blob: e42a98e6325b29a4676487222c817240a1bcb1f3 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/beamformer/array_util.h"
#include <algorithm>
#include <limits>
#include "webrtc/rtc_base/checks.h"
namespace webrtc {
namespace {
const float kMaxDotProduct = 1e-6f;
} // namespace
float GetMinimumSpacing(const std::vector<Point>& array_geometry) {
RTC_CHECK_GT(array_geometry.size(), 1);
float mic_spacing = std::numeric_limits<float>::max();
for (size_t i = 0; i < (array_geometry.size() - 1); ++i) {
for (size_t j = i + 1; j < array_geometry.size(); ++j) {
mic_spacing =
std::min(mic_spacing, Distance(array_geometry[i], array_geometry[j]));
}
}
return mic_spacing;
}
Point PairDirection(const Point& a, const Point& b) {
return {b.x() - a.x(), b.y() - a.y(), b.z() - a.z()};
}
float DotProduct(const Point& a, const Point& b) {
return a.x() * b.x() + a.y() * b.y() + a.z() * b.z();
}
Point CrossProduct(const Point& a, const Point& b) {
return {a.y() * b.z() - a.z() * b.y(), a.z() * b.x() - a.x() * b.z(),
a.x() * b.y() - a.y() * b.x()};
}
bool AreParallel(const Point& a, const Point& b) {
Point cross_product = CrossProduct(a, b);
return DotProduct(cross_product, cross_product) < kMaxDotProduct;
}
bool ArePerpendicular(const Point& a, const Point& b) {
return std::abs(DotProduct(a, b)) < kMaxDotProduct;
}
rtc::Optional<Point> GetDirectionIfLinear(
const std::vector<Point>& array_geometry) {
RTC_DCHECK_GT(array_geometry.size(), 1);
const Point first_pair_direction =
PairDirection(array_geometry[0], array_geometry[1]);
for (size_t i = 2u; i < array_geometry.size(); ++i) {
const Point pair_direction =
PairDirection(array_geometry[i - 1], array_geometry[i]);
if (!AreParallel(first_pair_direction, pair_direction)) {
return rtc::Optional<Point>();
}
}
return rtc::Optional<Point>(first_pair_direction);
}
rtc::Optional<Point> GetNormalIfPlanar(
const std::vector<Point>& array_geometry) {
RTC_DCHECK_GT(array_geometry.size(), 1);
const Point first_pair_direction =
PairDirection(array_geometry[0], array_geometry[1]);
Point pair_direction(0.f, 0.f, 0.f);
size_t i = 2u;
bool is_linear = true;
for (; i < array_geometry.size() && is_linear; ++i) {
pair_direction = PairDirection(array_geometry[i - 1], array_geometry[i]);
if (!AreParallel(first_pair_direction, pair_direction)) {
is_linear = false;
}
}
if (is_linear) {
return rtc::Optional<Point>();
}
const Point normal_direction =
CrossProduct(first_pair_direction, pair_direction);
for (; i < array_geometry.size(); ++i) {
pair_direction = PairDirection(array_geometry[i - 1], array_geometry[i]);
if (!ArePerpendicular(normal_direction, pair_direction)) {
return rtc::Optional<Point>();
}
}
return rtc::Optional<Point>(normal_direction);
}
rtc::Optional<Point> GetArrayNormalIfExists(
const std::vector<Point>& array_geometry) {
const rtc::Optional<Point> direction = GetDirectionIfLinear(array_geometry);
if (direction) {
return rtc::Optional<Point>(Point(direction->y(), -direction->x(), 0.f));
}
const rtc::Optional<Point> normal = GetNormalIfPlanar(array_geometry);
if (normal && normal->z() < kMaxDotProduct) {
return normal;
}
return rtc::Optional<Point>();
}
Point AzimuthToPoint(float azimuth) {
return Point(std::cos(azimuth), std::sin(azimuth), 0.f);
}
} // namespace webrtc