| //Templated spread_sort library | |
| // Copyright Steven J. Ross 2001 - 2009. | |
| // Distributed under the Boost Software License, Version 1.0. | |
| // (See accompanying file LICENSE_1_0.txt or copy at | |
| // http://www.boost.org/LICENSE_1_0.txt) | |
| // See http://www.boost.org/ for updates, documentation, and revision history. | |
| /* | |
| Some improvements suggested by: | |
| Phil Endecott and Frank Gennari | |
| Cygwin fix provided by: | |
| Scott McMurray | |
| */ | |
| #ifndef BOOST_SPREAD_SORT_H | |
| #define BOOST_SPREAD_SORT_H | |
| #include <algorithm> | |
| #include <cstring> | |
| #include <vector> | |
| #include "webrtc/system_wrappers/source/spreadsortlib/constants.hpp" | |
| namespace boost { | |
| namespace detail { | |
| //This only works on unsigned data types | |
| template <typename T> | |
| inline unsigned | |
| rough_log_2_size(const T& input) | |
| { | |
| unsigned result = 0; | |
| //The && is necessary on some compilers to avoid infinite loops; it doesn't significantly impair performance | |
| while((input >> result) && (result < (8*sizeof(T)))) ++result; | |
| return result; | |
| } | |
| //Gets the maximum size which we'll call spread_sort on to control worst-case performance | |
| //Maintains both a minimum size to recurse and a check of distribution size versus count | |
| //This is called for a set of bins, instead of bin-by-bin, to avoid performance overhead | |
| inline size_t | |
| get_max_count(unsigned log_range, size_t count) | |
| { | |
| unsigned divisor = rough_log_2_size(count); | |
| //Making sure the divisor is positive | |
| if(divisor > LOG_MEAN_BIN_SIZE) | |
| divisor -= LOG_MEAN_BIN_SIZE; | |
| else | |
| divisor = 1; | |
| unsigned relative_width = (LOG_CONST * log_range)/((divisor > MAX_SPLITS) ? MAX_SPLITS : divisor); | |
| //Don't try to bitshift more than the size of an element | |
| if((8*sizeof(size_t)) <= relative_width) | |
| relative_width = (8*sizeof(size_t)) - 1; | |
| return (size_t)1 << ((relative_width < (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT)) ? | |
| (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT) : relative_width); | |
| } | |
| //Find the minimum and maximum using < | |
| template <class RandomAccessIter> | |
| inline void | |
| find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min) | |
| { | |
| min = max = current; | |
| //Start from the second item, as max and min are initialized to the first | |
| while(++current < last) { | |
| if(*max < *current) | |
| max = current; | |
| else if(*current < *min) | |
| min = current; | |
| } | |
| } | |
| //Uses a user-defined comparison operator to find minimum and maximum | |
| template <class RandomAccessIter, class compare> | |
| inline void | |
| find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min, compare comp) | |
| { | |
| min = max = current; | |
| while(++current < last) { | |
| if(comp(*max, *current)) | |
| max = current; | |
| else if(comp(*current, *min)) | |
| min = current; | |
| } | |
| } | |
| //Gets a non-negative right bit shift to operate as a logarithmic divisor | |
| inline int | |
| get_log_divisor(size_t count, unsigned log_range) | |
| { | |
| int log_divisor; | |
| //If we can finish in one iteration without exceeding either (2 to the MAX_SPLITS) or n bins, do so | |
| if((log_divisor = log_range - rough_log_2_size(count)) <= 0 && log_range < MAX_SPLITS) | |
| log_divisor = 0; | |
| else { | |
| //otherwise divide the data into an optimized number of pieces | |
| log_divisor += LOG_MEAN_BIN_SIZE; | |
| if(log_divisor < 0) | |
| log_divisor = 0; | |
| //Cannot exceed MAX_SPLITS or cache misses slow down bin lookups dramatically | |
| if((log_range - log_divisor) > MAX_SPLITS) | |
| log_divisor = log_range - MAX_SPLITS; | |
| } | |
| return log_divisor; | |
| } | |
| template <class RandomAccessIter> | |
| inline RandomAccessIter * | |
| size_bins(std::vector<size_t> &bin_sizes, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset, unsigned &cache_end, unsigned bin_count) | |
| { | |
| //Assure space for the size of each bin, followed by initializing sizes | |
| if(bin_count > bin_sizes.size()) | |
| bin_sizes.resize(bin_count); | |
| for(size_t u = 0; u < bin_count; u++) | |
| bin_sizes[u] = 0; | |
| //Make sure there is space for the bins | |
| cache_end = cache_offset + bin_count; | |
| if(cache_end > bin_cache.size()) | |
| bin_cache.resize(cache_end); | |
| return &(bin_cache[cache_offset]); | |
| } | |
| //Implementation for recursive integer sorting | |
| template <class RandomAccessIter, class div_type, class data_type> | |
| inline void | |
| spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes) | |
| { | |
| //This step is roughly 10% of runtime, but it helps avoid worst-case behavior and improve behavior with real data | |
| //If you know the maximum and minimum ahead of time, you can pass those values in and skip this step for the first iteration | |
| RandomAccessIter max, min; | |
| find_extremes(first, last, max, min); | |
| //max and min will be the same (the first item) iff all values are equivalent | |
| if(max == min) | |
| return; | |
| RandomAccessIter * target_bin; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(*max >> 0) - (*min >> 0))); | |
| div_type div_min = *min >> log_divisor; | |
| div_type div_max = *max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin; this takes roughly 10% of runtime | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[(*(current++) >> log_divisor) - div_min]++; | |
| //Assign the bin positions | |
| bins[0] = first; | |
| for(unsigned u = 0; u < bin_count - 1; u++) | |
| bins[u + 1] = bins[u] + bin_sizes[u]; | |
| //Swap into place | |
| //This dominates runtime, mostly in the swap and bin lookups | |
| RandomAccessIter nextbinstart = first; | |
| for(unsigned u = 0; u < bin_count - 1; ++u) { | |
| RandomAccessIter * local_bin = bins + u; | |
| nextbinstart += bin_sizes[u]; | |
| //Iterating over each element in this bin | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //Swapping elements in current into place until the correct element has been swapped in | |
| for(target_bin = (bins + ((*current >> log_divisor) - div_min)); target_bin != local_bin; | |
| target_bin = bins + ((*current >> log_divisor) - div_min)) { | |
| //3-way swap; this is about 1% faster than a 2-way swap with integers | |
| //The main advantage is less copies are involved per item put in the correct place | |
| data_type tmp; | |
| RandomAccessIter b = (*target_bin)++; | |
| RandomAccessIter * b_bin = bins + ((*b >> log_divisor) - div_min); | |
| if (b_bin != local_bin) { | |
| RandomAccessIter c = (*b_bin)++; | |
| tmp = *c; | |
| *c = *b; | |
| } | |
| else | |
| tmp = *b; | |
| *b = *current; | |
| *current = tmp; | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| bins[bin_count - 1] = last; | |
| //If we've bucketsorted, the array is sorted and we should skip recursion | |
| if(!log_divisor) | |
| return; | |
| //Recursing; log_divisor is the remaining range | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| //don't sort unless there are at least two items to compare | |
| if(count < 2) | |
| continue; | |
| //using std::sort if its worst-case is better | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[u]); | |
| else | |
| spread_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes); | |
| } | |
| } | |
| //Generic bitshift-based 3-way swapping code | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift> | |
| inline void inner_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift | |
| , const unsigned log_divisor, const div_type div_min) | |
| { | |
| RandomAccessIter * local_bin = bins + ii; | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| for(RandomAccessIter * target_bin = (bins + (shift(*current, log_divisor) - div_min)); target_bin != local_bin; | |
| target_bin = bins + (shift(*current, log_divisor) - div_min)) { | |
| data_type tmp; | |
| RandomAccessIter b = (*target_bin)++; | |
| RandomAccessIter * b_bin = bins + (shift(*b, log_divisor) - div_min); | |
| //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs | |
| if (b_bin != local_bin) { | |
| RandomAccessIter c = (*b_bin)++; | |
| tmp = *c; | |
| *c = *b; | |
| } | |
| //Note: we could increment current once the swap is done in this case, but that seems to impair performance | |
| else | |
| tmp = *b; | |
| *b = *current; | |
| *current = tmp; | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| //Standard swapping wrapper for ascending values | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift> | |
| inline void swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift | |
| , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min) | |
| { | |
| nextbinstart += bin_sizes[ii]; | |
| inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, log_divisor, div_min); | |
| } | |
| //Functor implementation for recursive sorting | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare> | |
| inline void | |
| spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes, right_shift shift, compare comp) | |
| { | |
| RandomAccessIter max, min; | |
| find_extremes(first, last, max, min, comp); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0)))); | |
| div_type div_min = shift(*min, log_divisor); | |
| div_type div_max = shift(*max, log_divisor); | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[shift(*(current++), log_divisor) - div_min]++; | |
| bins[0] = first; | |
| for(unsigned u = 0; u < bin_count - 1; u++) | |
| bins[u + 1] = bins[u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| for(unsigned u = 0; u < bin_count - 1; ++u) | |
| swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, bin_sizes, log_divisor, div_min); | |
| bins[bin_count - 1] = last; | |
| //If we've bucketsorted, the array is sorted and we should skip recursion | |
| if(!log_divisor) | |
| return; | |
| //Recursing | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[u], comp); | |
| else | |
| spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp); | |
| } | |
| } | |
| //Functor implementation for recursive sorting with only Shift overridden | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift> | |
| inline void | |
| spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes, right_shift shift) | |
| { | |
| RandomAccessIter max, min; | |
| find_extremes(first, last, max, min); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0)))); | |
| div_type div_min = shift(*min, log_divisor); | |
| div_type div_max = shift(*max, log_divisor); | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[shift(*(current++), log_divisor) - div_min]++; | |
| bins[0] = first; | |
| for(unsigned u = 0; u < bin_count - 1; u++) | |
| bins[u + 1] = bins[u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| for(unsigned ii = 0; ii < bin_count - 1; ++ii) | |
| swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min); | |
| bins[bin_count - 1] = last; | |
| //If we've bucketsorted, the array is sorted and we should skip recursion | |
| if(!log_divisor) | |
| return; | |
| //Recursing | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[u]); | |
| else | |
| spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift); | |
| } | |
| } | |
| //Holds the bin vector and makes the initial recursive call | |
| template <class RandomAccessIter, class div_type, class data_type> | |
| inline void | |
| spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| spread_sort_rec<RandomAccessIter, div_type, data_type>(first, last, bin_cache, 0, bin_sizes); | |
| } | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare> | |
| inline void | |
| spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(first, last, bin_cache, 0, bin_sizes, shift, comp); | |
| } | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift> | |
| inline void | |
| spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift); | |
| } | |
| } | |
| //Top-level sorting call for integers | |
| template <class RandomAccessIter> | |
| inline void integer_sort(RandomAccessIter first, RandomAccessIter last) | |
| { | |
| //Don't sort if it's too small to optimize | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last); | |
| else | |
| detail::spread_sort(first, last, *first >> 0, *first); | |
| } | |
| //integer_sort with functors | |
| template <class RandomAccessIter, class right_shift, class compare> | |
| inline void integer_sort(RandomAccessIter first, RandomAccessIter last, | |
| right_shift shift, compare comp) { | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last, comp); | |
| else | |
| detail::spread_sort(first, last, shift(*first, 0), *first, shift, comp); | |
| } | |
| //integer_sort with right_shift functor | |
| template <class RandomAccessIter, class right_shift> | |
| inline void integer_sort(RandomAccessIter first, RandomAccessIter last, | |
| right_shift shift) { | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last); | |
| else | |
| detail::spread_sort(first, last, shift(*first, 0), *first, shift); | |
| } | |
| //------------------------------------------------------ float_sort source -------------------------------------- | |
| //Casts a RandomAccessIter to the specified data type | |
| template<class cast_type, class RandomAccessIter> | |
| inline cast_type | |
| cast_float_iter(const RandomAccessIter & floatiter) | |
| { | |
| cast_type result; | |
| std::memcpy(&result, &(*floatiter), sizeof(cast_type)); | |
| return result; | |
| } | |
| //Casts a data element to the specified datinner_float_a type | |
| template<class data_type, class cast_type> | |
| inline cast_type | |
| mem_cast(const data_type & data) | |
| { | |
| cast_type result; | |
| std::memcpy(&result, &data, sizeof(cast_type)); | |
| return result; | |
| } | |
| namespace detail { | |
| template <class RandomAccessIter, class div_type, class right_shift> | |
| inline void | |
| find_extremes(RandomAccessIter current, RandomAccessIter last, div_type & max, div_type & min, right_shift shift) | |
| { | |
| min = max = shift(*current, 0); | |
| while(++current < last) { | |
| div_type value = shift(*current, 0); | |
| if(max < value) | |
| max = value; | |
| else if(value < min) | |
| min = value; | |
| } | |
| } | |
| //Specialized swap loops for floating-point casting | |
| template <class RandomAccessIter, class div_type, class data_type> | |
| inline void inner_float_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii | |
| , const unsigned log_divisor, const div_type div_min) | |
| { | |
| RandomAccessIter * local_bin = bins + ii; | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| for(RandomAccessIter * target_bin = (bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)); target_bin != local_bin; | |
| target_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)) { | |
| data_type tmp; | |
| RandomAccessIter b = (*target_bin)++; | |
| RandomAccessIter * b_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(b) >> log_divisor) - div_min); | |
| //Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs | |
| if (b_bin != local_bin) { | |
| RandomAccessIter c = (*b_bin)++; | |
| tmp = *c; | |
| *c = *b; | |
| } | |
| else | |
| tmp = *b; | |
| *b = *current; | |
| *current = tmp; | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| template <class RandomAccessIter, class div_type, class data_type> | |
| inline void float_swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii | |
| , const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min) | |
| { | |
| nextbinstart += bin_sizes[ii]; | |
| inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, log_divisor, div_min); | |
| } | |
| template <class RandomAccessIter, class cast_type> | |
| inline void | |
| find_extremes(RandomAccessIter current, RandomAccessIter last, cast_type & max, cast_type & min) | |
| { | |
| min = max = cast_float_iter<cast_type, RandomAccessIter>(current); | |
| while(++current < last) { | |
| cast_type value = cast_float_iter<cast_type, RandomAccessIter>(current); | |
| if(max < value) | |
| max = value; | |
| else if(value < min) | |
| min = value; | |
| } | |
| } | |
| //Special-case sorting of positive floats with casting instead of a right_shift | |
| template <class RandomAccessIter, class div_type, class data_type> | |
| inline void | |
| positive_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes) | |
| { | |
| div_type max, min; | |
| find_extremes(first, last, max, min); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min)); | |
| div_type div_min = min >> log_divisor; | |
| div_type div_max = max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++; | |
| bins[0] = first; | |
| for(unsigned u = 0; u < bin_count - 1; u++) | |
| bins[u + 1] = bins[u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| for(unsigned u = 0; u < bin_count - 1; ++u) | |
| float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, bin_sizes, log_divisor, div_min); | |
| bins[bin_count - 1] = last; | |
| //Return if we've completed bucketsorting | |
| if(!log_divisor) | |
| return; | |
| //Recursing | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[u]); | |
| else | |
| positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes); | |
| } | |
| } | |
| //Sorting negative_ float_s | |
| //Note that bins are iterated in reverse order because max_neg_float = min_neg_int | |
| template <class RandomAccessIter, class div_type, class data_type> | |
| inline void | |
| negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes) | |
| { | |
| div_type max, min; | |
| find_extremes(first, last, max, min); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min)); | |
| div_type div_min = min >> log_divisor; | |
| div_type div_max = max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++; | |
| bins[bin_count - 1] = first; | |
| for(int ii = bin_count - 2; ii >= 0; --ii) | |
| bins[ii] = bins[ii + 1] + bin_sizes[ii + 1]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| //The last bin will always have the correct elements in it | |
| for(int ii = bin_count - 1; ii > 0; --ii) | |
| float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, bin_sizes, log_divisor, div_min); | |
| //Since we don't process the last bin, we need to update its end position | |
| bin_cache[cache_offset] = last; | |
| //Return if we've completed bucketsorting | |
| if(!log_divisor) | |
| return; | |
| //Recursing | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) { | |
| size_t count = bin_cache[ii] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[ii]); | |
| else | |
| negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes); | |
| } | |
| } | |
| //Sorting negative_ float_s | |
| //Note that bins are iterated in reverse order because max_neg_float = min_neg_int | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift> | |
| inline void | |
| negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes, right_shift shift) | |
| { | |
| div_type max, min; | |
| find_extremes(first, last, max, min, shift); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min)); | |
| div_type div_min = min >> log_divisor; | |
| div_type div_max = max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[shift(*(current++), log_divisor) - div_min]++; | |
| bins[bin_count - 1] = first; | |
| for(int ii = bin_count - 2; ii >= 0; --ii) | |
| bins[ii] = bins[ii + 1] + bin_sizes[ii + 1]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| //The last bin will always have the correct elements in it | |
| for(int ii = bin_count - 1; ii > 0; --ii) | |
| swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min); | |
| //Since we don't process the last bin, we need to update its end position | |
| bin_cache[cache_offset] = last; | |
| //Return if we've completed bucketsorting | |
| if(!log_divisor) | |
| return; | |
| //Recursing | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) { | |
| size_t count = bin_cache[ii] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[ii]); | |
| else | |
| negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift); | |
| } | |
| } | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare> | |
| inline void | |
| negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes, right_shift shift, compare comp) | |
| { | |
| div_type max, min; | |
| find_extremes(first, last, max, min, shift); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min)); | |
| div_type div_min = min >> log_divisor; | |
| div_type div_max = max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[shift(*(current++), log_divisor) - div_min]++; | |
| bins[bin_count - 1] = first; | |
| for(int ii = bin_count - 2; ii >= 0; --ii) | |
| bins[ii] = bins[ii + 1] + bin_sizes[ii + 1]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| //The last bin will always have the correct elements in it | |
| for(int ii = bin_count - 1; ii > 0; --ii) | |
| swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min); | |
| //Since we don't process the last bin, we need to update its end position | |
| bin_cache[cache_offset] = last; | |
| //Return if we've completed bucketsorting | |
| if(!log_divisor) | |
| return; | |
| //Recursing | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) { | |
| size_t count = bin_cache[ii] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[ii], comp); | |
| else | |
| negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp); | |
| } | |
| } | |
| //Casting special-case for floating-point sorting | |
| template <class RandomAccessIter, class div_type, class data_type> | |
| inline void | |
| float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes) | |
| { | |
| div_type max, min; | |
| find_extremes(first, last, max, min); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min)); | |
| div_type div_min = min >> log_divisor; | |
| div_type div_max = max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++; | |
| //The index of the first positive bin | |
| div_type first_positive = (div_min < 0) ? -div_min : 0; | |
| //Resetting if all bins are negative | |
| if(cache_offset + first_positive > cache_end) | |
| first_positive = cache_end - cache_offset; | |
| //Reversing the order of the negative bins | |
| //Note that because of the negative/positive ordering direction flip | |
| //We can not depend upon bin order and positions matching up | |
| //so bin_sizes must be reused to contain the end of the bin | |
| if(first_positive > 0) { | |
| bins[first_positive - 1] = first; | |
| for(int ii = first_positive - 2; ii >= 0; --ii) { | |
| bins[ii] = first + bin_sizes[ii + 1]; | |
| bin_sizes[ii] += bin_sizes[ii + 1]; | |
| } | |
| //Handling positives following negatives | |
| if((unsigned)first_positive < bin_count) { | |
| bins[first_positive] = first + bin_sizes[0]; | |
| bin_sizes[first_positive] += bin_sizes[0]; | |
| } | |
| } | |
| else | |
| bins[0] = first; | |
| for(unsigned u = first_positive; u < bin_count - 1; u++) { | |
| bins[u + 1] = first + bin_sizes[u]; | |
| bin_sizes[u + 1] += bin_sizes[u]; | |
| } | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| for(unsigned u = 0; u < bin_count; ++u) { | |
| nextbinstart = first + bin_sizes[u]; | |
| inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, log_divisor, div_min); | |
| } | |
| if(!log_divisor) | |
| return; | |
| //Handling negative values first | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) { | |
| size_t count = bin_cache[ii] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[ii]); | |
| //sort negative values using reversed-bin spread_sort | |
| else | |
| negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes); | |
| } | |
| for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[u]); | |
| //sort positive values using normal spread_sort | |
| else | |
| positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes); | |
| } | |
| } | |
| //Functor implementation for recursive sorting | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift> | |
| inline void | |
| float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes, right_shift shift) | |
| { | |
| div_type max, min; | |
| find_extremes(first, last, max, min, shift); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min)); | |
| div_type div_min = min >> log_divisor; | |
| div_type div_max = max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[shift(*(current++), log_divisor) - div_min]++; | |
| //The index of the first positive bin | |
| div_type first_positive = (div_min < 0) ? -div_min : 0; | |
| //Resetting if all bins are negative | |
| if(cache_offset + first_positive > cache_end) | |
| first_positive = cache_end - cache_offset; | |
| //Reversing the order of the negative bins | |
| //Note that because of the negative/positive ordering direction flip | |
| //We can not depend upon bin order and positions matching up | |
| //so bin_sizes must be reused to contain the end of the bin | |
| if(first_positive > 0) { | |
| bins[first_positive - 1] = first; | |
| for(int ii = first_positive - 2; ii >= 0; --ii) { | |
| bins[ii] = first + bin_sizes[ii + 1]; | |
| bin_sizes[ii] += bin_sizes[ii + 1]; | |
| } | |
| //Handling positives following negatives | |
| if((unsigned)first_positive < bin_count) { | |
| bins[first_positive] = first + bin_sizes[0]; | |
| bin_sizes[first_positive] += bin_sizes[0]; | |
| } | |
| } | |
| else | |
| bins[0] = first; | |
| for(unsigned u = first_positive; u < bin_count - 1; u++) { | |
| bins[u + 1] = first + bin_sizes[u]; | |
| bin_sizes[u + 1] += bin_sizes[u]; | |
| } | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| for(unsigned u = 0; u < bin_count; ++u) { | |
| nextbinstart = first + bin_sizes[u]; | |
| inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min); | |
| } | |
| //Return if we've completed bucketsorting | |
| if(!log_divisor) | |
| return; | |
| //Handling negative values first | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) { | |
| size_t count = bin_cache[ii] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[ii]); | |
| //sort negative values using reversed-bin spread_sort | |
| else | |
| negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift); | |
| } | |
| for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[u]); | |
| //sort positive values using normal spread_sort | |
| else | |
| spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift); | |
| } | |
| } | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare> | |
| inline void | |
| float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset | |
| , std::vector<size_t> &bin_sizes, right_shift shift, compare comp) | |
| { | |
| div_type max, min; | |
| find_extremes(first, last, max, min, shift); | |
| if(max == min) | |
| return; | |
| unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min)); | |
| div_type div_min = min >> log_divisor; | |
| div_type div_max = max >> log_divisor; | |
| unsigned bin_count = div_max - div_min + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count); | |
| //Calculating the size of each bin | |
| for (RandomAccessIter current = first; current != last;) | |
| bin_sizes[shift(*(current++), log_divisor) - div_min]++; | |
| //The index of the first positive bin | |
| div_type first_positive = (div_min < 0) ? -div_min : 0; | |
| //Resetting if all bins are negative | |
| if(cache_offset + first_positive > cache_end) | |
| first_positive = cache_end - cache_offset; | |
| //Reversing the order of the negative bins | |
| //Note that because of the negative/positive ordering direction flip | |
| //We can not depend upon bin order and positions matching up | |
| //so bin_sizes must be reused to contain the end of the bin | |
| if(first_positive > 0) { | |
| bins[first_positive - 1] = first; | |
| for(int ii = first_positive - 2; ii >= 0; --ii) { | |
| bins[ii] = first + bin_sizes[ii + 1]; | |
| bin_sizes[ii] += bin_sizes[ii + 1]; | |
| } | |
| //Handling positives following negatives | |
| if((unsigned)first_positive < bin_count) { | |
| bins[first_positive] = first + bin_sizes[0]; | |
| bin_sizes[first_positive] += bin_sizes[0]; | |
| } | |
| } | |
| else | |
| bins[0] = first; | |
| for(unsigned u = first_positive; u < bin_count - 1; u++) { | |
| bins[u + 1] = first + bin_sizes[u]; | |
| bin_sizes[u + 1] += bin_sizes[u]; | |
| } | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| for(unsigned u = 0; u < bin_count; ++u) { | |
| nextbinstart = first + bin_sizes[u]; | |
| inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min); | |
| } | |
| //Return if we've completed bucketsorting | |
| if(!log_divisor) | |
| return; | |
| //Handling negative values first | |
| size_t max_count = get_max_count(log_divisor, last - first); | |
| RandomAccessIter lastPos = first; | |
| for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) { | |
| size_t count = bin_cache[ii] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[ii]); | |
| //sort negative values using reversed-bin spread_sort | |
| else | |
| negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp); | |
| } | |
| for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| if(count < 2) | |
| continue; | |
| if(count < max_count) | |
| std::sort(lastPos, bin_cache[u]); | |
| //sort positive values using normal spread_sort | |
| else | |
| spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp); | |
| } | |
| } | |
| template <class RandomAccessIter, class cast_type, class data_type> | |
| inline void | |
| float_Sort(RandomAccessIter first, RandomAccessIter last, cast_type, data_type) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| float_sort_rec<RandomAccessIter, cast_type, data_type>(first, last, bin_cache, 0, bin_sizes); | |
| } | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift> | |
| inline void | |
| float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift); | |
| } | |
| template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare> | |
| inline void | |
| float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift, comp); | |
| } | |
| } | |
| //float_sort with casting | |
| //The cast_type must be equal in size to the data type, and must be a signed integer | |
| template <class RandomAccessIter, class cast_type> | |
| inline void float_sort_cast(RandomAccessIter first, RandomAccessIter last, cast_type cVal) | |
| { | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last); | |
| else | |
| detail::float_Sort(first, last, cVal, *first); | |
| } | |
| //float_sort with casting to an int | |
| //Only use this with IEEE floating-point numbers | |
| template <class RandomAccessIter> | |
| inline void float_sort_cast_to_int(RandomAccessIter first, RandomAccessIter last) | |
| { | |
| int cVal = 0; | |
| float_sort_cast(first, last, cVal); | |
| } | |
| //float_sort with functors | |
| template <class RandomAccessIter, class right_shift> | |
| inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift) | |
| { | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last); | |
| else | |
| detail::float_Sort(first, last, shift(*first, 0), *first, shift); | |
| } | |
| template <class RandomAccessIter, class right_shift, class compare> | |
| inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift, compare comp) | |
| { | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last, comp); | |
| else | |
| detail::float_Sort(first, last, shift(*first, 0), *first, shift, comp); | |
| } | |
| //------------------------------------------------- string_sort source --------------------------------------------- | |
| namespace detail { | |
| //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance. | |
| template<class RandomAccessIter> | |
| inline void | |
| update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset) | |
| { | |
| unsigned nextOffset = char_offset; | |
| bool done = false; | |
| while(!done) { | |
| RandomAccessIter curr = first; | |
| do { | |
| //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character | |
| if((*curr).size() > char_offset && ((*curr).size() <= (nextOffset + 1) || (*curr)[nextOffset] != (*first)[nextOffset])) { | |
| done = true; | |
| break; | |
| } | |
| } while(++curr != finish); | |
| if(!done) | |
| ++nextOffset; | |
| } | |
| char_offset = nextOffset; | |
| } | |
| //Offsetting on identical characters. This function works a character at a time for optimal worst-case performance. | |
| template<class RandomAccessIter, class get_char, class get_length> | |
| inline void | |
| update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset, get_char getchar, get_length length) | |
| { | |
| unsigned nextOffset = char_offset; | |
| bool done = false; | |
| while(!done) { | |
| RandomAccessIter curr = first; | |
| do { | |
| //ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character | |
| if(length(*curr) > char_offset && (length(*curr) <= (nextOffset + 1) || getchar((*curr), nextOffset) != getchar((*first), nextOffset))) { | |
| done = true; | |
| break; | |
| } | |
| } while(++curr != finish); | |
| if(!done) | |
| ++nextOffset; | |
| } | |
| char_offset = nextOffset; | |
| } | |
| //A comparison functor for strings that assumes they are identical up to char_offset | |
| template<class data_type, class unsignedchar_type> | |
| struct offset_lessthan { | |
| offset_lessthan(unsigned char_offset) : fchar_offset(char_offset){} | |
| inline bool operator()(const data_type &x, const data_type &y) const | |
| { | |
| unsigned minSize = std::min(x.size(), y.size()); | |
| for(unsigned u = fchar_offset; u < minSize; ++u) { | |
| if(static_cast<unsignedchar_type>(x[u]) < static_cast<unsignedchar_type>(y[u])) | |
| return true; | |
| else if(static_cast<unsignedchar_type>(y[u]) < static_cast<unsignedchar_type>(x[u])) | |
| return false; | |
| } | |
| return x.size() < y.size(); | |
| } | |
| unsigned fchar_offset; | |
| }; | |
| //A comparison functor for strings that assumes they are identical up to char_offset | |
| template<class data_type, class unsignedchar_type> | |
| struct offset_greaterthan { | |
| offset_greaterthan(unsigned char_offset) : fchar_offset(char_offset){} | |
| inline bool operator()(const data_type &x, const data_type &y) const | |
| { | |
| unsigned minSize = std::min(x.size(), y.size()); | |
| for(unsigned u = fchar_offset; u < minSize; ++u) { | |
| if(static_cast<unsignedchar_type>(x[u]) > static_cast<unsignedchar_type>(y[u])) | |
| return true; | |
| else if(static_cast<unsignedchar_type>(y[u]) > static_cast<unsignedchar_type>(x[u])) | |
| return false; | |
| } | |
| return x.size() > y.size(); | |
| } | |
| unsigned fchar_offset; | |
| }; | |
| //A comparison functor for strings that assumes they are identical up to char_offset | |
| template<class data_type, class get_char, class get_length> | |
| struct offset_char_lessthan { | |
| offset_char_lessthan(unsigned char_offset) : fchar_offset(char_offset){} | |
| inline bool operator()(const data_type &x, const data_type &y) const | |
| { | |
| unsigned minSize = std::min(length(x), length(y)); | |
| for(unsigned u = fchar_offset; u < minSize; ++u) { | |
| if(getchar(x, u) < getchar(y, u)) | |
| return true; | |
| else if(getchar(y, u) < getchar(x, u)) | |
| return false; | |
| } | |
| return length(x) < length(y); | |
| } | |
| unsigned fchar_offset; | |
| get_char getchar; | |
| get_length length; | |
| }; | |
| //String sorting recursive implementation | |
| template <class RandomAccessIter, class data_type, class unsignedchar_type> | |
| inline void | |
| string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache | |
| , unsigned cache_offset, std::vector<size_t> &bin_sizes) | |
| { | |
| //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact. | |
| //Iterate to the end of the empties. If all empty, return | |
| while((*first).size() <= char_offset) { | |
| if(++first == last) | |
| return; | |
| } | |
| RandomAccessIter finish = last - 1; | |
| //Getting the last non-empty | |
| for(;(*finish).size() <= char_offset; --finish) { } | |
| ++finish; | |
| //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance. | |
| update_offset(first, finish, char_offset); | |
| const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8)); | |
| //Equal worst-case between radix and comparison-based is when bin_count = n*log(n). | |
| const unsigned max_size = bin_count; | |
| const unsigned membin_count = bin_count + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1; | |
| //Calculating the size of each bin; this takes roughly 10% of runtime | |
| for (RandomAccessIter current = first; current != last; ++current) { | |
| if((*current).size() <= char_offset) { | |
| bin_sizes[0]++; | |
| } | |
| else | |
| bin_sizes[static_cast<unsignedchar_type>((*current)[char_offset]) + 1]++; | |
| } | |
| //Assign the bin positions | |
| bin_cache[cache_offset] = first; | |
| for(unsigned u = 0; u < membin_count - 1; u++) | |
| bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| //handling empty bins | |
| RandomAccessIter * local_bin = &(bin_cache[cache_offset]); | |
| nextbinstart += bin_sizes[0]; | |
| RandomAccessIter * target_bin; | |
| //Iterating over each element in the bin of empties | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //empties belong in this bin | |
| while((*current).size() > char_offset) { | |
| target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]); | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops | |
| unsigned last_bin = bin_count - 1; | |
| for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { } | |
| //This dominates runtime, mostly in the swap and bin lookups | |
| for(unsigned u = 0; u < last_bin; ++u) { | |
| local_bin = bins + u; | |
| nextbinstart += bin_sizes[u + 1]; | |
| //Iterating over each element in this bin | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //Swapping elements in current into place until the correct element has been swapped in | |
| for(target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin; | |
| target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset])) | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| bins[last_bin] = last; | |
| //Recursing | |
| RandomAccessIter lastPos = bin_cache[cache_offset]; | |
| //Skip this loop for empties | |
| for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| //don't sort unless there are at least two items to compare | |
| if(count < 2) | |
| continue; | |
| //using std::sort if its worst-case is better | |
| if(count < max_size) | |
| std::sort(lastPos, bin_cache[u], offset_lessthan<data_type, unsignedchar_type>(char_offset + 1)); | |
| else | |
| string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes); | |
| } | |
| } | |
| //Sorts strings in reverse order, with empties at the end | |
| template <class RandomAccessIter, class data_type, class unsignedchar_type> | |
| inline void | |
| reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache | |
| , unsigned cache_offset, std::vector<size_t> &bin_sizes) | |
| { | |
| //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact. | |
| RandomAccessIter curr = first; | |
| //Iterate to the end of the empties. If all empty, return | |
| while((*curr).size() <= char_offset) { | |
| if(++curr == last) | |
| return; | |
| } | |
| //Getting the last non-empty | |
| while((*(--last)).size() <= char_offset) { } | |
| ++last; | |
| //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance. | |
| update_offset(curr, last, char_offset); | |
| RandomAccessIter * target_bin; | |
| const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8)); | |
| //Equal worst-case between radix and comparison-based is when bin_count = n*log(n). | |
| const unsigned max_size = bin_count; | |
| const unsigned membin_count = bin_count + 1; | |
| const unsigned max_bin = bin_count - 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count); | |
| RandomAccessIter * end_bin = &(bin_cache[cache_offset + max_bin]); | |
| //Calculating the size of each bin; this takes roughly 10% of runtime | |
| for (RandomAccessIter current = first; current != last; ++current) { | |
| if((*current).size() <= char_offset) { | |
| bin_sizes[bin_count]++; | |
| } | |
| else | |
| bin_sizes[max_bin - static_cast<unsignedchar_type>((*current)[char_offset])]++; | |
| } | |
| //Assign the bin positions | |
| bin_cache[cache_offset] = first; | |
| for(unsigned u = 0; u < membin_count - 1; u++) | |
| bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = last; | |
| //handling empty bins | |
| RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]); | |
| RandomAccessIter lastFull = *local_bin; | |
| //Iterating over each element in the bin of empties | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //empties belong in this bin | |
| while((*current).size() > char_offset) { | |
| target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]); | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| nextbinstart = first; | |
| //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops | |
| unsigned last_bin = max_bin; | |
| for(; last_bin && !bin_sizes[last_bin]; --last_bin) { } | |
| //This dominates runtime, mostly in the swap and bin lookups | |
| for(unsigned u = 0; u < last_bin; ++u) { | |
| local_bin = bins + u; | |
| nextbinstart += bin_sizes[u]; | |
| //Iterating over each element in this bin | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //Swapping elements in current into place until the correct element has been swapped in | |
| for(target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin; | |
| target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset])) | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| bins[last_bin] = lastFull; | |
| //Recursing | |
| RandomAccessIter lastPos = first; | |
| //Skip this loop for empties | |
| for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| //don't sort unless there are at least two items to compare | |
| if(count < 2) | |
| continue; | |
| //using std::sort if its worst-case is better | |
| if(count < max_size) | |
| std::sort(lastPos, bin_cache[u], offset_greaterthan<data_type, unsignedchar_type>(char_offset + 1)); | |
| else | |
| reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes); | |
| } | |
| } | |
| //String sorting recursive implementation | |
| template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length> | |
| inline void | |
| string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache | |
| , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length) | |
| { | |
| //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact. | |
| //Iterate to the end of the empties. If all empty, return | |
| while(length(*first) <= char_offset) { | |
| if(++first == last) | |
| return; | |
| } | |
| RandomAccessIter finish = last - 1; | |
| //Getting the last non-empty | |
| for(;length(*finish) <= char_offset; --finish) { } | |
| ++finish; | |
| update_offset(first, finish, char_offset, getchar, length); | |
| const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8)); | |
| //Equal worst-case between radix and comparison-based is when bin_count = n*log(n). | |
| const unsigned max_size = bin_count; | |
| const unsigned membin_count = bin_count + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1; | |
| //Calculating the size of each bin; this takes roughly 10% of runtime | |
| for (RandomAccessIter current = first; current != last; ++current) { | |
| if(length(*current) <= char_offset) { | |
| bin_sizes[0]++; | |
| } | |
| else | |
| bin_sizes[getchar((*current), char_offset) + 1]++; | |
| } | |
| //Assign the bin positions | |
| bin_cache[cache_offset] = first; | |
| for(unsigned u = 0; u < membin_count - 1; u++) | |
| bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| //handling empty bins | |
| RandomAccessIter * local_bin = &(bin_cache[cache_offset]); | |
| nextbinstart += bin_sizes[0]; | |
| RandomAccessIter * target_bin; | |
| //Iterating over each element in the bin of empties | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //empties belong in this bin | |
| while(length(*current) > char_offset) { | |
| target_bin = bins + getchar((*current), char_offset); | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops | |
| unsigned last_bin = bin_count - 1; | |
| for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { } | |
| //This dominates runtime, mostly in the swap and bin lookups | |
| for(unsigned ii = 0; ii < last_bin; ++ii) { | |
| local_bin = bins + ii; | |
| nextbinstart += bin_sizes[ii + 1]; | |
| //Iterating over each element in this bin | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //Swapping elements in current into place until the correct element has been swapped in | |
| for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin; | |
| target_bin = bins + getchar((*current), char_offset)) | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| bins[last_bin] = last; | |
| //Recursing | |
| RandomAccessIter lastPos = bin_cache[cache_offset]; | |
| //Skip this loop for empties | |
| for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| //don't sort unless there are at least two items to compare | |
| if(count < 2) | |
| continue; | |
| //using std::sort if its worst-case is better | |
| if(count < max_size) | |
| std::sort(lastPos, bin_cache[u], offset_char_lessthan<data_type, get_char, get_length>(char_offset + 1)); | |
| else | |
| string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length); | |
| } | |
| } | |
| //String sorting recursive implementation | |
| template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare> | |
| inline void | |
| string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache | |
| , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp) | |
| { | |
| //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact. | |
| //Iterate to the end of the empties. If all empty, return | |
| while(length(*first) <= char_offset) { | |
| if(++first == last) | |
| return; | |
| } | |
| RandomAccessIter finish = last - 1; | |
| //Getting the last non-empty | |
| for(;length(*finish) <= char_offset; --finish) { } | |
| ++finish; | |
| update_offset(first, finish, char_offset, getchar, length); | |
| const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8)); | |
| //Equal worst-case between radix and comparison-based is when bin_count = n*log(n). | |
| const unsigned max_size = bin_count; | |
| const unsigned membin_count = bin_count + 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1; | |
| //Calculating the size of each bin; this takes roughly 10% of runtime | |
| for (RandomAccessIter current = first; current != last; ++current) { | |
| if(length(*current) <= char_offset) { | |
| bin_sizes[0]++; | |
| } | |
| else | |
| bin_sizes[getchar((*current), char_offset) + 1]++; | |
| } | |
| //Assign the bin positions | |
| bin_cache[cache_offset] = first; | |
| for(unsigned u = 0; u < membin_count - 1; u++) | |
| bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = first; | |
| //handling empty bins | |
| RandomAccessIter * local_bin = &(bin_cache[cache_offset]); | |
| nextbinstart += bin_sizes[0]; | |
| RandomAccessIter * target_bin; | |
| //Iterating over each element in the bin of empties | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //empties belong in this bin | |
| while(length(*current) > char_offset) { | |
| target_bin = bins + getchar((*current), char_offset); | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops | |
| unsigned last_bin = bin_count - 1; | |
| for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { } | |
| //This dominates runtime, mostly in the swap and bin lookups | |
| for(unsigned u = 0; u < last_bin; ++u) { | |
| local_bin = bins + u; | |
| nextbinstart += bin_sizes[u + 1]; | |
| //Iterating over each element in this bin | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //Swapping elements in current into place until the correct element has been swapped in | |
| for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin; | |
| target_bin = bins + getchar((*current), char_offset)) | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| bins[last_bin] = last; | |
| //Recursing | |
| RandomAccessIter lastPos = bin_cache[cache_offset]; | |
| //Skip this loop for empties | |
| for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| //don't sort unless there are at least two items to compare | |
| if(count < 2) | |
| continue; | |
| //using std::sort if its worst-case is better | |
| if(count < max_size) | |
| std::sort(lastPos, bin_cache[u], comp); | |
| else | |
| string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos | |
| , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp); | |
| } | |
| } | |
| //Sorts strings in reverse order, with empties at the end | |
| template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare> | |
| inline void | |
| reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache | |
| , unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp) | |
| { | |
| //This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact. | |
| RandomAccessIter curr = first; | |
| //Iterate to the end of the empties. If all empty, return | |
| while(length(*curr) <= char_offset) { | |
| if(++curr == last) | |
| return; | |
| } | |
| //Getting the last non-empty | |
| while(length(*(--last)) <= char_offset) { } | |
| ++last; | |
| //Offsetting on identical characters. This section works a character at a time for optimal worst-case performance. | |
| update_offset(first, last, char_offset, getchar, length); | |
| const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8)); | |
| //Equal worst-case between radix and comparison-based is when bin_count = n*log(n). | |
| const unsigned max_size = bin_count; | |
| const unsigned membin_count = bin_count + 1; | |
| const unsigned max_bin = bin_count - 1; | |
| unsigned cache_end; | |
| RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count); | |
| RandomAccessIter *end_bin = &(bin_cache[cache_offset + max_bin]); | |
| //Calculating the size of each bin; this takes roughly 10% of runtime | |
| for (RandomAccessIter current = first; current != last; ++current) { | |
| if(length(*current) <= char_offset) { | |
| bin_sizes[bin_count]++; | |
| } | |
| else | |
| bin_sizes[max_bin - getchar((*current), char_offset)]++; | |
| } | |
| //Assign the bin positions | |
| bin_cache[cache_offset] = first; | |
| for(unsigned u = 0; u < membin_count - 1; u++) | |
| bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u]; | |
| //Swap into place | |
| RandomAccessIter nextbinstart = last; | |
| //handling empty bins | |
| RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]); | |
| RandomAccessIter lastFull = *local_bin; | |
| RandomAccessIter * target_bin; | |
| //Iterating over each element in the bin of empties | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //empties belong in this bin | |
| while(length(*current) > char_offset) { | |
| target_bin = end_bin - getchar((*current), char_offset); | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| } | |
| *local_bin = nextbinstart; | |
| nextbinstart = first; | |
| //iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops | |
| unsigned last_bin = max_bin; | |
| for(; last_bin && !bin_sizes[last_bin]; --last_bin) { } | |
| //This dominates runtime, mostly in the swap and bin lookups | |
| for(unsigned u = 0; u < last_bin; ++u) { | |
| local_bin = bins + u; | |
| nextbinstart += bin_sizes[u]; | |
| //Iterating over each element in this bin | |
| for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) { | |
| //Swapping elements in current into place until the correct element has been swapped in | |
| for(target_bin = end_bin - getchar((*current), char_offset); target_bin != local_bin; | |
| target_bin = end_bin - getchar((*current), char_offset)) | |
| iter_swap(current, (*target_bin)++); | |
| } | |
| *local_bin = nextbinstart; | |
| } | |
| bins[last_bin] = lastFull; | |
| //Recursing | |
| RandomAccessIter lastPos = first; | |
| //Skip this loop for empties | |
| for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) { | |
| size_t count = bin_cache[u] - lastPos; | |
| //don't sort unless there are at least two items to compare | |
| if(count < 2) | |
| continue; | |
| //using std::sort if its worst-case is better | |
| if(count < max_size) | |
| std::sort(lastPos, bin_cache[u], comp); | |
| else | |
| reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos | |
| , bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp); | |
| } | |
| } | |
| //Holds the bin vector and makes the initial recursive call | |
| template <class RandomAccessIter, class data_type, class unsignedchar_type> | |
| inline void | |
| string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes); | |
| } | |
| //Holds the bin vector and makes the initial recursive call | |
| template <class RandomAccessIter, class data_type, class unsignedchar_type> | |
| inline void | |
| reverse_string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes); | |
| } | |
| //Holds the bin vector and makes the initial recursive call | |
| template <class RandomAccessIter, class get_char, class get_length, class data_type, class unsignedchar_type> | |
| inline void | |
| string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, data_type, unsignedchar_type) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length); | |
| } | |
| //Holds the bin vector and makes the initial recursive call | |
| template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type> | |
| inline void | |
| string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp); | |
| } | |
| //Holds the bin vector and makes the initial recursive call | |
| template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type> | |
| inline void | |
| reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type) | |
| { | |
| std::vector<size_t> bin_sizes; | |
| std::vector<RandomAccessIter> bin_cache; | |
| reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp); | |
| } | |
| } | |
| //Allows character-type overloads | |
| template <class RandomAccessIter, class unsignedchar_type> | |
| inline void string_sort(RandomAccessIter first, RandomAccessIter last, unsignedchar_type unused) | |
| { | |
| //Don't sort if it's too small to optimize | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last); | |
| else | |
| detail::string_sort(first, last, *first, unused); | |
| } | |
| //Top-level sorting call; wraps using default of unsigned char | |
| template <class RandomAccessIter> | |
| inline void string_sort(RandomAccessIter first, RandomAccessIter last) | |
| { | |
| unsigned char unused = '\0'; | |
| string_sort(first, last, unused); | |
| } | |
| //Allows character-type overloads | |
| template <class RandomAccessIter, class compare, class unsignedchar_type> | |
| inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp, unsignedchar_type unused) | |
| { | |
| //Don't sort if it's too small to optimize | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last, comp); | |
| else | |
| detail::reverse_string_sort(first, last, *first, unused); | |
| } | |
| //Top-level sorting call; wraps using default of unsigned char | |
| template <class RandomAccessIter, class compare> | |
| inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp) | |
| { | |
| unsigned char unused = '\0'; | |
| reverse_string_sort(first, last, comp, unused); | |
| } | |
| template <class RandomAccessIter, class get_char, class get_length> | |
| inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length) | |
| { | |
| //Don't sort if it's too small to optimize | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last); | |
| else { | |
| //skipping past empties at the beginning, which allows us to get the character type | |
| //.empty() is not used so as not to require a user declaration of it | |
| while(!length(*first)) { | |
| if(++first == last) | |
| return; | |
| } | |
| detail::string_sort(first, last, getchar, length, *first, getchar((*first), 0)); | |
| } | |
| } | |
| template <class RandomAccessIter, class get_char, class get_length, class compare> | |
| inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp) | |
| { | |
| //Don't sort if it's too small to optimize | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last, comp); | |
| else { | |
| //skipping past empties at the beginning, which allows us to get the character type | |
| //.empty() is not used so as not to require a user declaration of it | |
| while(!length(*first)) { | |
| if(++first == last) | |
| return; | |
| } | |
| detail::string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0)); | |
| } | |
| } | |
| template <class RandomAccessIter, class get_char, class get_length, class compare> | |
| inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp) | |
| { | |
| //Don't sort if it's too small to optimize | |
| if(last - first < detail::MIN_SORT_SIZE) | |
| std::sort(first, last, comp); | |
| else { | |
| //skipping past empties at the beginning, which allows us to get the character type | |
| //.empty() is not used so as not to require a user declaration of it | |
| while(!length(*(--last))) { | |
| //Note: if there is just one non-empty, and it's at the beginning, then it's already in sorted order | |
| if(first == last) | |
| return; | |
| } | |
| //making last just after the end of the non-empty part of the array | |
| ++last; | |
| detail::reverse_string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0)); | |
| } | |
| } | |
| } | |
| #endif |