blob: e8d9d21050f21d1b931999b758979b95ec953bcb [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
#include <algorithm>
#include <cmath>
#include <string>
#include "webrtc/base/checks.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/thread_annotations.h"
#include "webrtc/logging/rtc_event_log/rtc_event_log.h"
#include "webrtc/modules/congestion_controller/include/congestion_controller.h"
#include "webrtc/modules/pacing/paced_sender.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
#include "webrtc/system_wrappers/include/field_trial.h"
#include "webrtc/system_wrappers/include/metrics.h"
#include "webrtc/typedefs.h"
namespace {
constexpr int kTimestampGroupLengthMs = 5;
constexpr int kAbsSendTimeFraction = 18;
constexpr int kAbsSendTimeInterArrivalUpshift = 8;
constexpr int kInterArrivalShift =
kAbsSendTimeFraction + kAbsSendTimeInterArrivalUpshift;
constexpr double kTimestampToMs =
1000.0 / static_cast<double>(1 << kInterArrivalShift);
// This ssrc is used to fulfill the current API but will be removed
// after the API has been changed.
constexpr uint32_t kFixedSsrc = 0;
constexpr int kInitialRateWindowMs = 500;
constexpr int kRateWindowMs = 150;
// Parameters for linear least squares fit of regression line to noisy data.
constexpr size_t kDefaultTrendlineWindowSize = 15;
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
constexpr double kDefaultTrendlineThresholdGain = 4.0;
// Parameters for Theil-Sen robust fitting of line to noisy data.
constexpr size_t kDefaultMedianSlopeWindowSize = 20;
constexpr double kDefaultMedianSlopeThresholdGain = 4.0;
constexpr int kMaxConsecutiveFailedLookups = 5;
const char kBitrateEstimateExperiment[] = "WebRTC-ImprovedBitrateEstimate";
const char kBweTrendlineFilterExperiment[] = "WebRTC-BweTrendlineFilter";
const char kBweMedianSlopeFilterExperiment[] = "WebRTC-BweMedianSlopeFilter";
bool BitrateEstimateExperimentIsEnabled() {
return webrtc::field_trial::IsEnabled(kBitrateEstimateExperiment);
}
bool TrendlineFilterExperimentIsEnabled() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
// The experiment is enabled iff the field trial string begins with "Enabled".
return experiment_string.find("Enabled") == 0;
}
bool MedianSlopeFilterExperimentIsEnabled() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweMedianSlopeFilterExperiment);
// The experiment is enabled iff the field trial string begins with "Enabled".
return experiment_string.find("Enabled") == 0;
}
bool ReadTrendlineFilterExperimentParameters(size_t* window_size,
double* smoothing_coef,
double* threshold_gain) {
RTC_DCHECK(TrendlineFilterExperimentIsEnabled());
RTC_DCHECK(!MedianSlopeFilterExperimentIsEnabled());
RTC_DCHECK(window_size != nullptr);
RTC_DCHECK(smoothing_coef != nullptr);
RTC_DCHECK(threshold_gain != nullptr);
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweTrendlineFilterExperiment);
int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu,%lf,%lf",
window_size, smoothing_coef, threshold_gain);
if (parsed_values == 3) {
RTC_CHECK_GT(*window_size, 1) << "Need at least 2 points to fit a line.";
RTC_CHECK(0 <= *smoothing_coef && *smoothing_coef <= 1)
<< "Coefficient needs to be between 0 and 1 for weighted average.";
RTC_CHECK_GT(*threshold_gain, 0) << "Threshold gain needs to be positive.";
return true;
}
LOG(LS_WARNING) << "Failed to parse parameters for BweTrendlineFilter "
"experiment from field trial string. Using default.";
*window_size = kDefaultTrendlineWindowSize;
*smoothing_coef = kDefaultTrendlineSmoothingCoeff;
*threshold_gain = kDefaultTrendlineThresholdGain;
return false;
}
bool ReadMedianSlopeFilterExperimentParameters(size_t* window_size,
double* threshold_gain) {
RTC_DCHECK(!TrendlineFilterExperimentIsEnabled());
RTC_DCHECK(MedianSlopeFilterExperimentIsEnabled());
RTC_DCHECK(window_size != nullptr);
RTC_DCHECK(threshold_gain != nullptr);
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweMedianSlopeFilterExperiment);
int parsed_values = sscanf(experiment_string.c_str(), "Enabled-%zu,%lf",
window_size, threshold_gain);
if (parsed_values == 2) {
RTC_CHECK_GT(*window_size, 1) << "Need at least 2 points to fit a line.";
RTC_CHECK_GT(*threshold_gain, 0) << "Threshold gain needs to be positive.";
return true;
}
LOG(LS_WARNING) << "Failed to parse parameters for BweMedianSlopeFilter "
"experiment from field trial string. Using default.";
*window_size = kDefaultMedianSlopeWindowSize;
*threshold_gain = kDefaultMedianSlopeThresholdGain;
return false;
}
class PacketFeedbackComparator {
public:
inline bool operator()(const webrtc::PacketFeedback& lhs,
const webrtc::PacketFeedback& rhs) {
if (lhs.arrival_time_ms != rhs.arrival_time_ms)
return lhs.arrival_time_ms < rhs.arrival_time_ms;
if (lhs.send_time_ms != rhs.send_time_ms)
return lhs.send_time_ms < rhs.send_time_ms;
return lhs.sequence_number < rhs.sequence_number;
}
};
void SortPacketFeedbackVector(const std::vector<webrtc::PacketFeedback>& input,
std::vector<webrtc::PacketFeedback>* output) {
auto pred = [](const webrtc::PacketFeedback& packet_feedback) {
return packet_feedback.arrival_time_ms !=
webrtc::PacketFeedback::kNotReceived;
};
std::copy_if(input.begin(), input.end(), std::back_inserter(*output), pred);
std::sort(output->begin(), output->end(), PacketFeedbackComparator());
}
} // namespace
namespace webrtc {
DelayBasedBwe::BitrateEstimator::BitrateEstimator()
: sum_(0),
current_win_ms_(0),
prev_time_ms_(-1),
bitrate_estimate_(-1.0f),
bitrate_estimate_var_(50.0f),
old_estimator_(kBitrateWindowMs, 8000),
in_experiment_(BitrateEstimateExperimentIsEnabled()) {}
void DelayBasedBwe::BitrateEstimator::Update(int64_t now_ms, int bytes) {
if (!in_experiment_) {
old_estimator_.Update(bytes, now_ms);
rtc::Optional<uint32_t> rate = old_estimator_.Rate(now_ms);
bitrate_estimate_ = -1.0f;
if (rate)
bitrate_estimate_ = *rate / 1000.0f;
return;
}
int rate_window_ms = kRateWindowMs;
// We use a larger window at the beginning to get a more stable sample that
// we can use to initialize the estimate.
if (bitrate_estimate_ < 0.f)
rate_window_ms = kInitialRateWindowMs;
float bitrate_sample = UpdateWindow(now_ms, bytes, rate_window_ms);
if (bitrate_sample < 0.0f)
return;
if (bitrate_estimate_ < 0.0f) {
// This is the very first sample we get. Use it to initialize the estimate.
bitrate_estimate_ = bitrate_sample;
return;
}
// Define the sample uncertainty as a function of how far away it is from the
// current estimate.
float sample_uncertainty =
10.0f * std::abs(bitrate_estimate_ - bitrate_sample) / bitrate_estimate_;
float sample_var = sample_uncertainty * sample_uncertainty;
// Update a bayesian estimate of the rate, weighting it lower if the sample
// uncertainty is large.
// The bitrate estimate uncertainty is increased with each update to model
// that the bitrate changes over time.
float pred_bitrate_estimate_var = bitrate_estimate_var_ + 5.f;
bitrate_estimate_ = (sample_var * bitrate_estimate_ +
pred_bitrate_estimate_var * bitrate_sample) /
(sample_var + pred_bitrate_estimate_var);
bitrate_estimate_var_ = sample_var * pred_bitrate_estimate_var /
(sample_var + pred_bitrate_estimate_var);
}
float DelayBasedBwe::BitrateEstimator::UpdateWindow(int64_t now_ms,
int bytes,
int rate_window_ms) {
// Reset if time moves backwards.
if (now_ms < prev_time_ms_) {
prev_time_ms_ = -1;
sum_ = 0;
current_win_ms_ = 0;
}
if (prev_time_ms_ >= 0) {
current_win_ms_ += now_ms - prev_time_ms_;
// Reset if nothing has been received for more than a full window.
if (now_ms - prev_time_ms_ > rate_window_ms) {
sum_ = 0;
current_win_ms_ %= rate_window_ms;
}
}
prev_time_ms_ = now_ms;
float bitrate_sample = -1.0f;
if (current_win_ms_ >= rate_window_ms) {
bitrate_sample = 8.0f * sum_ / static_cast<float>(rate_window_ms);
current_win_ms_ -= rate_window_ms;
sum_ = 0;
}
sum_ += bytes;
return bitrate_sample;
}
rtc::Optional<uint32_t> DelayBasedBwe::BitrateEstimator::bitrate_bps() const {
if (bitrate_estimate_ < 0.f)
return rtc::Optional<uint32_t>();
return rtc::Optional<uint32_t>(bitrate_estimate_ * 1000);
}
DelayBasedBwe::DelayBasedBwe(RtcEventLog* event_log, const Clock* clock)
: in_trendline_experiment_(TrendlineFilterExperimentIsEnabled()),
in_median_slope_experiment_(MedianSlopeFilterExperimentIsEnabled()),
event_log_(event_log),
clock_(clock),
inter_arrival_(),
kalman_estimator_(),
trendline_estimator_(),
detector_(),
receiver_incoming_bitrate_(),
last_update_ms_(-1),
last_seen_packet_ms_(-1),
uma_recorded_(false),
probe_bitrate_estimator_(event_log),
trendline_window_size_(kDefaultTrendlineWindowSize),
trendline_smoothing_coeff_(kDefaultTrendlineSmoothingCoeff),
trendline_threshold_gain_(kDefaultTrendlineThresholdGain),
probing_interval_estimator_(&rate_control_),
median_slope_window_size_(kDefaultMedianSlopeWindowSize),
median_slope_threshold_gain_(kDefaultMedianSlopeThresholdGain),
consecutive_delayed_feedbacks_(0),
last_logged_bitrate_(0),
last_logged_state_(kBwNormal) {
if (in_trendline_experiment_) {
ReadTrendlineFilterExperimentParameters(&trendline_window_size_,
&trendline_smoothing_coeff_,
&trendline_threshold_gain_);
LOG(LS_INFO) << "Trendline filter experiment enabled with parameters "
<< trendline_window_size_ << ',' << trendline_smoothing_coeff_
<< ',' << trendline_threshold_gain_;
}
if (in_median_slope_experiment_) {
ReadMedianSlopeFilterExperimentParameters(&median_slope_window_size_,
&median_slope_threshold_gain_);
LOG(LS_INFO) << "Median-slope filter experiment enabled with parameters "
<< median_slope_window_size_ << ','
<< median_slope_threshold_gain_;
}
if (!in_trendline_experiment_ && !in_median_slope_experiment_) {
LOG(LS_INFO) << "No overuse experiment enabled. Using Kalman filter.";
}
network_thread_.DetachFromThread();
}
DelayBasedBwe::Result DelayBasedBwe::IncomingPacketFeedbackVector(
const std::vector<PacketFeedback>& packet_feedback_vector) {
RTC_DCHECK(network_thread_.CalledOnValidThread());
RTC_DCHECK(!packet_feedback_vector.empty());
std::vector<PacketFeedback> sorted_packet_feedback_vector;
SortPacketFeedbackVector(packet_feedback_vector,
&sorted_packet_feedback_vector);
if (!uma_recorded_) {
RTC_HISTOGRAM_ENUMERATION(kBweTypeHistogram,
BweNames::kSendSideTransportSeqNum,
BweNames::kBweNamesMax);
uma_recorded_ = true;
}
Result aggregated_result;
bool delayed_feedback = true;
for (const auto& packet_feedback : sorted_packet_feedback_vector) {
if (packet_feedback.send_time_ms < 0)
continue;
delayed_feedback = false;
Result result = IncomingPacketFeedback(packet_feedback);
if (result.updated)
aggregated_result = result;
}
if (delayed_feedback) {
++consecutive_delayed_feedbacks_;
} else {
consecutive_delayed_feedbacks_ = 0;
}
if (consecutive_delayed_feedbacks_ >= kMaxConsecutiveFailedLookups) {
aggregated_result = OnLongFeedbackDelay(
sorted_packet_feedback_vector.back().arrival_time_ms);
consecutive_delayed_feedbacks_ = 0;
}
return aggregated_result;
}
DelayBasedBwe::Result DelayBasedBwe::OnLongFeedbackDelay(
int64_t arrival_time_ms) {
// Estimate should always be valid since a start bitrate always is set in the
// Call constructor. An alternative would be to return an empty Result here,
// or to estimate the throughput based on the feedback we received.
RTC_DCHECK(rate_control_.ValidEstimate());
rate_control_.SetEstimate(rate_control_.LatestEstimate() / 2,
arrival_time_ms);
Result result;
result.updated = true;
result.probe = false;
result.target_bitrate_bps = rate_control_.LatestEstimate();
LOG(LS_WARNING) << "Long feedback delay detected, reducing BWE to "
<< result.target_bitrate_bps;
return result;
}
DelayBasedBwe::Result DelayBasedBwe::IncomingPacketFeedback(
const PacketFeedback& packet_feedback) {
int64_t now_ms = clock_->TimeInMilliseconds();
receiver_incoming_bitrate_.Update(packet_feedback.arrival_time_ms,
packet_feedback.payload_size);
Result result;
// Reset if the stream has timed out.
if (last_seen_packet_ms_ == -1 ||
now_ms - last_seen_packet_ms_ > kStreamTimeOutMs) {
inter_arrival_.reset(
new InterArrival((kTimestampGroupLengthMs << kInterArrivalShift) / 1000,
kTimestampToMs, true));
kalman_estimator_.reset(new OveruseEstimator(OverUseDetectorOptions()));
trendline_estimator_.reset(new TrendlineEstimator(
trendline_window_size_, trendline_smoothing_coeff_,
trendline_threshold_gain_));
median_slope_estimator_.reset(new MedianSlopeEstimator(
median_slope_window_size_, median_slope_threshold_gain_));
}
last_seen_packet_ms_ = now_ms;
uint32_t send_time_24bits =
static_cast<uint32_t>(
((static_cast<uint64_t>(packet_feedback.send_time_ms)
<< kAbsSendTimeFraction) +
500) /
1000) &
0x00FFFFFF;
// Shift up send time to use the full 32 bits that inter_arrival works with,
// so wrapping works properly.
uint32_t timestamp = send_time_24bits << kAbsSendTimeInterArrivalUpshift;
uint32_t ts_delta = 0;
int64_t t_delta = 0;
int size_delta = 0;
if (inter_arrival_->ComputeDeltas(timestamp, packet_feedback.arrival_time_ms,
now_ms, packet_feedback.payload_size,
&ts_delta, &t_delta, &size_delta)) {
double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift);
if (in_trendline_experiment_) {
trendline_estimator_->Update(t_delta, ts_delta_ms,
packet_feedback.arrival_time_ms);
detector_.Detect(trendline_estimator_->trendline_slope(), ts_delta_ms,
trendline_estimator_->num_of_deltas(),
packet_feedback.arrival_time_ms);
} else if (in_median_slope_experiment_) {
median_slope_estimator_->Update(t_delta, ts_delta_ms,
packet_feedback.arrival_time_ms);
detector_.Detect(median_slope_estimator_->trendline_slope(), ts_delta_ms,
median_slope_estimator_->num_of_deltas(),
packet_feedback.arrival_time_ms);
} else {
kalman_estimator_->Update(t_delta, ts_delta_ms, size_delta,
detector_.State(),
packet_feedback.arrival_time_ms);
detector_.Detect(kalman_estimator_->offset(), ts_delta_ms,
kalman_estimator_->num_of_deltas(),
packet_feedback.arrival_time_ms);
}
}
int probing_bps = 0;
if (packet_feedback.pacing_info.probe_cluster_id !=
PacedPacketInfo::kNotAProbe) {
probing_bps =
probe_bitrate_estimator_.HandleProbeAndEstimateBitrate(packet_feedback);
}
rtc::Optional<uint32_t> acked_bitrate_bps =
receiver_incoming_bitrate_.bitrate_bps();
// Currently overusing the bandwidth.
if (detector_.State() == kBwOverusing) {
if (acked_bitrate_bps &&
rate_control_.TimeToReduceFurther(now_ms, *acked_bitrate_bps)) {
result.updated =
UpdateEstimate(packet_feedback.arrival_time_ms, now_ms,
acked_bitrate_bps, &result.target_bitrate_bps);
}
} else if (probing_bps > 0) {
// No overuse, but probing measured a bitrate.
rate_control_.SetEstimate(probing_bps, packet_feedback.arrival_time_ms);
result.probe = true;
result.updated =
UpdateEstimate(packet_feedback.arrival_time_ms, now_ms,
acked_bitrate_bps, &result.target_bitrate_bps);
}
if (!result.updated &&
(last_update_ms_ == -1 ||
now_ms - last_update_ms_ > rate_control_.GetFeedbackInterval())) {
result.updated =
UpdateEstimate(packet_feedback.arrival_time_ms, now_ms,
acked_bitrate_bps, &result.target_bitrate_bps);
}
if (result.updated) {
last_update_ms_ = now_ms;
BWE_TEST_LOGGING_PLOT(1, "target_bitrate_bps", now_ms,
result.target_bitrate_bps);
if (event_log_ && (result.target_bitrate_bps != last_logged_bitrate_ ||
detector_.State() != last_logged_state_)) {
event_log_->LogDelayBasedBweUpdate(result.target_bitrate_bps,
detector_.State());
last_logged_bitrate_ = result.target_bitrate_bps;
last_logged_state_ = detector_.State();
}
}
return result;
}
bool DelayBasedBwe::UpdateEstimate(int64_t arrival_time_ms,
int64_t now_ms,
rtc::Optional<uint32_t> acked_bitrate_bps,
uint32_t* target_bitrate_bps) {
// TODO(terelius): RateControlInput::noise_var is deprecated and will be
// removed. In the meantime, we set it to zero.
const RateControlInput input(detector_.State(), acked_bitrate_bps, 0);
rate_control_.Update(&input, now_ms);
*target_bitrate_bps = rate_control_.UpdateBandwidthEstimate(now_ms);
return rate_control_.ValidEstimate();
}
void DelayBasedBwe::OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) {
rate_control_.SetRtt(avg_rtt_ms);
}
bool DelayBasedBwe::LatestEstimate(std::vector<uint32_t>* ssrcs,
uint32_t* bitrate_bps) const {
// Currently accessed from both the process thread (see
// ModuleRtpRtcpImpl::Process()) and the configuration thread (see
// Call::GetStats()). Should in the future only be accessed from a single
// thread.
RTC_DCHECK(ssrcs);
RTC_DCHECK(bitrate_bps);
if (!rate_control_.ValidEstimate())
return false;
*ssrcs = {kFixedSsrc};
*bitrate_bps = rate_control_.LatestEstimate();
return true;
}
void DelayBasedBwe::SetStartBitrate(int start_bitrate_bps) {
LOG(LS_WARNING) << "BWE Setting start bitrate to: " << start_bitrate_bps;
rate_control_.SetStartBitrate(start_bitrate_bps);
}
void DelayBasedBwe::SetMinBitrate(int min_bitrate_bps) {
// Called from both the configuration thread and the network thread. Shouldn't
// be called from the network thread in the future.
rate_control_.SetMinBitrate(min_bitrate_bps);
}
int64_t DelayBasedBwe::GetProbingIntervalMs() const {
return probing_interval_estimator_.GetIntervalMs();
}
} // namespace webrtc