| /* | 
 |  *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | // | 
 | //  Implements core class for intelligibility enhancer. | 
 | // | 
 | //  Details of the model and algorithm can be found in the original paper: | 
 | //  http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788 | 
 | // | 
 |  | 
 | #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" | 
 |  | 
 | #include <math.h> | 
 | #include <stdlib.h> | 
 | #include <algorithm> | 
 | #include <numeric> | 
 |  | 
 | #include "webrtc/base/checks.h" | 
 | #include "webrtc/common_audio/include/audio_util.h" | 
 | #include "webrtc/common_audio/window_generator.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | namespace { | 
 |  | 
 | const size_t kErbResolution = 2; | 
 | const int kWindowSizeMs = 2; | 
 | const int kChunkSizeMs = 10;  // Size provided by APM. | 
 | const float kClipFreq = 200.0f; | 
 | const float kConfigRho = 0.02f;  // Default production and interpretation SNR. | 
 | const float kKbdAlpha = 1.5f; | 
 | const float kLambdaBot = -1.0f;      // Extreme values in bisection | 
 | const float kLambdaTop = -10e-18f;  // search for lamda. | 
 |  | 
 | }  // namespace | 
 |  | 
 | using std::complex; | 
 | using std::max; | 
 | using std::min; | 
 | using VarianceType = intelligibility::VarianceArray::StepType; | 
 |  | 
 | IntelligibilityEnhancer::TransformCallback::TransformCallback( | 
 |     IntelligibilityEnhancer* parent, | 
 |     IntelligibilityEnhancer::AudioSource source) | 
 |     : parent_(parent), source_(source) { | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( | 
 |     const complex<float>* const* in_block, | 
 |     int in_channels, | 
 |     size_t frames, | 
 |     int /* out_channels */, | 
 |     complex<float>* const* out_block) { | 
 |   RTC_DCHECK_EQ(parent_->freqs_, frames); | 
 |   for (int i = 0; i < in_channels; ++i) { | 
 |     parent_->DispatchAudio(source_, in_block[i], out_block[i]); | 
 |   } | 
 | } | 
 |  | 
 | IntelligibilityEnhancer::IntelligibilityEnhancer() | 
 |     : IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) { | 
 | } | 
 |  | 
 | IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config) | 
 |     : freqs_(RealFourier::ComplexLength( | 
 |           RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))), | 
 |       window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))), | 
 |       chunk_length_( | 
 |           static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)), | 
 |       bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)), | 
 |       sample_rate_hz_(config.sample_rate_hz), | 
 |       erb_resolution_(kErbResolution), | 
 |       num_capture_channels_(config.num_capture_channels), | 
 |       num_render_channels_(config.num_render_channels), | 
 |       analysis_rate_(config.analysis_rate), | 
 |       active_(true), | 
 |       clear_variance_(freqs_, | 
 |                       config.var_type, | 
 |                       config.var_window_size, | 
 |                       config.var_decay_rate), | 
 |       noise_variance_(freqs_, | 
 |                       config.var_type, | 
 |                       config.var_window_size, | 
 |                       config.var_decay_rate), | 
 |       filtered_clear_var_(new float[bank_size_]), | 
 |       filtered_noise_var_(new float[bank_size_]), | 
 |       filter_bank_(bank_size_), | 
 |       center_freqs_(new float[bank_size_]), | 
 |       rho_(new float[bank_size_]), | 
 |       gains_eq_(new float[bank_size_]), | 
 |       gain_applier_(freqs_, config.gain_change_limit), | 
 |       temp_render_out_buffer_(chunk_length_, num_render_channels_), | 
 |       temp_capture_out_buffer_(chunk_length_, num_capture_channels_), | 
 |       kbd_window_(new float[window_size_]), | 
 |       render_callback_(this, AudioSource::kRenderStream), | 
 |       capture_callback_(this, AudioSource::kCaptureStream), | 
 |       block_count_(0), | 
 |       analysis_step_(0) { | 
 |   RTC_DCHECK_LE(config.rho, 1.0f); | 
 |  | 
 |   CreateErbBank(); | 
 |  | 
 |   // Assumes all rho equal. | 
 |   for (size_t i = 0; i < bank_size_; ++i) { | 
 |     rho_[i] = config.rho * config.rho; | 
 |   } | 
 |  | 
 |   float freqs_khz = kClipFreq / 1000.0f; | 
 |   size_t erb_index = static_cast<size_t>(ceilf( | 
 |       11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); | 
 |   start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_); | 
 |  | 
 |   WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, | 
 |                                        kbd_window_.get()); | 
 |   render_mangler_.reset(new LappedTransform( | 
 |       num_render_channels_, num_render_channels_, chunk_length_, | 
 |       kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_)); | 
 |   capture_mangler_.reset(new LappedTransform( | 
 |       num_capture_channels_, num_capture_channels_, chunk_length_, | 
 |       kbd_window_.get(), window_size_, window_size_ / 2, &capture_callback_)); | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, | 
 |                                                  int sample_rate_hz, | 
 |                                                  int num_channels) { | 
 |   RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); | 
 |   RTC_CHECK_EQ(num_render_channels_, num_channels); | 
 |  | 
 |   if (active_) { | 
 |     render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); | 
 |   } | 
 |  | 
 |   if (active_) { | 
 |     for (int i = 0; i < num_render_channels_; ++i) { | 
 |       memcpy(audio[i], temp_render_out_buffer_.channels()[i], | 
 |              chunk_length_ * sizeof(**audio)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::AnalyzeCaptureAudio(float* const* audio, | 
 |                                                   int sample_rate_hz, | 
 |                                                   int num_channels) { | 
 |   RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); | 
 |   RTC_CHECK_EQ(num_capture_channels_, num_channels); | 
 |  | 
 |   capture_mangler_->ProcessChunk(audio, temp_capture_out_buffer_.channels()); | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::DispatchAudio( | 
 |     IntelligibilityEnhancer::AudioSource source, | 
 |     const complex<float>* in_block, | 
 |     complex<float>* out_block) { | 
 |   switch (source) { | 
 |     case kRenderStream: | 
 |       ProcessClearBlock(in_block, out_block); | 
 |       break; | 
 |     case kCaptureStream: | 
 |       ProcessNoiseBlock(in_block, out_block); | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, | 
 |                                                 complex<float>* out_block) { | 
 |   if (block_count_ < 2) { | 
 |     memset(out_block, 0, freqs_ * sizeof(*out_block)); | 
 |     ++block_count_; | 
 |     return; | 
 |   } | 
 |  | 
 |   // TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary. | 
 |   if (true) { | 
 |     clear_variance_.Step(in_block, false); | 
 |     if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { | 
 |       const float power_target = std::accumulate( | 
 |           clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.f); | 
 |       AnalyzeClearBlock(power_target); | 
 |       ++analysis_step_; | 
 |     } | 
 |     ++block_count_; | 
 |   } | 
 |  | 
 |   if (active_) { | 
 |     gain_applier_.Apply(in_block, out_block); | 
 |   } | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { | 
 |   FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); | 
 |   FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); | 
 |  | 
 |   SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); | 
 |   const float power_top = | 
 |       DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 
 |   SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); | 
 |   const float power_bot = | 
 |       DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 
 |   if (power_target >= power_bot && power_target <= power_top) { | 
 |     SolveForLambda(power_target, power_bot, power_top); | 
 |     UpdateErbGains(); | 
 |   }  // Else experiencing variance underflow, so do nothing. | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::SolveForLambda(float power_target, | 
 |                                              float power_bot, | 
 |                                              float power_top) { | 
 |   const float kConvergeThresh = 0.001f;  // TODO(ekmeyerson): Find best values | 
 |   const int kMaxIters = 100;             // for these, based on experiments. | 
 |  | 
 |   const float reciprocal_power_target = 1.f / power_target; | 
 |   float lambda_bot = kLambdaBot; | 
 |   float lambda_top = kLambdaTop; | 
 |   float power_ratio = 2.0f;  // Ratio of achieved power to target power. | 
 |   int iters = 0; | 
 |   while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && | 
 |          iters <= kMaxIters) { | 
 |     const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; | 
 |     SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); | 
 |     const float power = | 
 |         DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); | 
 |     if (power < power_target) { | 
 |       lambda_bot = lambda; | 
 |     } else { | 
 |       lambda_top = lambda; | 
 |     } | 
 |     power_ratio = std::fabs(power * reciprocal_power_target); | 
 |     ++iters; | 
 |   } | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::UpdateErbGains() { | 
 |   // (ERB gain) = filterbank' * (freq gain) | 
 |   float* gains = gain_applier_.target(); | 
 |   for (size_t i = 0; i < freqs_; ++i) { | 
 |     gains[i] = 0.0f; | 
 |     for (size_t j = 0; j < bank_size_; ++j) { | 
 |       gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, | 
 |                                                 complex<float>* /*out_block*/) { | 
 |   noise_variance_.Step(in_block); | 
 | } | 
 |  | 
 | size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, | 
 |                                             size_t erb_resolution) { | 
 |   float freq_limit = sample_rate / 2000.0f; | 
 |   size_t erb_scale = static_cast<size_t>(ceilf( | 
 |       11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f)); | 
 |   return erb_scale * erb_resolution; | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::CreateErbBank() { | 
 |   size_t lf = 1, rf = 4; | 
 |  | 
 |   for (size_t i = 0; i < bank_size_; ++i) { | 
 |     float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); | 
 |     center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); | 
 |     center_freqs_[i] -= 14678.49f; | 
 |   } | 
 |   float last_center_freq = center_freqs_[bank_size_ - 1]; | 
 |   for (size_t i = 0; i < bank_size_; ++i) { | 
 |     center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < bank_size_; ++i) { | 
 |     filter_bank_[i].resize(freqs_); | 
 |   } | 
 |  | 
 |   for (size_t i = 1; i <= bank_size_; ++i) { | 
 |     size_t lll, ll, rr, rrr; | 
 |     static const size_t kOne = 1;  // Avoids repeated static_cast<>s below. | 
 |     lll = static_cast<size_t>(round( | 
 |         center_freqs_[max(kOne, i - lf) - 1] * freqs_ / | 
 |             (0.5f * sample_rate_hz_))); | 
 |     ll = static_cast<size_t>(round( | 
 |         center_freqs_[max(kOne, i) - 1] * freqs_ / (0.5f * sample_rate_hz_))); | 
 |     lll = min(freqs_, max(lll, kOne)) - 1; | 
 |     ll = min(freqs_, max(ll, kOne)) - 1; | 
 |  | 
 |     rrr = static_cast<size_t>(round( | 
 |         center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / | 
 |             (0.5f * sample_rate_hz_))); | 
 |     rr = static_cast<size_t>(round( | 
 |         center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / | 
 |             (0.5f * sample_rate_hz_))); | 
 |     rrr = min(freqs_, max(rrr, kOne)) - 1; | 
 |     rr = min(freqs_, max(rr, kOne)) - 1; | 
 |  | 
 |     float step, element; | 
 |  | 
 |     step = 1.0f / (ll - lll); | 
 |     element = 0.0f; | 
 |     for (size_t j = lll; j <= ll; ++j) { | 
 |       filter_bank_[i - 1][j] = element; | 
 |       element += step; | 
 |     } | 
 |     step = 1.0f / (rrr - rr); | 
 |     element = 1.0f; | 
 |     for (size_t j = rr; j <= rrr; ++j) { | 
 |       filter_bank_[i - 1][j] = element; | 
 |       element -= step; | 
 |     } | 
 |     for (size_t j = ll; j <= rr; ++j) { | 
 |       filter_bank_[i - 1][j] = 1.0f; | 
 |     } | 
 |   } | 
 |  | 
 |   float sum; | 
 |   for (size_t i = 0; i < freqs_; ++i) { | 
 |     sum = 0.0f; | 
 |     for (size_t j = 0; j < bank_size_; ++j) { | 
 |       sum += filter_bank_[j][i]; | 
 |     } | 
 |     for (size_t j = 0; j < bank_size_; ++j) { | 
 |       filter_bank_[j][i] /= sum; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, | 
 |                                                        size_t start_freq, | 
 |                                                        float* sols) { | 
 |   bool quadratic = (kConfigRho < 1.0f); | 
 |   const float* var_x0 = filtered_clear_var_.get(); | 
 |   const float* var_n0 = filtered_noise_var_.get(); | 
 |  | 
 |   for (size_t n = 0; n < start_freq; ++n) { | 
 |     sols[n] = 1.0f; | 
 |   } | 
 |  | 
 |   // Analytic solution for optimal gains. See paper for derivation. | 
 |   for (size_t n = start_freq - 1; n < bank_size_; ++n) { | 
 |     float alpha0, beta0, gamma0; | 
 |     gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + | 
 |              lambda * var_x0[n] * var_n0[n] * var_n0[n]; | 
 |     beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; | 
 |     if (quadratic) { | 
 |       alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; | 
 |       sols[n] = | 
 |           (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); | 
 |     } else { | 
 |       sols[n] = -gamma0 / beta0; | 
 |     } | 
 |     sols[n] = fmax(0, sols[n]); | 
 |   } | 
 | } | 
 |  | 
 | void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { | 
 |   RTC_DCHECK_GT(freqs_, 0u); | 
 |   for (size_t i = 0; i < bank_size_; ++i) { | 
 |     result[i] = DotProduct(&filter_bank_[i][0], var, freqs_); | 
 |   } | 
 | } | 
 |  | 
 | float IntelligibilityEnhancer::DotProduct(const float* a, | 
 |                                           const float* b, | 
 |                                           size_t length) { | 
 |   float ret = 0.0f; | 
 |  | 
 |   for (size_t i = 0; i < length; ++i) { | 
 |     ret = fmaf(a[i], b[i], ret); | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | bool IntelligibilityEnhancer::active() const { | 
 |   return active_; | 
 | } | 
 |  | 
 | }  // namespace webrtc |