | 
 |     const int16_t kZeroCrossingHighLim = 20; | 
 |  | 
 |     stt = (LegacyAgc*)agcInst; | 
 |  | 
 |     /* | 
 |      *  Before applying gain decide if this is a low-level signal. | 
 |      *  The idea is that digital AGC will not adapt to low-level | 
 |      *  signals. | 
 |      */ | 
 |     if (stt->fs != 8000) | 
 |     { | 
 |         frameNrgLimit = frameNrgLimit << 1; | 
 |     } | 
 |  | 
 |     frameNrg = (uint32_t)(in_near[0][0] * in_near[0][0]); | 
 |     for (sampleCntr = 1; sampleCntr < samples; sampleCntr++) | 
 |     { | 
 |  | 
 |         // increment frame energy if it is less than the limit | 
 |         // the correct value of the energy is not important | 
 |         if (frameNrg < frameNrgLimit) | 
 |         { | 
 |           nrg = (uint32_t)(in_near[0][sampleCntr] * in_near[0][sampleCntr]); | 
 |           frameNrg += nrg; | 
 |         } | 
 |  | 
 |         // Count the zero crossings | 
 |         numZeroCrossing += | 
 |                 ((in_near[0][sampleCntr] ^ in_near[0][sampleCntr - 1]) < 0); | 
 |     } | 
 |  | 
 |     if ((frameNrg < 500) || (numZeroCrossing <= 5)) | 
 |     { | 
 |         stt->lowLevelSignal = 1; | 
 |     } else if (numZeroCrossing <= kZeroCrossingLowLim) | 
 |     { | 
 |         stt->lowLevelSignal = 0; | 
 |     } else if (frameNrg <= frameNrgLimit) | 
 |     { | 
 |         stt->lowLevelSignal = 1; | 
 |     } else if (numZeroCrossing >= kZeroCrossingHighLim) | 
 |     { | 
 |         stt->lowLevelSignal = 1; | 
 |     } else | 
 |     { | 
 |         stt->lowLevelSignal = 0; | 
 |     } | 
 |  | 
 |     micLevelTmp = micLevelIn << stt->scale; | 
 |     /* Set desired level */ | 
 |     gainIdx = stt->micVol; | 
 |     if (stt->micVol > stt->maxAnalog) | 
 |     { | 
 |         gainIdx = stt->maxAnalog; | 
 |     } | 
 |     if (micLevelTmp != stt->micRef) | 
 |     { | 
 |         /* Something has happened with the physical level, restart. */ | 
 |         stt->micRef = micLevelTmp; | 
 |         stt->micVol = 127; | 
 |         *micLevelOut = 127; | 
 |         stt->micGainIdx = 127; | 
 |         gainIdx = 127; | 
 |     } | 
 |     /* Pre-process the signal to emulate the microphone level. */ | 
 |     /* Take one step at a time in the gain table. */ | 
 |     if (gainIdx > 127) | 
 |     { | 
 |         gain = kGainTableVirtualMic[gainIdx - 128]; | 
 |     } else | 
 |     { | 
 |         gain = kSuppressionTableVirtualMic[127 - gainIdx]; | 
 |     } | 
 |     for (ii = 0; ii < samples; ii++) | 
 |     { | 
 |         tmpFlt = (in_near[0][ii] * gain) >> 10; | 
 |         if (tmpFlt > 32767) | 
 |         { | 
 |             tmpFlt = 32767; | 
 |             gainIdx--; | 
 |             if (gainIdx >= 127) | 
 |             { | 
 |                 gain = kGainTableVirtualMic[gainIdx - 127]; | 
 |             } else | 
 |             { | 
 |                 gain = kSuppressionTableVirtualMic[127 - gainIdx]; | 
 |             } | 
 |         } | 
 |         if (tmpFlt < -32768) | 
 |         { | 
 |             tmpFlt = -32768; | 
 |             gainIdx--; | 
 |             if (gainIdx >= 127) | 
 |             { | 
 |                 gain = kGainTableVirtualMic[gainIdx - 127]; | 
 |             } else | 
 |             { | 
 |                 gain = kSuppressionTableVirtualMic[127 - gainIdx]; | 
 |             } | 
 |         } | 
 |         in_near[0][ii] = (int16_t)tmpFlt; | 
 |         for (j = 1; j < num_bands; ++j) | 
 |         { | 
 |             tmpFlt = (in_near[j][ii] * gain) >> 10; | 
 |             if (tmpFlt > 32767) | 
 |             { | 
 |                 tmpFlt = 32767; | 
 |             } | 
 |             if (tmpFlt < -32768) | 
 |             { | 
 |                 tmpFlt = -32768; | 
 |             } | 
 |             in_near[j][ii] = (int16_t)tmpFlt; | 
 |         } | 
 |     } | 
 |     /* Set the level we (finally) used */ | 
 |     stt->micGainIdx = gainIdx; | 
 | //    *micLevelOut = stt->micGainIdx; | 
 |     *micLevelOut = stt->micGainIdx >> stt->scale; | 
 |     /* Add to Mic as if it was the output from a true microphone */ | 
 |     if (WebRtcAgc_AddMic(agcInst, in_near, num_bands, samples) != 0) | 
 |     { | 
 |         return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | void WebRtcAgc_UpdateAgcThresholds(LegacyAgc* stt) { | 
 |     int16_t tmp16; | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |     int zeros; | 
 |  | 
 |     if (stt->micLvlSat) | 
 |     { | 
 |         /* Lower the analog target level since we have reached its maximum */ | 
 |         zeros = WebRtcSpl_NormW32(stt->Rxx160_LPw32); | 
 |         stt->targetIdxOffset = (3 * zeros - stt->targetIdx - 2) / 4; | 
 |     } | 
 | #endif | 
 |  | 
 |     /* Set analog target level in envelope dBOv scale */ | 
 |     tmp16 = (DIFF_REF_TO_ANALOG * stt->compressionGaindB) + ANALOG_TARGET_LEVEL_2; | 
 |     tmp16 = WebRtcSpl_DivW32W16ResW16((int32_t)tmp16, ANALOG_TARGET_LEVEL); | 
 |     stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN + tmp16; | 
 |     if (stt->analogTarget < DIGITAL_REF_AT_0_COMP_GAIN) | 
 |     { | 
 |         stt->analogTarget = DIGITAL_REF_AT_0_COMP_GAIN; | 
 |     } | 
 |     if (stt->agcMode == kAgcModeFixedDigital) | 
 |     { | 
 |         /* Adjust for different parameter interpretation in FixedDigital mode */ | 
 |         stt->analogTarget = stt->compressionGaindB; | 
 |     } | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |     stt->analogTarget += stt->targetIdxOffset; | 
 | #endif | 
 |     /* Since the offset between RMS and ENV is not constant, we should make this into a | 
 |      * table, but for now, we'll stick with a constant, tuned for the chosen analog | 
 |      * target level. | 
 |      */ | 
 |     stt->targetIdx = ANALOG_TARGET_LEVEL + OFFSET_ENV_TO_RMS; | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |     stt->targetIdx += stt->targetIdxOffset; | 
 | #endif | 
 |     /* Analog adaptation limits */ | 
 |     /* analogTargetLevel = round((32767*10^(-targetIdx/20))^2*16/2^7) */ | 
 |     stt->analogTargetLevel = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx]; /* ex. -20 dBov */ | 
 |     stt->startUpperLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 1];/* -19 dBov */ | 
 |     stt->startLowerLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 1];/* -21 dBov */ | 
 |     stt->upperPrimaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 2];/* -18 dBov */ | 
 |     stt->lowerPrimaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 2];/* -22 dBov */ | 
 |     stt->upperSecondaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx - 5];/* -15 dBov */ | 
 |     stt->lowerSecondaryLimit = RXX_BUFFER_LEN * kTargetLevelTable[stt->targetIdx + 5];/* -25 dBov */ | 
 |     stt->upperLimit = stt->startUpperLimit; | 
 |     stt->lowerLimit = stt->startLowerLimit; | 
 | } | 
 |  | 
 | void WebRtcAgc_SaturationCtrl(LegacyAgc* stt, | 
 |                               uint8_t* saturated, | 
 |                               int32_t* env) { | 
 |     int16_t i, tmpW16; | 
 |  | 
 |     /* Check if the signal is saturated */ | 
 |     for (i = 0; i < 10; i++) | 
 |     { | 
 |         tmpW16 = (int16_t)(env[i] >> 20); | 
 |         if (tmpW16 > 875) | 
 |         { | 
 |             stt->envSum += tmpW16; | 
 |         } | 
 |     } | 
 |  | 
 |     if (stt->envSum > 25000) | 
 |     { | 
 |         *saturated = 1; | 
 |         stt->envSum = 0; | 
 |     } | 
 |  | 
 |     /* stt->envSum *= 0.99; */ | 
 |     stt->envSum = (int16_t)((stt->envSum * 32440) >> 15); | 
 | } | 
 |  | 
 | void WebRtcAgc_ZeroCtrl(LegacyAgc* stt, int32_t* inMicLevel, int32_t* env) { | 
 |     int16_t i; | 
 |     int32_t tmp32 = 0; | 
 |     int32_t midVal; | 
 |  | 
 |     /* Is the input signal zero? */ | 
 |     for (i = 0; i < 10; i++) | 
 |     { | 
 |         tmp32 += env[i]; | 
 |     } | 
 |  | 
 |     /* Each block is allowed to have a few non-zero | 
 |      * samples. | 
 |      */ | 
 |     if (tmp32 < 500) | 
 |     { | 
 |         stt->msZero += 10; | 
 |     } else | 
 |     { | 
 |         stt->msZero = 0; | 
 |     } | 
 |  | 
 |     if (stt->muteGuardMs > 0) | 
 |     { | 
 |         stt->muteGuardMs -= 10; | 
 |     } | 
 |  | 
 |     if (stt->msZero > 500) | 
 |     { | 
 |         stt->msZero = 0; | 
 |  | 
 |         /* Increase microphone level only if it's less than 50% */ | 
 |         midVal = (stt->maxAnalog + stt->minLevel + 1) / 2; | 
 |         if (*inMicLevel < midVal) | 
 |         { | 
 |             /* *inMicLevel *= 1.1; */ | 
 |             *inMicLevel = (1126 * *inMicLevel) >> 10; | 
 |             /* Reduces risk of a muted mic repeatedly triggering excessive levels due | 
 |              * to zero signal detection. */ | 
 |             *inMicLevel = WEBRTC_SPL_MIN(*inMicLevel, stt->zeroCtrlMax); | 
 |             stt->micVol = *inMicLevel; | 
 |         } | 
 |  | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, | 
 |                 "\t\tAGC->zeroCntrl, frame %d: 500 ms under threshold," | 
 |                 " micVol: %d\n", | 
 |                 stt->fcount, | 
 |                 stt->micVol); | 
 | #endif | 
 |  | 
 |         stt->activeSpeech = 0; | 
 |         stt->Rxx16_LPw32Max = 0; | 
 |  | 
 |         /* The AGC has a tendency (due to problems with the VAD parameters), to | 
 |          * vastly increase the volume after a muting event. This timer prevents | 
 |          * upwards adaptation for a short period. */ | 
 |         stt->muteGuardMs = kMuteGuardTimeMs; | 
 |     } | 
 | } | 
 |  | 
 | void WebRtcAgc_SpeakerInactiveCtrl(LegacyAgc* stt) { | 
 |     /* Check if the near end speaker is inactive. | 
 |      * If that is the case the VAD threshold is | 
 |      * increased since the VAD speech model gets | 
 |      * more sensitive to any sound after a long | 
 |      * silence. | 
 |      */ | 
 |  | 
 |     int32_t tmp32; | 
 |     int16_t vadThresh; | 
 |  | 
 |     if (stt->vadMic.stdLongTerm < 2500) | 
 |     { | 
 |         stt->vadThreshold = 1500; | 
 |     } else | 
 |     { | 
 |         vadThresh = kNormalVadThreshold; | 
 |         if (stt->vadMic.stdLongTerm < 4500) | 
 |         { | 
 |             /* Scale between min and max threshold */ | 
 |             vadThresh += (4500 - stt->vadMic.stdLongTerm) / 2; | 
 |         } | 
 |  | 
 |         /* stt->vadThreshold = (31 * stt->vadThreshold + vadThresh) / 32; */ | 
 |         tmp32 = vadThresh + 31 * stt->vadThreshold; | 
 |         stt->vadThreshold = (int16_t)(tmp32 >> 5); | 
 |     } | 
 | } | 
 |  | 
 | void WebRtcAgc_ExpCurve(int16_t volume, int16_t *index) | 
 | { | 
 |     // volume in Q14 | 
 |     // index in [0-7] | 
 |     /* 8 different curves */ | 
 |     if (volume > 5243) | 
 |     { | 
 |         if (volume > 7864) | 
 |         { | 
 |             if (volume > 12124) | 
 |             { | 
 |                 *index = 7; | 
 |             } else | 
 |             { | 
 |                 *index = 6; | 
 |             } | 
 |         } else | 
 |         { | 
 |             if (volume > 6554) | 
 |             { | 
 |                 *index = 5; | 
 |             } else | 
 |             { | 
 |                 *index = 4; | 
 |             } | 
 |         } | 
 |     } else | 
 |     { | 
 |         if (volume > 2621) | 
 |         { | 
 |             if (volume > 3932) | 
 |             { | 
 |                 *index = 3; | 
 |             } else | 
 |             { | 
 |                 *index = 2; | 
 |             } | 
 |         } else | 
 |         { | 
 |             if (volume > 1311) | 
 |             { | 
 |                 *index = 1; | 
 |             } else | 
 |             { | 
 |                 *index = 0; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | int32_t WebRtcAgc_ProcessAnalog(void *state, int32_t inMicLevel, | 
 |                                 int32_t *outMicLevel, | 
 |                                 int16_t vadLogRatio, | 
 |                                 int16_t echo, uint8_t *saturationWarning) | 
 | { | 
 |     uint32_t tmpU32; | 
 |     int32_t Rxx16w32, tmp32; | 
 |     int32_t inMicLevelTmp, lastMicVol; | 
 |     int16_t i; | 
 |     uint8_t saturated = 0; | 
 |     LegacyAgc* stt; | 
 |  | 
 |     stt = (LegacyAgc*)state; | 
 |     inMicLevelTmp = inMicLevel << stt->scale; | 
 |  | 
 |     if (inMicLevelTmp > stt->maxAnalog) | 
 |     { | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, | 
 |                 "\tAGC->ProcessAnalog, frame %d: micLvl > maxAnalog\n", | 
 |                 stt->fcount); | 
 | #endif | 
 |         return -1; | 
 |     } else if (inMicLevelTmp < stt->minLevel) | 
 |     { | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, | 
 |                 "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel\n", | 
 |                 stt->fcount); | 
 | #endif | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (stt->firstCall == 0) | 
 |     { | 
 |         int32_t tmpVol; | 
 |         stt->firstCall = 1; | 
 |         tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; | 
 |         tmpVol = (stt->minLevel + tmp32); | 
 |  | 
 |         /* If the mic level is very low at start, increase it! */ | 
 |         if ((inMicLevelTmp < tmpVol) && (stt->agcMode == kAgcModeAdaptiveAnalog)) | 
 |         { | 
 |             inMicLevelTmp = tmpVol; | 
 |         } | 
 |         stt->micVol = inMicLevelTmp; | 
 |     } | 
 |  | 
 |     /* Set the mic level to the previous output value if there is digital input gain */ | 
 |     if ((inMicLevelTmp == stt->maxAnalog) && (stt->micVol > stt->maxAnalog)) | 
 |     { | 
 |         inMicLevelTmp = stt->micVol; | 
 |     } | 
 |  | 
 |     /* If the mic level was manually changed to a very low value raise it! */ | 
 |     if ((inMicLevelTmp != stt->micVol) && (inMicLevelTmp < stt->minOutput)) | 
 |     { | 
 |         tmp32 = ((stt->maxLevel - stt->minLevel) * 51) >> 9; | 
 |         inMicLevelTmp = (stt->minLevel + tmp32); | 
 |         stt->micVol = inMicLevelTmp; | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |         //stt->numBlocksMicLvlSat = 0; | 
 | #endif | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, | 
 |                 "\tAGC->ProcessAnalog, frame %d: micLvl < minLevel by manual" | 
 |                 " decrease, raise vol\n", | 
 |                 stt->fcount); | 
 | #endif | 
 |     } | 
 |  | 
 |     if (inMicLevelTmp != stt->micVol) | 
 |     { | 
 |         if (inMicLevel == stt->lastInMicLevel) { | 
 |             // We requested a volume adjustment, but it didn't occur. This is | 
 |             // probably due to a coarse quantization of the volume slider. | 
 |             // Restore the requested value to prevent getting stuck. | 
 |             inMicLevelTmp = stt->micVol; | 
 |         } | 
 |         else { | 
 |             // As long as the value changed, update to match. | 
 |             stt->micVol = inMicLevelTmp; | 
 |         } | 
 |     } | 
 |  | 
 |     if (inMicLevelTmp > stt->maxLevel) | 
 |     { | 
 |         // Always allow the user to raise the volume above the maxLevel. | 
 |         stt->maxLevel = inMicLevelTmp; | 
 |     } | 
 |  | 
 |     // Store last value here, after we've taken care of manual updates etc. | 
 |     stt->lastInMicLevel = inMicLevel; | 
 |     lastMicVol = stt->micVol; | 
 |  | 
 |     /* Checks if the signal is saturated. Also a check if individual samples | 
 |      * are larger than 12000 is done. If they are the counter for increasing | 
 |      * the volume level is set to -100ms | 
 |      */ | 
 |     WebRtcAgc_SaturationCtrl(stt, &saturated, stt->env[0]); | 
 |  | 
 |     /* The AGC is always allowed to lower the level if the signal is saturated */ | 
 |     if (saturated == 1) | 
 |     { | 
 |         /* Lower the recording level | 
 |          * Rxx160_LP is adjusted down because it is so slow it could | 
 |          * cause the AGC to make wrong decisions. */ | 
 |         /* stt->Rxx160_LPw32 *= 0.875; */ | 
 |         stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 8) * 7; | 
 |  | 
 |         stt->zeroCtrlMax = stt->micVol; | 
 |  | 
 |         /* stt->micVol *= 0.903; */ | 
 |         tmp32 = inMicLevelTmp - stt->minLevel; | 
 |         tmpU32 = WEBRTC_SPL_UMUL(29591, (uint32_t)(tmp32)); | 
 |         stt->micVol = (tmpU32 >> 15) + stt->minLevel; | 
 |         if (stt->micVol > lastMicVol - 2) | 
 |         { | 
 |             stt->micVol = lastMicVol - 2; | 
 |         } | 
 |         inMicLevelTmp = stt->micVol; | 
 |  | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, | 
 |                 "\tAGC->ProcessAnalog, frame %d: saturated, micVol = %d\n", | 
 |                 stt->fcount, | 
 |                 stt->micVol); | 
 | #endif | 
 |  | 
 |         if (stt->micVol < stt->minOutput) | 
 |         { | 
 |             *saturationWarning = 1; | 
 |         } | 
 |  | 
 |         /* Reset counter for decrease of volume level to avoid | 
 |          * decreasing too much. The saturation control can still | 
 |          * lower the level if needed. */ | 
 |         stt->msTooHigh = -100; | 
 |  | 
 |         /* Enable the control mechanism to ensure that our measure, | 
 |          * Rxx160_LP, is in the correct range. This must be done since | 
 |          * the measure is very slow. */ | 
 |         stt->activeSpeech = 0; | 
 |         stt->Rxx16_LPw32Max = 0; | 
 |  | 
 |         /* Reset to initial values */ | 
 |         stt->msecSpeechInnerChange = kMsecSpeechInner; | 
 |         stt->msecSpeechOuterChange = kMsecSpeechOuter; | 
 |         stt->changeToSlowMode = 0; | 
 |  | 
 |         stt->muteGuardMs = 0; | 
 |  | 
 |         stt->upperLimit = stt->startUpperLimit; | 
 |         stt->lowerLimit = stt->startLowerLimit; | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |         //stt->numBlocksMicLvlSat = 0; | 
 | #endif | 
 |     } | 
 |  | 
 |     /* Check if the input speech is zero. If so the mic volume | 
 |      * is increased. On some computers the input is zero up as high | 
 |      * level as 17% */ | 
 |     WebRtcAgc_ZeroCtrl(stt, &inMicLevelTmp, stt->env[0]); | 
 |  | 
 |     /* Check if the near end speaker is inactive. | 
 |      * If that is the case the VAD threshold is | 
 |      * increased since the VAD speech model gets | 
 |      * more sensitive to any sound after a long | 
 |      * silence. | 
 |      */ | 
 |     WebRtcAgc_SpeakerInactiveCtrl(stt); | 
 |  | 
 |     for (i = 0; i < 5; i++) | 
 |     { | 
 |         /* Computed on blocks of 16 samples */ | 
 |  | 
 |         Rxx16w32 = stt->Rxx16w32_array[0][i]; | 
 |  | 
 |         /* Rxx160w32 in Q(-7) */ | 
 |         tmp32 = (Rxx16w32 - stt->Rxx16_vectorw32[stt->Rxx16pos]) >> 3; | 
 |         stt->Rxx160w32 = stt->Rxx160w32 + tmp32; | 
 |         stt->Rxx16_vectorw32[stt->Rxx16pos] = Rxx16w32; | 
 |  | 
 |         /* Circular buffer */ | 
 |         stt->Rxx16pos++; | 
 |         if (stt->Rxx16pos == RXX_BUFFER_LEN) | 
 |         { | 
 |             stt->Rxx16pos = 0; | 
 |         } | 
 |  | 
 |         /* Rxx16_LPw32 in Q(-4) */ | 
 |         tmp32 = (Rxx16w32 - stt->Rxx16_LPw32) >> kAlphaShortTerm; | 
 |         stt->Rxx16_LPw32 = (stt->Rxx16_LPw32) + tmp32; | 
 |  | 
 |         if (vadLogRatio > stt->vadThreshold) | 
 |         { | 
 |             /* Speech detected! */ | 
 |  | 
 |             /* Check if Rxx160_LP is in the correct range. If | 
 |              * it is too high/low then we set it to the maximum of | 
 |              * Rxx16_LPw32 during the first 200ms of speech. | 
 |              */ | 
 |             if (stt->activeSpeech < 250) | 
 |             { | 
 |                 stt->activeSpeech += 2; | 
 |  | 
 |                 if (stt->Rxx16_LPw32 > stt->Rxx16_LPw32Max) | 
 |                 { | 
 |                     stt->Rxx16_LPw32Max = stt->Rxx16_LPw32; | 
 |                 } | 
 |             } else if (stt->activeSpeech == 250) | 
 |             { | 
 |                 stt->activeSpeech += 2; | 
 |                 tmp32 = stt->Rxx16_LPw32Max >> 3; | 
 |                 stt->Rxx160_LPw32 = tmp32 * RXX_BUFFER_LEN; | 
 |             } | 
 |  | 
 |             tmp32 = (stt->Rxx160w32 - stt->Rxx160_LPw32) >> kAlphaLongTerm; | 
 |             stt->Rxx160_LPw32 = stt->Rxx160_LPw32 + tmp32; | 
 |  | 
 |             if (stt->Rxx160_LPw32 > stt->upperSecondaryLimit) | 
 |             { | 
 |                 stt->msTooHigh += 2; | 
 |                 stt->msTooLow = 0; | 
 |                 stt->changeToSlowMode = 0; | 
 |  | 
 |                 if (stt->msTooHigh > stt->msecSpeechOuterChange) | 
 |                 { | 
 |                     stt->msTooHigh = 0; | 
 |  | 
 |                     /* Lower the recording level */ | 
 |                     /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ | 
 |                     tmp32 = stt->Rxx160_LPw32 >> 6; | 
 |                     stt->Rxx160_LPw32 = tmp32 * 53; | 
 |  | 
 |                     /* Reduce the max gain to avoid excessive oscillation | 
 |                      * (but never drop below the maximum analog level). | 
 |                      */ | 
 |                     stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; | 
 |                     stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); | 
 |  | 
 |                     stt->zeroCtrlMax = stt->micVol; | 
 |  | 
 |                     /* 0.95 in Q15 */ | 
 |                     tmp32 = inMicLevelTmp - stt->minLevel; | 
 |                     tmpU32 = WEBRTC_SPL_UMUL(31130, (uint32_t)(tmp32)); | 
 |                     stt->micVol = (tmpU32 >> 15) + stt->minLevel; | 
 |                     if (stt->micVol > lastMicVol - 1) | 
 |                     { | 
 |                         stt->micVol = lastMicVol - 1; | 
 |                     } | 
 |                     inMicLevelTmp = stt->micVol; | 
 |  | 
 |                     /* Enable the control mechanism to ensure that our measure, | 
 |                      * Rxx160_LP, is in the correct range. | 
 |                      */ | 
 |                     stt->activeSpeech = 0; | 
 |                     stt->Rxx16_LPw32Max = 0; | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |                     //stt->numBlocksMicLvlSat = 0; | 
 | #endif | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |                     fprintf(stt->fpt, | 
 |                             "\tAGC->ProcessAnalog, frame %d: measure >" | 
 |                             " 2ndUpperLim, micVol = %d, maxLevel = %d\n", | 
 |                             stt->fcount, | 
 |                             stt->micVol, | 
 |                             stt->maxLevel); | 
 | #endif | 
 |                 } | 
 |             } else if (stt->Rxx160_LPw32 > stt->upperLimit) | 
 |             { | 
 |                 stt->msTooHigh += 2; | 
 |                 stt->msTooLow = 0; | 
 |                 stt->changeToSlowMode = 0; | 
 |  | 
 |                 if (stt->msTooHigh > stt->msecSpeechInnerChange) | 
 |                 { | 
 |                     /* Lower the recording level */ | 
 |                     stt->msTooHigh = 0; | 
 |                     /* Multiply by 0.828125 which corresponds to decreasing ~0.8dB */ | 
 |                     stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 53; | 
 |  | 
 |                     /* Reduce the max gain to avoid excessive oscillation | 
 |                      * (but never drop below the maximum analog level). | 
 |                      */ | 
 |                     stt->maxLevel = (15 * stt->maxLevel + stt->micVol) / 16; | 
 |                     stt->maxLevel = WEBRTC_SPL_MAX(stt->maxLevel, stt->maxAnalog); | 
 |  | 
 |                     stt->zeroCtrlMax = stt->micVol; | 
 |  | 
 |                     /* 0.965 in Q15 */ | 
 |                     tmp32 = inMicLevelTmp - stt->minLevel; | 
 |                     tmpU32 = WEBRTC_SPL_UMUL(31621, (uint32_t)(inMicLevelTmp - stt->minLevel)); | 
 |                     stt->micVol = (tmpU32 >> 15) + stt->minLevel; | 
 |                     if (stt->micVol > lastMicVol - 1) | 
 |                     { | 
 |                         stt->micVol = lastMicVol - 1; | 
 |                     } | 
 |                     inMicLevelTmp = stt->micVol; | 
 |  | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |                     //stt->numBlocksMicLvlSat = 0; | 
 | #endif | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |                     fprintf(stt->fpt, | 
 |                             "\tAGC->ProcessAnalog, frame %d: measure >" | 
 |                             " UpperLim, micVol = %d, maxLevel = %d\n", | 
 |                             stt->fcount, | 
 |                             stt->micVol, | 
 |                             stt->maxLevel); | 
 | #endif | 
 |                 } | 
 |             } else if (stt->Rxx160_LPw32 < stt->lowerSecondaryLimit) | 
 |             { | 
 |                 stt->msTooHigh = 0; | 
 |                 stt->changeToSlowMode = 0; | 
 |                 stt->msTooLow += 2; | 
 |  | 
 |                 if (stt->msTooLow > stt->msecSpeechOuterChange) | 
 |                 { | 
 |                     /* Raise the recording level */ | 
 |                     int16_t index, weightFIX; | 
 |                     int16_t volNormFIX = 16384; // =1 in Q14. | 
 |  | 
 |                     stt->msTooLow = 0; | 
 |  | 
 |                     /* Normalize the volume level */ | 
 |                     tmp32 = (inMicLevelTmp - stt->minLevel) << 14; | 
 |                     if (stt->maxInit != stt->minLevel) | 
 |                     { | 
 |                         volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); | 
 |                     } | 
 |  | 
 |                     /* Find correct curve */ | 
 |                     WebRtcAgc_ExpCurve(volNormFIX, &index); | 
 |  | 
 |                     /* Compute weighting factor for the volume increase, 32^(-2*X)/2+1.05 */ | 
 |                     weightFIX = kOffset1[index] - | 
 |                         (int16_t)((kSlope1[index] * volNormFIX) >> 13); | 
 |  | 
 |                     /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ | 
 |                     stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; | 
 |  | 
 |                     tmp32 = inMicLevelTmp - stt->minLevel; | 
 |                     tmpU32 = ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); | 
 |                     stt->micVol = (tmpU32 >> 14) + stt->minLevel; | 
 |                     if (stt->micVol < lastMicVol + 2) | 
 |                     { | 
 |                         stt->micVol = lastMicVol + 2; | 
 |                     } | 
 |  | 
 |                     inMicLevelTmp = stt->micVol; | 
 |  | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |                     /* Count ms in level saturation */ | 
 |                     //if (stt->micVol > stt->maxAnalog) { | 
 |                     if (stt->micVol > 150) | 
 |                     { | 
 |                         /* mic level is saturated */ | 
 |                         stt->numBlocksMicLvlSat++; | 
 |                         fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); | 
 |                     } | 
 | #endif | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |                     fprintf(stt->fpt, | 
 |                             "\tAGC->ProcessAnalog, frame %d: measure <" | 
 |                             " 2ndLowerLim, micVol = %d\n", | 
 |                             stt->fcount, | 
 |                             stt->micVol); | 
 | #endif | 
 |                 } | 
 |             } else if (stt->Rxx160_LPw32 < stt->lowerLimit) | 
 |             { | 
 |                 stt->msTooHigh = 0; | 
 |                 stt->changeToSlowMode = 0; | 
 |                 stt->msTooLow += 2; | 
 |  | 
 |                 if (stt->msTooLow > stt->msecSpeechInnerChange) | 
 |                 { | 
 |                     /* Raise the recording level */ | 
 |                     int16_t index, weightFIX; | 
 |                     int16_t volNormFIX = 16384; // =1 in Q14. | 
 |  | 
 |                     stt->msTooLow = 0; | 
 |  | 
 |                     /* Normalize the volume level */ | 
 |                     tmp32 = (inMicLevelTmp - stt->minLevel) << 14; | 
 |                     if (stt->maxInit != stt->minLevel) | 
 |                     { | 
 |                         volNormFIX = tmp32 / (stt->maxInit - stt->minLevel); | 
 |                     } | 
 |  | 
 |                     /* Find correct curve */ | 
 |                     WebRtcAgc_ExpCurve(volNormFIX, &index); | 
 |  | 
 |                     /* Compute weighting factor for the volume increase, (3.^(-2.*X))/8+1 */ | 
 |                     weightFIX = kOffset2[index] - | 
 |                         (int16_t)((kSlope2[index] * volNormFIX) >> 13); | 
 |  | 
 |                     /* stt->Rxx160_LPw32 *= 1.047 [~0.2 dB]; */ | 
 |                     stt->Rxx160_LPw32 = (stt->Rxx160_LPw32 / 64) * 67; | 
 |  | 
 |                     tmp32 = inMicLevelTmp - stt->minLevel; | 
 |                     tmpU32 = ((uint32_t)weightFIX * (uint32_t)(inMicLevelTmp - stt->minLevel)); | 
 |                     stt->micVol = (tmpU32 >> 14) + stt->minLevel; | 
 |                     if (stt->micVol < lastMicVol + 1) | 
 |                     { | 
 |                         stt->micVol = lastMicVol + 1; | 
 |                     } | 
 |  | 
 |                     inMicLevelTmp = stt->micVol; | 
 |  | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |                     /* Count ms in level saturation */ | 
 |                     //if (stt->micVol > stt->maxAnalog) { | 
 |                     if (stt->micVol > 150) | 
 |                     { | 
 |                         /* mic level is saturated */ | 
 |                         stt->numBlocksMicLvlSat++; | 
 |                         fprintf(stderr, "Sat mic Level: %d\n", stt->numBlocksMicLvlSat); | 
 |                     } | 
 | #endif | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |                     fprintf(stt->fpt, | 
 |                             "\tAGC->ProcessAnalog, frame %d: measure < LowerLim, micVol = %d\n", | 
 |                             stt->fcount, | 
 |                             stt->micVol); | 
 | #endif | 
 |  | 
 |                 } | 
 |             } else | 
 |             { | 
 |                 /* The signal is inside the desired range which is: | 
 |                  * lowerLimit < Rxx160_LP/640 < upperLimit | 
 |                  */ | 
 |                 if (stt->changeToSlowMode > 4000) | 
 |                 { | 
 |                     stt->msecSpeechInnerChange = 1000; | 
 |                     stt->msecSpeechOuterChange = 500; | 
 |                     stt->upperLimit = stt->upperPrimaryLimit; | 
 |                     stt->lowerLimit = stt->lowerPrimaryLimit; | 
 |                 } else | 
 |                 { | 
 |                     stt->changeToSlowMode += 2; // in milliseconds | 
 |                 } | 
 |                 stt->msTooLow = 0; | 
 |                 stt->msTooHigh = 0; | 
 |  | 
 |                 stt->micVol = inMicLevelTmp; | 
 |  | 
 |             } | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |             if (stt->numBlocksMicLvlSat > NUM_BLOCKS_IN_SAT_BEFORE_CHANGE_TARGET) | 
 |             { | 
 |                 stt->micLvlSat = 1; | 
 |                 fprintf(stderr, "target before = %d (%d)\n", stt->analogTargetLevel, stt->targetIdx); | 
 |                 WebRtcAgc_UpdateAgcThresholds(stt); | 
 |                 WebRtcAgc_CalculateGainTable(&(stt->digitalAgc.gainTable[0]), | 
 |                         stt->compressionGaindB, stt->targetLevelDbfs, stt->limiterEnable, | 
 |                         stt->analogTarget); | 
 |                 stt->numBlocksMicLvlSat = 0; | 
 |                 stt->micLvlSat = 0; | 
 |                 fprintf(stderr, "target offset = %d\n", stt->targetIdxOffset); | 
 |                 fprintf(stderr, "target after  = %d (%d)\n", stt->analogTargetLevel, stt->targetIdx); | 
 |             } | 
 | #endif | 
 |         } | 
 |     } | 
 |  | 
 |     /* Ensure gain is not increased in presence of echo or after a mute event | 
 |      * (but allow the zeroCtrl() increase on the frame of a mute detection). | 
 |      */ | 
 |     if (echo == 1 || (stt->muteGuardMs > 0 && stt->muteGuardMs < kMuteGuardTimeMs)) | 
 |     { | 
 |         if (stt->micVol > lastMicVol) | 
 |         { | 
 |             stt->micVol = lastMicVol; | 
 |         } | 
 |     } | 
 |  | 
 |     /* limit the gain */ | 
 |     if (stt->micVol > stt->maxLevel) | 
 |     { | 
 |         stt->micVol = stt->maxLevel; | 
 |     } else if (stt->micVol < stt->minOutput) | 
 |     { | 
 |         stt->micVol = stt->minOutput; | 
 |     } | 
 |  | 
 |     *outMicLevel = WEBRTC_SPL_MIN(stt->micVol, stt->maxAnalog) >> stt->scale; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int WebRtcAgc_Process(void *agcInst, const int16_t* const* in_near, | 
 |                       int16_t num_bands, int16_t samples, | 
 |                       int16_t* const* out, int32_t inMicLevel, | 
 |                       int32_t *outMicLevel, int16_t echo, | 
 |                       uint8_t *saturationWarning) | 
 | { | 
 |   LegacyAgc* stt; | 
 |  | 
 |   stt = (LegacyAgc*)agcInst; | 
 |  | 
 |     // | 
 |     if (stt == NULL) | 
 |     { | 
 |         return -1; | 
 |     } | 
 |     // | 
 |  | 
 |  | 
 |     if (stt->fs == 8000) | 
 |     { | 
 |         if (samples != 80) | 
 |         { | 
 |             return -1; | 
 |         } | 
 |     } else if (stt->fs == 16000 || stt->fs == 32000 || stt->fs == 48000) | 
 |     { | 
 |         if (samples != 160) | 
 |         { | 
 |             return -1; | 
 |         } | 
 |     } else | 
 |     { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     *saturationWarning = 0; | 
 |     //TODO: PUT IN RANGE CHECKING FOR INPUT LEVELS | 
 |     *outMicLevel = inMicLevel; | 
 |  | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |     stt->fcount++; | 
 | #endif | 
 |  | 
 |     if (WebRtcAgc_ProcessDigital(&stt->digitalAgc, | 
 |                                  in_near, | 
 |                                  num_bands, | 
 |                                  out, | 
 |                                  stt->fs, | 
 |                                  stt->lowLevelSignal) == -1) | 
 |     { | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, | 
 |                 "AGC->Process, frame %d: Error from DigAGC\n\n", | 
 |                 stt->fcount); | 
 | #endif | 
 |         return -1; | 
 |     } | 
 |     if (stt->agcMode < kAgcModeFixedDigital && | 
 |         (stt->lowLevelSignal == 0 || stt->agcMode != kAgcModeAdaptiveDigital)) | 
 |     { | 
 |         if (WebRtcAgc_ProcessAnalog(agcInst, | 
 |                                     inMicLevel, | 
 |                                     outMicLevel, | 
 |                                     stt->vadMic.logRatio, | 
 |                                     echo, | 
 |                                     saturationWarning) == -1) | 
 |         { | 
 |             return -1; | 
 |         } | 
 |     } | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |     fprintf(stt->agcLog, | 
 |             "%5d\t%d\t%d\t%d\t%d\n", | 
 |             stt->fcount, | 
 |             inMicLevel, | 
 |             *outMicLevel, | 
 |             stt->maxLevel, | 
 |             stt->micVol); | 
 | #endif | 
 |  | 
 |     /* update queue */ | 
 |     if (stt->inQueue > 1) | 
 |     { | 
 |         memcpy(stt->env[0], stt->env[1], 10 * sizeof(int32_t)); | 
 |         memcpy(stt->Rxx16w32_array[0], | 
 |                stt->Rxx16w32_array[1], | 
 |                5 * sizeof(int32_t)); | 
 |     } | 
 |  | 
 |     if (stt->inQueue > 0) | 
 |     { | 
 |         stt->inQueue--; | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int WebRtcAgc_set_config(void* agcInst, WebRtcAgcConfig agcConfig) { | 
 |   LegacyAgc* stt; | 
 |   stt = (LegacyAgc*)agcInst; | 
 |  | 
 |     if (stt == NULL) | 
 |     { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (stt->initFlag != kInitCheck) | 
 |     { | 
 |         stt->lastError = AGC_UNINITIALIZED_ERROR; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (agcConfig.limiterEnable != kAgcFalse && agcConfig.limiterEnable != kAgcTrue) | 
 |     { | 
 |         stt->lastError = AGC_BAD_PARAMETER_ERROR; | 
 |         return -1; | 
 |     } | 
 |     stt->limiterEnable = agcConfig.limiterEnable; | 
 |     stt->compressionGaindB = agcConfig.compressionGaindB; | 
 |     if ((agcConfig.targetLevelDbfs < 0) || (agcConfig.targetLevelDbfs > 31)) | 
 |     { | 
 |         stt->lastError = AGC_BAD_PARAMETER_ERROR; | 
 |         return -1; | 
 |     } | 
 |     stt->targetLevelDbfs = agcConfig.targetLevelDbfs; | 
 |  | 
 |     if (stt->agcMode == kAgcModeFixedDigital) | 
 |     { | 
 |         /* Adjust for different parameter interpretation in FixedDigital mode */ | 
 |         stt->compressionGaindB += agcConfig.targetLevelDbfs; | 
 |     } | 
 |  | 
 |     /* Update threshold levels for analog adaptation */ | 
 |     WebRtcAgc_UpdateAgcThresholds(stt); | 
 |  | 
 |     /* Recalculate gain table */ | 
 |     if (WebRtcAgc_CalculateGainTable(&(stt->digitalAgc.gainTable[0]), stt->compressionGaindB, | 
 |                            stt->targetLevelDbfs, stt->limiterEnable, stt->analogTarget) == -1) | 
 |     { | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, | 
 |                 "AGC->set_config, frame %d: Error from calcGainTable\n\n", | 
 |                 stt->fcount); | 
 | #endif | 
 |         return -1; | 
 |     } | 
 |     /* Store the config in a WebRtcAgcConfig */ | 
 |     stt->usedConfig.compressionGaindB = agcConfig.compressionGaindB; | 
 |     stt->usedConfig.limiterEnable = agcConfig.limiterEnable; | 
 |     stt->usedConfig.targetLevelDbfs = agcConfig.targetLevelDbfs; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int WebRtcAgc_get_config(void* agcInst, WebRtcAgcConfig* config) { | 
 |   LegacyAgc* stt; | 
 |   stt = (LegacyAgc*)agcInst; | 
 |  | 
 |     if (stt == NULL) | 
 |     { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (config == NULL) | 
 |     { | 
 |         stt->lastError = AGC_NULL_POINTER_ERROR; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (stt->initFlag != kInitCheck) | 
 |     { | 
 |         stt->lastError = AGC_UNINITIALIZED_ERROR; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     config->limiterEnable = stt->usedConfig.limiterEnable; | 
 |     config->targetLevelDbfs = stt->usedConfig.targetLevelDbfs; | 
 |     config->compressionGaindB = stt->usedConfig.compressionGaindB; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int WebRtcAgc_Create(void **agcInst) | 
 | { | 
 |   LegacyAgc* stt; | 
 |     if (agcInst == NULL) | 
 |     { | 
 |         return -1; | 
 |     } | 
 |     stt = (LegacyAgc*)malloc(sizeof(LegacyAgc)); | 
 |  | 
 |     *agcInst = stt; | 
 |     if (stt == NULL) | 
 |     { | 
 |         return -1; | 
 |     } | 
 |  | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |     stt->fpt = fopen("./agc_test_log.txt", "wt"); | 
 |     stt->agcLog = fopen("./agc_debug_log.txt", "wt"); | 
 |     stt->digitalAgc.logFile = fopen("./agc_log.txt", "wt"); | 
 | #endif | 
 |  | 
 |     stt->initFlag = 0; | 
 |     stt->lastError = 0; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | int WebRtcAgc_Free(void *state) | 
 | { | 
 |   LegacyAgc* stt; | 
 |  | 
 |   stt = (LegacyAgc*)state; | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |     fclose(stt->fpt); | 
 |     fclose(stt->agcLog); | 
 |     fclose(stt->digitalAgc.logFile); | 
 | #endif | 
 |     free(stt); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | /* minLevel     - Minimum volume level | 
 |  * maxLevel     - Maximum volume level | 
 |  */ | 
 | int WebRtcAgc_Init(void *agcInst, int32_t minLevel, int32_t maxLevel, | 
 |                    int16_t agcMode, uint32_t fs) | 
 | { | 
 |     int32_t max_add, tmp32; | 
 |     int16_t i; | 
 |     int tmpNorm; | 
 |     LegacyAgc* stt; | 
 |  | 
 |     /* typecast state pointer */ | 
 |     stt = (LegacyAgc*)agcInst; | 
 |  | 
 |     if (WebRtcAgc_InitDigital(&stt->digitalAgc, agcMode) != 0) | 
 |     { | 
 |         stt->lastError = AGC_UNINITIALIZED_ERROR; | 
 |         return -1; | 
 |     } | 
 |  | 
 |     /* Analog AGC variables */ | 
 |     stt->envSum = 0; | 
 |  | 
 |     /* mode     = 0 - Only saturation protection | 
 |      *            1 - Analog Automatic Gain Control [-targetLevelDbfs (default -3 dBOv)] | 
 |      *            2 - Digital Automatic Gain Control [-targetLevelDbfs (default -3 dBOv)] | 
 |      *            3 - Fixed Digital Gain [compressionGaindB (default 8 dB)] | 
 |      */ | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |     stt->fcount = 0; | 
 |     fprintf(stt->fpt, "AGC->Init\n"); | 
 | #endif | 
 |     if (agcMode < kAgcModeUnchanged || agcMode > kAgcModeFixedDigital) | 
 |     { | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, "AGC->Init: error, incorrect mode\n\n"); | 
 | #endif | 
 |         return -1; | 
 |     } | 
 |     stt->agcMode = agcMode; | 
 |     stt->fs = fs; | 
 |  | 
 |     /* initialize input VAD */ | 
 |     WebRtcAgc_InitVad(&stt->vadMic); | 
 |  | 
 |     /* If the volume range is smaller than 0-256 then | 
 |      * the levels are shifted up to Q8-domain */ | 
 |     tmpNorm = WebRtcSpl_NormU32((uint32_t)maxLevel); | 
 |     stt->scale = tmpNorm - 23; | 
 |     if (stt->scale < 0) | 
 |     { | 
 |         stt->scale = 0; | 
 |     } | 
 |     // TODO(bjornv): Investigate if we really need to scale up a small range now when we have | 
 |     // a guard against zero-increments. For now, we do not support scale up (scale = 0). | 
 |     stt->scale = 0; | 
 |     maxLevel <<= stt->scale; | 
 |     minLevel <<= stt->scale; | 
 |  | 
 |     /* Make minLevel and maxLevel static in AdaptiveDigital */ | 
 |     if (stt->agcMode == kAgcModeAdaptiveDigital) | 
 |     { | 
 |         minLevel = 0; | 
 |         maxLevel = 255; | 
 |         stt->scale = 0; | 
 |     } | 
 |     /* The maximum supplemental volume range is based on a vague idea | 
 |      * of how much lower the gain will be than the real analog gain. */ | 
 |     max_add = (maxLevel - minLevel) / 4; | 
 |  | 
 |     /* Minimum/maximum volume level that can be set */ | 
 |     stt->minLevel = minLevel; | 
 |     stt->maxAnalog = maxLevel; | 
 |     stt->maxLevel = maxLevel + max_add; | 
 |     stt->maxInit = stt->maxLevel; | 
 |  | 
 |     stt->zeroCtrlMax = stt->maxAnalog; | 
 |     stt->lastInMicLevel = 0; | 
 |  | 
 |     /* Initialize micVol parameter */ | 
 |     stt->micVol = stt->maxAnalog; | 
 |     if (stt->agcMode == kAgcModeAdaptiveDigital) | 
 |     { | 
 |         stt->micVol = 127; /* Mid-point of mic level */ | 
 |     } | 
 |     stt->micRef = stt->micVol; | 
 |     stt->micGainIdx = 127; | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |     stt->numBlocksMicLvlSat = 0; | 
 |     stt->micLvlSat = 0; | 
 | #endif | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |     fprintf(stt->fpt, | 
 |             "AGC->Init: minLevel = %d, maxAnalog = %d, maxLevel = %d\n", | 
 |             stt->minLevel, | 
 |             stt->maxAnalog, | 
 |             stt->maxLevel); | 
 | #endif | 
 |  | 
 |     /* Minimum output volume is 4% higher than the available lowest volume level */ | 
 |     tmp32 = ((stt->maxLevel - stt->minLevel) * 10) >> 8; | 
 |     stt->minOutput = (stt->minLevel + tmp32); | 
 |  | 
 |     stt->msTooLow = 0; | 
 |     stt->msTooHigh = 0; | 
 |     stt->changeToSlowMode = 0; | 
 |     stt->firstCall = 0; | 
 |     stt->msZero = 0; | 
 |     stt->muteGuardMs = 0; | 
 |     stt->gainTableIdx = 0; | 
 |  | 
 |     stt->msecSpeechInnerChange = kMsecSpeechInner; | 
 |     stt->msecSpeechOuterChange = kMsecSpeechOuter; | 
 |  | 
 |     stt->activeSpeech = 0; | 
 |     stt->Rxx16_LPw32Max = 0; | 
 |  | 
 |     stt->vadThreshold = kNormalVadThreshold; | 
 |     stt->inActive = 0; | 
 |  | 
 |     for (i = 0; i < RXX_BUFFER_LEN; i++) | 
 |     { | 
 |         stt->Rxx16_vectorw32[i] = (int32_t)1000; /* -54dBm0 */ | 
 |     } | 
 |     stt->Rxx160w32 = 125 * RXX_BUFFER_LEN; /* (stt->Rxx16_vectorw32[0]>>3) = 125 */ | 
 |  | 
 |     stt->Rxx16pos = 0; | 
 |     stt->Rxx16_LPw32 = (int32_t)16284; /* Q(-4) */ | 
 |  | 
 |     for (i = 0; i < 5; i++) | 
 |     { | 
 |         stt->Rxx16w32_array[0][i] = 0; | 
 |     } | 
 |     for (i = 0; i < 10; i++) | 
 |     { | 
 |         stt->env[0][i] = 0; | 
 |         stt->env[1][i] = 0; | 
 |     } | 
 |     stt->inQueue = 0; | 
 |  | 
 | #ifdef MIC_LEVEL_FEEDBACK | 
 |     stt->targetIdxOffset = 0; | 
 | #endif | 
 |  | 
 |     WebRtcSpl_MemSetW32(stt->filterState, 0, 8); | 
 |  | 
 |     stt->initFlag = kInitCheck; | 
 |     // Default config settings. | 
 |     stt->defaultConfig.limiterEnable = kAgcTrue; | 
 |     stt->defaultConfig.targetLevelDbfs = AGC_DEFAULT_TARGET_LEVEL; | 
 |     stt->defaultConfig.compressionGaindB = AGC_DEFAULT_COMP_GAIN; | 
 |  | 
 |     if (WebRtcAgc_set_config(stt, stt->defaultConfig) == -1) | 
 |     { | 
 |         stt->lastError = AGC_UNSPECIFIED_ERROR; | 
 |         return -1; | 
 |     } | 
 |     stt->Rxx160_LPw32 = stt->analogTargetLevel; // Initialize rms value | 
 |  | 
 |     stt->lowLevelSignal = 0; | 
 |  | 
 |     /* Only positive values are allowed that are not too large */ | 
 |     if ((minLevel >= maxLevel) || (maxLevel & 0xFC000000)) | 
 |     { | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, "minLevel, maxLevel value(s) are invalid\n\n"); | 
 | #endif | 
 |         return -1; | 
 |     } else | 
 |     { | 
 | #ifdef WEBRTC_AGC_DEBUG_DUMP | 
 |         fprintf(stt->fpt, "\n"); | 
 | #endif | 
 |         return 0; | 
 |     } | 
 | } |