| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_ |
| #define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_ |
| |
| #include <cmath> |
| #include <vector> |
| |
| #include "webrtc/api/optional.h" |
| |
| namespace webrtc { |
| |
| // Coordinates in meters. The convention used is: |
| // x: the horizontal dimension, with positive to the right from the camera's |
| // perspective. |
| // y: the depth dimension, with positive forward from the camera's |
| // perspective. |
| // z: the vertical dimension, with positive upwards. |
| template<typename T> |
| struct CartesianPoint { |
| CartesianPoint() { |
| c[0] = 0; |
| c[1] = 0; |
| c[2] = 0; |
| } |
| CartesianPoint(T x, T y, T z) { |
| c[0] = x; |
| c[1] = y; |
| c[2] = z; |
| } |
| T x() const { return c[0]; } |
| T y() const { return c[1]; } |
| T z() const { return c[2]; } |
| T c[3]; |
| }; |
| |
| using Point = CartesianPoint<float>; |
| |
| // Calculates the direction from a to b. |
| Point PairDirection(const Point& a, const Point& b); |
| |
| float DotProduct(const Point& a, const Point& b); |
| Point CrossProduct(const Point& a, const Point& b); |
| |
| bool AreParallel(const Point& a, const Point& b); |
| bool ArePerpendicular(const Point& a, const Point& b); |
| |
| // Returns the minimum distance between any two Points in the given |
| // |array_geometry|. |
| float GetMinimumSpacing(const std::vector<Point>& array_geometry); |
| |
| // If the given array geometry is linear it returns the direction without |
| // normalizing. |
| rtc::Optional<Point> GetDirectionIfLinear( |
| const std::vector<Point>& array_geometry); |
| |
| // If the given array geometry is planar it returns the normal without |
| // normalizing. |
| rtc::Optional<Point> GetNormalIfPlanar( |
| const std::vector<Point>& array_geometry); |
| |
| // Returns the normal of an array if it has one and it is in the xy-plane. |
| rtc::Optional<Point> GetArrayNormalIfExists( |
| const std::vector<Point>& array_geometry); |
| |
| // The resulting Point will be in the xy-plane. |
| Point AzimuthToPoint(float azimuth); |
| |
| template<typename T> |
| float Distance(CartesianPoint<T> a, CartesianPoint<T> b) { |
| return std::sqrt((a.x() - b.x()) * (a.x() - b.x()) + |
| (a.y() - b.y()) * (a.y() - b.y()) + |
| (a.z() - b.z()) * (a.z() - b.z())); |
| } |
| |
| // The convention used: |
| // azimuth: zero is to the right from the camera's perspective, with positive |
| // angles in radians counter-clockwise. |
| // elevation: zero is horizontal, with positive angles in radians upwards. |
| // radius: distance from the camera in meters. |
| template <typename T> |
| struct SphericalPoint { |
| SphericalPoint(T azimuth, T elevation, T radius) { |
| s[0] = azimuth; |
| s[1] = elevation; |
| s[2] = radius; |
| } |
| T azimuth() const { return s[0]; } |
| T elevation() const { return s[1]; } |
| T distance() const { return s[2]; } |
| T s[3]; |
| }; |
| |
| using SphericalPointf = SphericalPoint<float>; |
| |
| // Helper functions to transform degrees to radians and the inverse. |
| template <typename T> |
| T DegreesToRadians(T angle_degrees) { |
| return M_PI * angle_degrees / 180; |
| } |
| |
| template <typename T> |
| T RadiansToDegrees(T angle_radians) { |
| return 180 * angle_radians / M_PI; |
| } |
| |
| } // namespace webrtc |
| |
| #endif // WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_ |