blob: 4e5ec03563c88d2b13d72ebe154ce4cad986dab5 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/call.h"
#include "webrtc/system_wrappers/interface/tick_util.h"
#include "webrtc/test/fake_network_pipe.h"
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Return;
using ::testing::Invoke;
namespace webrtc {
class MockReceiver : public PacketReceiver {
public:
MockReceiver() {}
virtual ~MockReceiver() {}
void IncomingPacket(const uint8_t* data, size_t length) {
DeliverPacket(data, length);
delete [] data;
}
MOCK_METHOD2(DeliverPacket, DeliveryStatus(const uint8_t*, size_t));
};
class FakeNetworkPipeTest : public ::testing::Test {
protected:
virtual void SetUp() {
TickTime::UseFakeClock(12345);
receiver_.reset(new MockReceiver());
ON_CALL(*receiver_, DeliverPacket(_, _))
.WillByDefault(Return(PacketReceiver::DELIVERY_OK));
}
virtual void TearDown() {
}
void SendPackets(FakeNetworkPipe* pipe, int number_packets, int kPacketSize) {
rtc::scoped_ptr<uint8_t[]> packet(new uint8_t[kPacketSize]);
for (int i = 0; i < number_packets; ++i) {
pipe->SendPacket(packet.get(), kPacketSize);
}
}
int PacketTimeMs(int capacity_kbps, int kPacketSize) const {
return 8 * kPacketSize / capacity_kbps;
}
rtc::scoped_ptr<MockReceiver> receiver_;
};
void DeleteMemory(uint8_t* data, int length) { delete [] data; }
// Test the capacity link and verify we get as many packets as we expect.
TEST_F(FakeNetworkPipeTest, CapacityTest) {
FakeNetworkPipe::Config config;
config.queue_length_packets = 20;
config.link_capacity_kbps = 80;
rtc::scoped_ptr<FakeNetworkPipe> pipe(new FakeNetworkPipe(config));
pipe->SetReceiver(receiver_.get());
// Add 10 packets of 1000 bytes, = 80 kb, and verify it takes one second to
// get through the pipe.
const int kNumPackets = 10;
const int kPacketSize = 1000;
SendPackets(pipe.get(), kNumPackets , kPacketSize);
// Time to get one packet through the link.
const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps,
kPacketSize);
// Time haven't increased yet, so we souldn't get any packets.
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(0);
pipe->Process();
// Advance enough time to release one packet.
TickTime::AdvanceFakeClock(kPacketTimeMs);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(1);
pipe->Process();
// Release all but one packet
TickTime::AdvanceFakeClock(9 * kPacketTimeMs - 1);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(8);
pipe->Process();
// And the last one.
TickTime::AdvanceFakeClock(1);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(1);
pipe->Process();
}
// Test the extra network delay.
TEST_F(FakeNetworkPipeTest, ExtraDelayTest) {
FakeNetworkPipe::Config config;
config.queue_length_packets = 20;
config.queue_delay_ms = 100;
config.link_capacity_kbps = 80;
rtc::scoped_ptr<FakeNetworkPipe> pipe(new FakeNetworkPipe(config));
pipe->SetReceiver(receiver_.get());
const int kNumPackets = 2;
const int kPacketSize = 1000;
SendPackets(pipe.get(), kNumPackets , kPacketSize);
// Time to get one packet through the link.
const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps,
kPacketSize);
// Increase more than kPacketTimeMs, but not more than the extra delay.
TickTime::AdvanceFakeClock(kPacketTimeMs);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(0);
pipe->Process();
// Advance the network delay to get the first packet.
TickTime::AdvanceFakeClock(config.queue_delay_ms);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(1);
pipe->Process();
// Advance one more kPacketTimeMs to get the last packet.
TickTime::AdvanceFakeClock(kPacketTimeMs);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(1);
pipe->Process();
}
// Test the number of buffers and packets are dropped when sending too many
// packets too quickly.
TEST_F(FakeNetworkPipeTest, QueueLengthTest) {
FakeNetworkPipe::Config config;
config.queue_length_packets = 2;
config.link_capacity_kbps = 80;
rtc::scoped_ptr<FakeNetworkPipe> pipe(new FakeNetworkPipe(config));
pipe->SetReceiver(receiver_.get());
const int kPacketSize = 1000;
const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps,
kPacketSize);
// Send three packets and verify only 2 are delivered.
SendPackets(pipe.get(), 3, kPacketSize);
// Increase time enough to deliver all three packets, verify only two are
// delivered.
TickTime::AdvanceFakeClock(3 * kPacketTimeMs);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(2);
pipe->Process();
}
// Test we get statistics as expected.
TEST_F(FakeNetworkPipeTest, StatisticsTest) {
FakeNetworkPipe::Config config;
config.queue_length_packets = 2;
config.queue_delay_ms = 20;
config.link_capacity_kbps = 80;
rtc::scoped_ptr<FakeNetworkPipe> pipe(new FakeNetworkPipe(config));
pipe->SetReceiver(receiver_.get());
const int kPacketSize = 1000;
const int kPacketTimeMs = PacketTimeMs(config.link_capacity_kbps,
kPacketSize);
// Send three packets and verify only 2 are delivered.
SendPackets(pipe.get(), 3, kPacketSize);
TickTime::AdvanceFakeClock(3 * kPacketTimeMs + config.queue_delay_ms);
EXPECT_CALL(*receiver_, DeliverPacket(_, _))
.Times(2);
pipe->Process();
// Packet 1: kPacketTimeMs + config.queue_delay_ms,
// packet 2: 2 * kPacketTimeMs + config.queue_delay_ms => 170 ms average.
EXPECT_EQ(pipe->AverageDelay(), 170);
EXPECT_EQ(pipe->sent_packets(), 2u);
EXPECT_EQ(pipe->dropped_packets(), 1u);
EXPECT_EQ(pipe->PercentageLoss(), 1/3.f);
}
// Change the link capacity half-way through the test and verify that the
// delivery times change accordingly.
TEST_F(FakeNetworkPipeTest, ChangingCapacityWithEmptyPipeTest) {
FakeNetworkPipe::Config config;
config.queue_length_packets = 20;
config.link_capacity_kbps = 80;
rtc::scoped_ptr<FakeNetworkPipe> pipe(new FakeNetworkPipe(config));
pipe->SetReceiver(receiver_.get());
// Add 10 packets of 1000 bytes, = 80 kb, and verify it takes one second to
// get through the pipe.
const int kNumPackets = 10;
const int kPacketSize = 1000;
SendPackets(pipe.get(), kNumPackets, kPacketSize);
// Time to get one packet through the link.
int packet_time_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize);
// Time hasn't increased yet, so we souldn't get any packets.
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(0);
pipe->Process();
// Advance time in steps to release one packet at a time.
for (int i = 0; i < kNumPackets; ++i) {
TickTime::AdvanceFakeClock(packet_time_ms);
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(1);
pipe->Process();
}
// Change the capacity.
config.link_capacity_kbps /= 2; // Reduce to 50%.
pipe->SetConfig(config);
// Add another 10 packets of 1000 bytes, = 80 kb, and verify it takes two
// seconds to get them through the pipe.
SendPackets(pipe.get(), kNumPackets, kPacketSize);
// Time to get one packet through the link.
packet_time_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize);
// Time hasn't increased yet, so we souldn't get any packets.
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(0);
pipe->Process();
// Advance time in steps to release one packet at a time.
for (int i = 0; i < kNumPackets; ++i) {
TickTime::AdvanceFakeClock(packet_time_ms);
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(1);
pipe->Process();
}
// Check that all the packets were sent.
EXPECT_EQ(static_cast<size_t>(2 * kNumPackets), pipe->sent_packets());
TickTime::AdvanceFakeClock(pipe->TimeUntilNextProcess());
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(0);
pipe->Process();
}
// Change the link capacity half-way through the test and verify that the
// delivery times change accordingly.
TEST_F(FakeNetworkPipeTest, ChangingCapacityWithPacketsInPipeTest) {
FakeNetworkPipe::Config config;
config.queue_length_packets = 20;
config.link_capacity_kbps = 80;
rtc::scoped_ptr<FakeNetworkPipe> pipe(new FakeNetworkPipe(config));
pipe->SetReceiver(receiver_.get());
// Add 10 packets of 1000 bytes, = 80 kb.
const int kNumPackets = 10;
const int kPacketSize = 1000;
SendPackets(pipe.get(), kNumPackets, kPacketSize);
// Time to get one packet through the link at the initial speed.
int packet_time_1_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize);
// Change the capacity.
config.link_capacity_kbps *= 2; // Double the capacity.
pipe->SetConfig(config);
// Add another 10 packets of 1000 bytes, = 80 kb, and verify it takes two
// seconds to get them through the pipe.
SendPackets(pipe.get(), kNumPackets, kPacketSize);
// Time to get one packet through the link at the new capacity.
int packet_time_2_ms = PacketTimeMs(config.link_capacity_kbps, kPacketSize);
// Time hasn't increased yet, so we souldn't get any packets.
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(0);
pipe->Process();
// Advance time in steps to release one packet at a time.
for (int i = 0; i < kNumPackets; ++i) {
TickTime::AdvanceFakeClock(packet_time_1_ms);
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(1);
pipe->Process();
}
// Advance time in steps to release one packet at a time.
for (int i = 0; i < kNumPackets; ++i) {
TickTime::AdvanceFakeClock(packet_time_2_ms);
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(1);
pipe->Process();
}
// Check that all the packets were sent.
EXPECT_EQ(static_cast<size_t>(2 * kNumPackets), pipe->sent_packets());
TickTime::AdvanceFakeClock(pipe->TimeUntilNextProcess());
EXPECT_CALL(*receiver_, DeliverPacket(_, _)).Times(0);
pipe->Process();
}
} // namespace webrtc