| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/audio_processing/audio_buffer.h" |
| |
| #include "webrtc/common_audio/resampler/push_sinc_resampler.h" |
| #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
| #include "webrtc/common_audio/channel_buffer.h" |
| #include "webrtc/modules/audio_processing/common.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) { |
| switch (layout) { |
| case AudioProcessing::kMono: |
| case AudioProcessing::kStereo: |
| return false; |
| case AudioProcessing::kMonoAndKeyboard: |
| case AudioProcessing::kStereoAndKeyboard: |
| return true; |
| } |
| assert(false); |
| return false; |
| } |
| |
| int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) { |
| switch (layout) { |
| case AudioProcessing::kMono: |
| case AudioProcessing::kStereo: |
| assert(false); |
| return -1; |
| case AudioProcessing::kMonoAndKeyboard: |
| return 1; |
| case AudioProcessing::kStereoAndKeyboard: |
| return 2; |
| } |
| assert(false); |
| return -1; |
| } |
| |
| template <typename T> |
| void StereoToMono(const T* left, const T* right, T* out, |
| int num_frames) { |
| for (int i = 0; i < num_frames; ++i) |
| out[i] = (left[i] + right[i]) / 2; |
| } |
| |
| int NumBandsFromSamplesPerChannel(int num_frames) { |
| int num_bands = 1; |
| if (num_frames == kSamplesPer32kHzChannel || |
| num_frames == kSamplesPer48kHzChannel) { |
| num_bands = rtc::CheckedDivExact(num_frames, |
| static_cast<int>(kSamplesPer16kHzChannel)); |
| } |
| return num_bands; |
| } |
| |
| } // namespace |
| |
| AudioBuffer::AudioBuffer(int input_num_frames, |
| int num_input_channels, |
| int process_num_frames, |
| int num_process_channels, |
| int output_num_frames) |
| : input_num_frames_(input_num_frames), |
| num_input_channels_(num_input_channels), |
| proc_num_frames_(process_num_frames), |
| num_proc_channels_(num_process_channels), |
| output_num_frames_(output_num_frames), |
| num_channels_(num_process_channels), |
| num_bands_(NumBandsFromSamplesPerChannel(proc_num_frames_)), |
| num_split_frames_(rtc::CheckedDivExact( |
| proc_num_frames_, num_bands_)), |
| mixed_low_pass_valid_(false), |
| reference_copied_(false), |
| activity_(AudioFrame::kVadUnknown), |
| keyboard_data_(NULL), |
| data_(new IFChannelBuffer(proc_num_frames_, num_proc_channels_)) { |
| assert(input_num_frames_ > 0); |
| assert(proc_num_frames_ > 0); |
| assert(output_num_frames_ > 0); |
| assert(num_input_channels_ > 0 && num_input_channels_ <= 2); |
| assert(num_proc_channels_ > 0 && num_proc_channels_ <= num_input_channels_); |
| |
| if (num_input_channels_ == 2 && num_proc_channels_ == 1) { |
| input_buffer_.reset(new ChannelBuffer<float>(input_num_frames_, |
| num_proc_channels_)); |
| } |
| |
| if (input_num_frames_ != proc_num_frames_ || |
| output_num_frames_ != proc_num_frames_) { |
| // Create an intermediate buffer for resampling. |
| process_buffer_.reset(new ChannelBuffer<float>(proc_num_frames_, |
| num_proc_channels_)); |
| |
| if (input_num_frames_ != proc_num_frames_) { |
| for (int i = 0; i < num_proc_channels_; ++i) { |
| input_resamplers_.push_back( |
| new PushSincResampler(input_num_frames_, |
| proc_num_frames_)); |
| } |
| } |
| |
| if (output_num_frames_ != proc_num_frames_) { |
| for (int i = 0; i < num_proc_channels_; ++i) { |
| output_resamplers_.push_back( |
| new PushSincResampler(proc_num_frames_, |
| output_num_frames_)); |
| } |
| } |
| } |
| |
| if (num_bands_ > 1) { |
| split_data_.reset(new IFChannelBuffer(proc_num_frames_, |
| num_proc_channels_, |
| num_bands_)); |
| splitting_filter_.reset(new SplittingFilter(num_proc_channels_)); |
| } |
| } |
| |
| AudioBuffer::~AudioBuffer() {} |
| |
| void AudioBuffer::CopyFrom(const float* const* data, |
| int num_frames, |
| AudioProcessing::ChannelLayout layout) { |
| assert(num_frames == input_num_frames_); |
| assert(ChannelsFromLayout(layout) == num_input_channels_); |
| InitForNewData(); |
| |
| if (HasKeyboardChannel(layout)) { |
| keyboard_data_ = data[KeyboardChannelIndex(layout)]; |
| } |
| |
| // Downmix. |
| const float* const* data_ptr = data; |
| if (num_input_channels_ == 2 && num_proc_channels_ == 1) { |
| StereoToMono(data[0], |
| data[1], |
| input_buffer_->channels()[0], |
| input_num_frames_); |
| data_ptr = input_buffer_->channels(); |
| } |
| |
| // Resample. |
| if (input_num_frames_ != proc_num_frames_) { |
| for (int i = 0; i < num_proc_channels_; ++i) { |
| input_resamplers_[i]->Resample(data_ptr[i], |
| input_num_frames_, |
| process_buffer_->channels()[i], |
| proc_num_frames_); |
| } |
| data_ptr = process_buffer_->channels(); |
| } |
| |
| // Convert to the S16 range. |
| for (int i = 0; i < num_proc_channels_; ++i) { |
| FloatToFloatS16(data_ptr[i], |
| proc_num_frames_, |
| data_->fbuf()->channels()[i]); |
| } |
| } |
| |
| void AudioBuffer::CopyTo(int num_frames, |
| AudioProcessing::ChannelLayout layout, |
| float* const* data) { |
| assert(num_frames == output_num_frames_); |
| assert(ChannelsFromLayout(layout) == num_channels_); |
| |
| // Convert to the float range. |
| float* const* data_ptr = data; |
| if (output_num_frames_ != proc_num_frames_) { |
| // Convert to an intermediate buffer for subsequent resampling. |
| data_ptr = process_buffer_->channels(); |
| } |
| for (int i = 0; i < num_channels_; ++i) { |
| FloatS16ToFloat(data_->fbuf()->channels()[i], |
| proc_num_frames_, |
| data_ptr[i]); |
| } |
| |
| // Resample. |
| if (output_num_frames_ != proc_num_frames_) { |
| for (int i = 0; i < num_channels_; ++i) { |
| output_resamplers_[i]->Resample(data_ptr[i], |
| proc_num_frames_, |
| data[i], |
| output_num_frames_); |
| } |
| } |
| } |
| |
| void AudioBuffer::InitForNewData() { |
| keyboard_data_ = NULL; |
| mixed_low_pass_valid_ = false; |
| reference_copied_ = false; |
| activity_ = AudioFrame::kVadUnknown; |
| num_channels_ = num_proc_channels_; |
| } |
| |
| const int16_t* const* AudioBuffer::channels_const() const { |
| return data_->ibuf_const()->channels(); |
| } |
| |
| int16_t* const* AudioBuffer::channels() { |
| mixed_low_pass_valid_ = false; |
| return data_->ibuf()->channels(); |
| } |
| |
| const int16_t* const* AudioBuffer::split_bands_const(int channel) const { |
| return split_data_.get() ? |
| split_data_->ibuf_const()->bands(channel) : |
| data_->ibuf_const()->bands(channel); |
| } |
| |
| int16_t* const* AudioBuffer::split_bands(int channel) { |
| mixed_low_pass_valid_ = false; |
| return split_data_.get() ? |
| split_data_->ibuf()->bands(channel) : |
| data_->ibuf()->bands(channel); |
| } |
| |
| const int16_t* const* AudioBuffer::split_channels_const(Band band) const { |
| if (split_data_.get()) { |
| return split_data_->ibuf_const()->channels(band); |
| } else { |
| return band == kBand0To8kHz ? data_->ibuf_const()->channels() : nullptr; |
| } |
| } |
| |
| int16_t* const* AudioBuffer::split_channels(Band band) { |
| mixed_low_pass_valid_ = false; |
| if (split_data_.get()) { |
| return split_data_->ibuf()->channels(band); |
| } else { |
| return band == kBand0To8kHz ? data_->ibuf()->channels() : nullptr; |
| } |
| } |
| |
| ChannelBuffer<int16_t>* AudioBuffer::data() { |
| mixed_low_pass_valid_ = false; |
| return data_->ibuf(); |
| } |
| |
| const ChannelBuffer<int16_t>* AudioBuffer::data() const { |
| return data_->ibuf_const(); |
| } |
| |
| ChannelBuffer<int16_t>* AudioBuffer::split_data() { |
| mixed_low_pass_valid_ = false; |
| return split_data_.get() ? split_data_->ibuf() : data_->ibuf(); |
| } |
| |
| const ChannelBuffer<int16_t>* AudioBuffer::split_data() const { |
| return split_data_.get() ? split_data_->ibuf_const() : data_->ibuf_const(); |
| } |
| |
| const float* const* AudioBuffer::channels_const_f() const { |
| return data_->fbuf_const()->channels(); |
| } |
| |
| float* const* AudioBuffer::channels_f() { |
| mixed_low_pass_valid_ = false; |
| return data_->fbuf()->channels(); |
| } |
| |
| const float* const* AudioBuffer::split_bands_const_f(int channel) const { |
| return split_data_.get() ? |
| split_data_->fbuf_const()->bands(channel) : |
| data_->fbuf_const()->bands(channel); |
| } |
| |
| float* const* AudioBuffer::split_bands_f(int channel) { |
| mixed_low_pass_valid_ = false; |
| return split_data_.get() ? |
| split_data_->fbuf()->bands(channel) : |
| data_->fbuf()->bands(channel); |
| } |
| |
| const float* const* AudioBuffer::split_channels_const_f(Band band) const { |
| if (split_data_.get()) { |
| return split_data_->fbuf_const()->channels(band); |
| } else { |
| return band == kBand0To8kHz ? data_->fbuf_const()->channels() : nullptr; |
| } |
| } |
| |
| float* const* AudioBuffer::split_channels_f(Band band) { |
| mixed_low_pass_valid_ = false; |
| if (split_data_.get()) { |
| return split_data_->fbuf()->channels(band); |
| } else { |
| return band == kBand0To8kHz ? data_->fbuf()->channels() : nullptr; |
| } |
| } |
| |
| ChannelBuffer<float>* AudioBuffer::data_f() { |
| mixed_low_pass_valid_ = false; |
| return data_->fbuf(); |
| } |
| |
| const ChannelBuffer<float>* AudioBuffer::data_f() const { |
| return data_->fbuf_const(); |
| } |
| |
| ChannelBuffer<float>* AudioBuffer::split_data_f() { |
| mixed_low_pass_valid_ = false; |
| return split_data_.get() ? split_data_->fbuf() : data_->fbuf(); |
| } |
| |
| const ChannelBuffer<float>* AudioBuffer::split_data_f() const { |
| return split_data_.get() ? split_data_->fbuf_const() : data_->fbuf_const(); |
| } |
| |
| const int16_t* AudioBuffer::mixed_low_pass_data() { |
| // Currently only mixing stereo to mono is supported. |
| assert(num_proc_channels_ == 1 || num_proc_channels_ == 2); |
| |
| if (num_proc_channels_ == 1) { |
| return split_bands_const(0)[kBand0To8kHz]; |
| } |
| |
| if (!mixed_low_pass_valid_) { |
| if (!mixed_low_pass_channels_.get()) { |
| mixed_low_pass_channels_.reset( |
| new ChannelBuffer<int16_t>(num_split_frames_, 1)); |
| } |
| StereoToMono(split_bands_const(0)[kBand0To8kHz], |
| split_bands_const(1)[kBand0To8kHz], |
| mixed_low_pass_channels_->channels()[0], |
| num_split_frames_); |
| mixed_low_pass_valid_ = true; |
| } |
| return mixed_low_pass_channels_->channels()[0]; |
| } |
| |
| const int16_t* AudioBuffer::low_pass_reference(int channel) const { |
| if (!reference_copied_) { |
| return NULL; |
| } |
| |
| return low_pass_reference_channels_->channels()[channel]; |
| } |
| |
| const float* AudioBuffer::keyboard_data() const { |
| return keyboard_data_; |
| } |
| |
| void AudioBuffer::set_activity(AudioFrame::VADActivity activity) { |
| activity_ = activity; |
| } |
| |
| AudioFrame::VADActivity AudioBuffer::activity() const { |
| return activity_; |
| } |
| |
| int AudioBuffer::num_channels() const { |
| return num_channels_; |
| } |
| |
| void AudioBuffer::set_num_channels(int num_channels) { |
| num_channels_ = num_channels; |
| } |
| |
| int AudioBuffer::num_frames() const { |
| return proc_num_frames_; |
| } |
| |
| int AudioBuffer::num_frames_per_band() const { |
| return num_split_frames_; |
| } |
| |
| int AudioBuffer::num_keyboard_frames() const { |
| // We don't resample the keyboard channel. |
| return input_num_frames_; |
| } |
| |
| int AudioBuffer::num_bands() const { |
| return num_bands_; |
| } |
| |
| // TODO(andrew): Do deinterleaving and mixing in one step? |
| void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) { |
| assert(proc_num_frames_ == input_num_frames_); |
| assert(frame->num_channels_ == num_input_channels_); |
| assert(frame->samples_per_channel_ == proc_num_frames_); |
| InitForNewData(); |
| activity_ = frame->vad_activity_; |
| |
| if (num_input_channels_ == 2 && num_proc_channels_ == 1) { |
| // Downmix directly; no explicit deinterleaving needed. |
| int16_t* downmixed = data_->ibuf()->channels()[0]; |
| for (int i = 0; i < input_num_frames_; ++i) { |
| downmixed[i] = (frame->data_[i * 2] + frame->data_[i * 2 + 1]) / 2; |
| } |
| } else { |
| assert(num_proc_channels_ == num_input_channels_); |
| int16_t* interleaved = frame->data_; |
| for (int i = 0; i < num_proc_channels_; ++i) { |
| int16_t* deinterleaved = data_->ibuf()->channels()[i]; |
| int interleaved_idx = i; |
| for (int j = 0; j < proc_num_frames_; ++j) { |
| deinterleaved[j] = interleaved[interleaved_idx]; |
| interleaved_idx += num_proc_channels_; |
| } |
| } |
| } |
| } |
| |
| void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const { |
| assert(proc_num_frames_ == output_num_frames_); |
| assert(num_channels_ == num_input_channels_); |
| assert(frame->num_channels_ == num_channels_); |
| assert(frame->samples_per_channel_ == proc_num_frames_); |
| frame->vad_activity_ = activity_; |
| |
| if (!data_changed) { |
| return; |
| } |
| |
| int16_t* interleaved = frame->data_; |
| for (int i = 0; i < num_channels_; i++) { |
| int16_t* deinterleaved = data_->ibuf()->channels()[i]; |
| int interleaved_idx = i; |
| for (int j = 0; j < proc_num_frames_; j++) { |
| interleaved[interleaved_idx] = deinterleaved[j]; |
| interleaved_idx += num_channels_; |
| } |
| } |
| } |
| |
| void AudioBuffer::CopyLowPassToReference() { |
| reference_copied_ = true; |
| if (!low_pass_reference_channels_.get() || |
| low_pass_reference_channels_->num_channels() != num_channels_) { |
| low_pass_reference_channels_.reset( |
| new ChannelBuffer<int16_t>(num_split_frames_, |
| num_proc_channels_)); |
| } |
| for (int i = 0; i < num_proc_channels_; i++) { |
| memcpy(low_pass_reference_channels_->channels()[i], |
| split_bands_const(i)[kBand0To8kHz], |
| low_pass_reference_channels_->num_frames_per_band() * |
| sizeof(split_bands_const(i)[kBand0To8kHz][0])); |
| } |
| } |
| |
| void AudioBuffer::SplitIntoFrequencyBands() { |
| splitting_filter_->Analysis(data_.get(), split_data_.get()); |
| } |
| |
| void AudioBuffer::MergeFrequencyBands() { |
| splitting_filter_->Synthesis(split_data_.get(), data_.get()); |
| } |
| |
| } // namespace webrtc |