|  | /* | 
|  | *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file includes unit tests for NetEQ. | 
|  | */ | 
|  |  | 
|  | #include "webrtc/modules/audio_coding/neteq4/interface/neteq.h" | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h>  // memset | 
|  |  | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "gflags/gflags.h" | 
|  | #include "gtest/gtest.h" | 
|  | #include "webrtc/modules/audio_coding/neteq4/test/NETEQTEST_RTPpacket.h" | 
|  | #include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h" | 
|  | #include "webrtc/test/testsupport/fileutils.h" | 
|  | #include "webrtc/test/testsupport/gtest_disable.h" | 
|  | #include "webrtc/typedefs.h" | 
|  |  | 
|  | DEFINE_bool(gen_ref, false, "Generate reference files."); | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | static bool IsAllZero(const int16_t* buf, int buf_length) { | 
|  | bool all_zero = true; | 
|  | for (int n = 0; n < buf_length && all_zero; ++n) | 
|  | all_zero = buf[n] == 0; | 
|  | return all_zero; | 
|  | } | 
|  |  | 
|  | static bool IsAllNonZero(const int16_t* buf, int buf_length) { | 
|  | bool all_non_zero = true; | 
|  | for (int n = 0; n < buf_length && all_non_zero; ++n) | 
|  | all_non_zero = buf[n] != 0; | 
|  | return all_non_zero; | 
|  | } | 
|  |  | 
|  | class RefFiles { | 
|  | public: | 
|  | RefFiles(const std::string& input_file, const std::string& output_file); | 
|  | ~RefFiles(); | 
|  | template<class T> void ProcessReference(const T& test_results); | 
|  | template<typename T, size_t n> void ProcessReference( | 
|  | const T (&test_results)[n], | 
|  | size_t length); | 
|  | template<typename T, size_t n> void WriteToFile( | 
|  | const T (&test_results)[n], | 
|  | size_t length); | 
|  | template<typename T, size_t n> void ReadFromFileAndCompare( | 
|  | const T (&test_results)[n], | 
|  | size_t length); | 
|  | void WriteToFile(const NetEqNetworkStatistics& stats); | 
|  | void ReadFromFileAndCompare(const NetEqNetworkStatistics& stats); | 
|  | void WriteToFile(const RtcpStatistics& stats); | 
|  | void ReadFromFileAndCompare(const RtcpStatistics& stats); | 
|  |  | 
|  | FILE* input_fp_; | 
|  | FILE* output_fp_; | 
|  | }; | 
|  |  | 
|  | RefFiles::RefFiles(const std::string &input_file, | 
|  | const std::string &output_file) | 
|  | : input_fp_(NULL), | 
|  | output_fp_(NULL) { | 
|  | if (!input_file.empty()) { | 
|  | input_fp_ = fopen(input_file.c_str(), "rb"); | 
|  | EXPECT_TRUE(input_fp_ != NULL); | 
|  | } | 
|  | if (!output_file.empty()) { | 
|  | output_fp_ = fopen(output_file.c_str(), "wb"); | 
|  | EXPECT_TRUE(output_fp_ != NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | RefFiles::~RefFiles() { | 
|  | if (input_fp_) { | 
|  | EXPECT_EQ(EOF, fgetc(input_fp_));  // Make sure that we reached the end. | 
|  | fclose(input_fp_); | 
|  | } | 
|  | if (output_fp_) fclose(output_fp_); | 
|  | } | 
|  |  | 
|  | template<class T> | 
|  | void RefFiles::ProcessReference(const T& test_results) { | 
|  | WriteToFile(test_results); | 
|  | ReadFromFileAndCompare(test_results); | 
|  | } | 
|  |  | 
|  | template<typename T, size_t n> | 
|  | void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) { | 
|  | WriteToFile(test_results, length); | 
|  | ReadFromFileAndCompare(test_results, length); | 
|  | } | 
|  |  | 
|  | template<typename T, size_t n> | 
|  | void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) { | 
|  | if (output_fp_) { | 
|  | ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename T, size_t n> | 
|  | void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n], | 
|  | size_t length) { | 
|  | if (input_fp_) { | 
|  | // Read from ref file. | 
|  | T* ref = new T[length]; | 
|  | ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_)); | 
|  | // Compare | 
|  | ASSERT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length)); | 
|  | delete [] ref; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RefFiles::WriteToFile(const NetEqNetworkStatistics& stats) { | 
|  | if (output_fp_) { | 
|  | ASSERT_EQ(1u, fwrite(&stats, sizeof(NetEqNetworkStatistics), 1, | 
|  | output_fp_)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RefFiles::ReadFromFileAndCompare( | 
|  | const NetEqNetworkStatistics& stats) { | 
|  | if (input_fp_) { | 
|  | // Read from ref file. | 
|  | size_t stat_size = sizeof(NetEqNetworkStatistics); | 
|  | NetEqNetworkStatistics ref_stats; | 
|  | ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_)); | 
|  | // Compare | 
|  | EXPECT_EQ(0, memcmp(&stats, &ref_stats, stat_size)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RefFiles::WriteToFile(const RtcpStatistics& stats) { | 
|  | if (output_fp_) { | 
|  | ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1, | 
|  | output_fp_)); | 
|  | ASSERT_EQ(1u, fwrite(&(stats.cumulative_lost), | 
|  | sizeof(stats.cumulative_lost), 1, output_fp_)); | 
|  | ASSERT_EQ(1u, fwrite(&(stats.extended_max_sequence_number), | 
|  | sizeof(stats.extended_max_sequence_number), 1, | 
|  | output_fp_)); | 
|  | ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1, | 
|  | output_fp_)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RefFiles::ReadFromFileAndCompare( | 
|  | const RtcpStatistics& stats) { | 
|  | if (input_fp_) { | 
|  | // Read from ref file. | 
|  | RtcpStatistics ref_stats; | 
|  | ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost), | 
|  | sizeof(ref_stats.fraction_lost), 1, input_fp_)); | 
|  | ASSERT_EQ(1u, fread(&(ref_stats.cumulative_lost), | 
|  | sizeof(ref_stats.cumulative_lost), 1, input_fp_)); | 
|  | ASSERT_EQ(1u, fread(&(ref_stats.extended_max_sequence_number), | 
|  | sizeof(ref_stats.extended_max_sequence_number), 1, | 
|  | input_fp_)); | 
|  | ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1, | 
|  | input_fp_)); | 
|  | // Compare | 
|  | EXPECT_EQ(ref_stats.fraction_lost, stats.fraction_lost); | 
|  | EXPECT_EQ(ref_stats.cumulative_lost, stats.cumulative_lost); | 
|  | EXPECT_EQ(ref_stats.extended_max_sequence_number, | 
|  | stats.extended_max_sequence_number); | 
|  | EXPECT_EQ(ref_stats.jitter, stats.jitter); | 
|  | } | 
|  | } | 
|  |  | 
|  | class NetEqDecodingTest : public ::testing::Test { | 
|  | protected: | 
|  | // NetEQ must be polled for data once every 10 ms. Thus, neither of the | 
|  | // constants below can be changed. | 
|  | static const int kTimeStepMs = 10; | 
|  | static const int kBlockSize8kHz = kTimeStepMs * 8; | 
|  | static const int kBlockSize16kHz = kTimeStepMs * 16; | 
|  | static const int kBlockSize32kHz = kTimeStepMs * 32; | 
|  | static const int kMaxBlockSize = kBlockSize32kHz; | 
|  | static const int kInitSampleRateHz = 8000; | 
|  |  | 
|  | NetEqDecodingTest(); | 
|  | virtual void SetUp(); | 
|  | virtual void TearDown(); | 
|  | void SelectDecoders(NetEqDecoder* used_codec); | 
|  | void LoadDecoders(); | 
|  | void OpenInputFile(const std::string &rtp_file); | 
|  | void Process(NETEQTEST_RTPpacket* rtp_ptr, int* out_len); | 
|  | void DecodeAndCompare(const std::string &rtp_file, | 
|  | const std::string &ref_file); | 
|  | void DecodeAndCheckStats(const std::string &rtp_file, | 
|  | const std::string &stat_ref_file, | 
|  | const std::string &rtcp_ref_file); | 
|  | static void PopulateRtpInfo(int frame_index, | 
|  | int timestamp, | 
|  | WebRtcRTPHeader* rtp_info); | 
|  | static void PopulateCng(int frame_index, | 
|  | int timestamp, | 
|  | WebRtcRTPHeader* rtp_info, | 
|  | uint8_t* payload, | 
|  | int* payload_len); | 
|  |  | 
|  | void CheckBgnOff(int sampling_rate, NetEqBackgroundNoiseMode bgn_mode); | 
|  |  | 
|  | void WrapTest(uint16_t start_seq_no, uint32_t start_timestamp, | 
|  | const std::set<uint16_t>& drop_seq_numbers, | 
|  | bool expect_seq_no_wrap, bool expect_timestamp_wrap); | 
|  |  | 
|  | void LongCngWithClockDrift(double drift_factor, | 
|  | double network_freeze_ms, | 
|  | bool pull_audio_during_freeze, | 
|  | int delay_tolerance_ms, | 
|  | int max_time_to_speech_ms); | 
|  |  | 
|  | void DuplicateCng(); | 
|  |  | 
|  | NetEq* neteq_; | 
|  | FILE* rtp_fp_; | 
|  | unsigned int sim_clock_; | 
|  | int16_t out_data_[kMaxBlockSize]; | 
|  | int output_sample_rate_; | 
|  | }; | 
|  |  | 
|  | // Allocating the static const so that it can be passed by reference. | 
|  | const int NetEqDecodingTest::kTimeStepMs; | 
|  | const int NetEqDecodingTest::kBlockSize8kHz; | 
|  | const int NetEqDecodingTest::kBlockSize16kHz; | 
|  | const int NetEqDecodingTest::kBlockSize32kHz; | 
|  | const int NetEqDecodingTest::kMaxBlockSize; | 
|  | const int NetEqDecodingTest::kInitSampleRateHz; | 
|  |  | 
|  | NetEqDecodingTest::NetEqDecodingTest() | 
|  | : neteq_(NULL), | 
|  | rtp_fp_(NULL), | 
|  | sim_clock_(0), | 
|  | output_sample_rate_(kInitSampleRateHz) { | 
|  | memset(out_data_, 0, sizeof(out_data_)); | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::SetUp() { | 
|  | neteq_ = NetEq::Create(kInitSampleRateHz); | 
|  | ASSERT_TRUE(neteq_); | 
|  | LoadDecoders(); | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::TearDown() { | 
|  | delete neteq_; | 
|  | if (rtp_fp_) | 
|  | fclose(rtp_fp_); | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::LoadDecoders() { | 
|  | // Load PCMu. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMu, 0)); | 
|  | // Load PCMa. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMa, 8)); | 
|  | #ifndef WEBRTC_ANDROID | 
|  | // Load iLBC. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderILBC, 102)); | 
|  | #endif  // WEBRTC_ANDROID | 
|  | // Load iSAC. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, 103)); | 
|  | #ifndef WEBRTC_ANDROID | 
|  | // Load iSAC SWB. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACswb, 104)); | 
|  | // Load iSAC FB. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACfb, 105)); | 
|  | #endif  // WEBRTC_ANDROID | 
|  | // Load PCM16B nb. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16B, 93)); | 
|  | // Load PCM16B wb. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, 94)); | 
|  | // Load PCM16B swb32. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bswb32kHz, 95)); | 
|  | // Load CNG 8 kHz. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, 13)); | 
|  | // Load CNG 16 kHz. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, 98)); | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) { | 
|  | rtp_fp_ = fopen(rtp_file.c_str(), "rb"); | 
|  | ASSERT_TRUE(rtp_fp_ != NULL); | 
|  | ASSERT_EQ(0, NETEQTEST_RTPpacket::skipFileHeader(rtp_fp_)); | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::Process(NETEQTEST_RTPpacket* rtp, int* out_len) { | 
|  | // Check if time to receive. | 
|  | while ((sim_clock_ >= rtp->time()) && | 
|  | (rtp->dataLen() >= 0)) { | 
|  | if (rtp->dataLen() > 0) { | 
|  | WebRtcRTPHeader rtpInfo; | 
|  | rtp->parseHeader(&rtpInfo); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket( | 
|  | rtpInfo, | 
|  | rtp->payload(), | 
|  | rtp->payloadLen(), | 
|  | rtp->time() * (output_sample_rate_ / 1000))); | 
|  | } | 
|  | // Get next packet. | 
|  | ASSERT_NE(-1, rtp->readFromFile(rtp_fp_)); | 
|  | } | 
|  |  | 
|  | // Get audio from NetEq. | 
|  | NetEqOutputType type; | 
|  | int num_channels; | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_TRUE((*out_len == kBlockSize8kHz) || | 
|  | (*out_len == kBlockSize16kHz) || | 
|  | (*out_len == kBlockSize32kHz)); | 
|  | output_sample_rate_ = *out_len / 10 * 1000; | 
|  |  | 
|  | // Increase time. | 
|  | sim_clock_ += kTimeStepMs; | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::DecodeAndCompare(const std::string &rtp_file, | 
|  | const std::string &ref_file) { | 
|  | OpenInputFile(rtp_file); | 
|  |  | 
|  | std::string ref_out_file = ""; | 
|  | if (ref_file.empty()) { | 
|  | ref_out_file = webrtc::test::OutputPath() + "neteq_universal_ref.pcm"; | 
|  | } | 
|  | RefFiles ref_files(ref_file, ref_out_file); | 
|  |  | 
|  | NETEQTEST_RTPpacket rtp; | 
|  | ASSERT_GT(rtp.readFromFile(rtp_fp_), 0); | 
|  | int i = 0; | 
|  | while (rtp.dataLen() >= 0) { | 
|  | std::ostringstream ss; | 
|  | ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; | 
|  | SCOPED_TRACE(ss.str());  // Print out the parameter values on failure. | 
|  | int out_len = 0; | 
|  | ASSERT_NO_FATAL_FAILURE(Process(&rtp, &out_len)); | 
|  | ASSERT_NO_FATAL_FAILURE(ref_files.ProcessReference(out_data_, out_len)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::DecodeAndCheckStats(const std::string &rtp_file, | 
|  | const std::string &stat_ref_file, | 
|  | const std::string &rtcp_ref_file) { | 
|  | OpenInputFile(rtp_file); | 
|  | std::string stat_out_file = ""; | 
|  | if (stat_ref_file.empty()) { | 
|  | stat_out_file = webrtc::test::OutputPath() + | 
|  | "neteq_network_stats.dat"; | 
|  | } | 
|  | RefFiles network_stat_files(stat_ref_file, stat_out_file); | 
|  |  | 
|  | std::string rtcp_out_file = ""; | 
|  | if (rtcp_ref_file.empty()) { | 
|  | rtcp_out_file = webrtc::test::OutputPath() + | 
|  | "neteq_rtcp_stats.dat"; | 
|  | } | 
|  | RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file); | 
|  |  | 
|  | NETEQTEST_RTPpacket rtp; | 
|  | ASSERT_GT(rtp.readFromFile(rtp_fp_), 0); | 
|  | while (rtp.dataLen() >= 0) { | 
|  | int out_len; | 
|  | Process(&rtp, &out_len); | 
|  |  | 
|  | // Query the network statistics API once per second | 
|  | if (sim_clock_ % 1000 == 0) { | 
|  | // Process NetworkStatistics. | 
|  | NetEqNetworkStatistics network_stats; | 
|  | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); | 
|  | network_stat_files.ProcessReference(network_stats); | 
|  |  | 
|  | // Process RTCPstat. | 
|  | RtcpStatistics rtcp_stats; | 
|  | neteq_->GetRtcpStatistics(&rtcp_stats); | 
|  | rtcp_stat_files.ProcessReference(rtcp_stats); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::PopulateRtpInfo(int frame_index, | 
|  | int timestamp, | 
|  | WebRtcRTPHeader* rtp_info) { | 
|  | rtp_info->header.sequenceNumber = frame_index; | 
|  | rtp_info->header.timestamp = timestamp; | 
|  | rtp_info->header.ssrc = 0x1234;  // Just an arbitrary SSRC. | 
|  | rtp_info->header.payloadType = 94;  // PCM16b WB codec. | 
|  | rtp_info->header.markerBit = 0; | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::PopulateCng(int frame_index, | 
|  | int timestamp, | 
|  | WebRtcRTPHeader* rtp_info, | 
|  | uint8_t* payload, | 
|  | int* payload_len) { | 
|  | rtp_info->header.sequenceNumber = frame_index; | 
|  | rtp_info->header.timestamp = timestamp; | 
|  | rtp_info->header.ssrc = 0x1234;  // Just an arbitrary SSRC. | 
|  | rtp_info->header.payloadType = 98;  // WB CNG. | 
|  | rtp_info->header.markerBit = 0; | 
|  | payload[0] = 64;  // Noise level -64 dBov, quite arbitrarily chosen. | 
|  | *payload_len = 1;  // Only noise level, no spectral parameters. | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::CheckBgnOff(int sampling_rate_hz, | 
|  | NetEqBackgroundNoiseMode bgn_mode) { | 
|  | int expected_samples_per_channel = 0; | 
|  | uint8_t payload_type = 0xFF;  // Invalid. | 
|  | if (sampling_rate_hz == 8000) { | 
|  | expected_samples_per_channel = kBlockSize8kHz; | 
|  | payload_type = 93;  // PCM 16, 8 kHz. | 
|  | } else if (sampling_rate_hz == 16000) { | 
|  | expected_samples_per_channel = kBlockSize16kHz; | 
|  | payload_type = 94;  // PCM 16, 16 kHZ. | 
|  | } else if (sampling_rate_hz == 32000) { | 
|  | expected_samples_per_channel = kBlockSize32kHz; | 
|  | payload_type = 95;  // PCM 16, 32 kHz. | 
|  | } else { | 
|  | ASSERT_TRUE(false);  // Unsupported test case. | 
|  | } | 
|  |  | 
|  | NetEqOutputType type; | 
|  | int16_t output[kBlockSize32kHz];  // Maximum size is chosen. | 
|  | int16_t input[kBlockSize32kHz];  // Maximum size is chosen. | 
|  |  | 
|  | // Payload of 10 ms of PCM16 32 kHz. | 
|  | uint8_t payload[kBlockSize32kHz * sizeof(int16_t)]; | 
|  |  | 
|  | // Random payload. | 
|  | for (int n = 0; n < expected_samples_per_channel; ++n) { | 
|  | input[n] = (rand() & ((1 << 10) - 1)) - ((1 << 5) - 1); | 
|  | } | 
|  | int enc_len_bytes = WebRtcPcm16b_EncodeW16( | 
|  | input, expected_samples_per_channel, reinterpret_cast<int16_t*>(payload)); | 
|  | ASSERT_EQ(enc_len_bytes, expected_samples_per_channel * 2); | 
|  |  | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(0, 0, &rtp_info); | 
|  | rtp_info.header.payloadType = payload_type; | 
|  |  | 
|  | int number_channels = 0; | 
|  | int samples_per_channel = 0; | 
|  |  | 
|  | uint32_t receive_timestamp = 0; | 
|  | for (int n = 0; n < 10; ++n) {  // Insert few packets and get audio. | 
|  | number_channels = 0; | 
|  | samples_per_channel = 0; | 
|  | ASSERT_EQ(0, neteq_->InsertPacket( | 
|  | rtp_info, payload, enc_len_bytes, receive_timestamp)); | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize32kHz, output, &samples_per_channel, | 
|  | &number_channels, &type)); | 
|  | ASSERT_EQ(1, number_channels); | 
|  | ASSERT_EQ(expected_samples_per_channel, samples_per_channel); | 
|  | ASSERT_EQ(kOutputNormal, type); | 
|  |  | 
|  | // Next packet. | 
|  | rtp_info.header.timestamp += expected_samples_per_channel; | 
|  | rtp_info.header.sequenceNumber++; | 
|  | receive_timestamp += expected_samples_per_channel; | 
|  | } | 
|  |  | 
|  | number_channels = 0; | 
|  | samples_per_channel = 0; | 
|  |  | 
|  | // Get audio without inserting packets, expecting PLC and PLC-to-CNG. Pull one | 
|  | // frame without checking speech-type. This is the first frame pulled without | 
|  | // inserting any packet, and might not be labeled as PCL. | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize32kHz, output, &samples_per_channel, | 
|  | &number_channels, &type)); | 
|  | ASSERT_EQ(1, number_channels); | 
|  | ASSERT_EQ(expected_samples_per_channel, samples_per_channel); | 
|  |  | 
|  | // To be able to test the fading of background noise we need at lease to pull | 
|  | // 610 frames. | 
|  | const int kFadingThreshold = 610; | 
|  |  | 
|  | // Test several CNG-to-PLC packet for the expected behavior. The number 20 is | 
|  | // arbitrary, but sufficiently large to test enough number of frames. | 
|  | const int kNumPlcToCngTestFrames = 20; | 
|  | bool plc_to_cng = false; | 
|  | for (int n = 0; n < kFadingThreshold + kNumPlcToCngTestFrames; ++n) { | 
|  | number_channels = 0; | 
|  | samples_per_channel = 0; | 
|  | memset(output, 1, sizeof(output));  // Set to non-zero. | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize32kHz, output, &samples_per_channel, | 
|  | &number_channels, &type)); | 
|  | ASSERT_EQ(1, number_channels); | 
|  | ASSERT_EQ(expected_samples_per_channel, samples_per_channel); | 
|  | if (type == kOutputPLCtoCNG) { | 
|  | plc_to_cng = true; | 
|  | double sum_squared = 0; | 
|  | for (int k = 0; k < number_channels * samples_per_channel; ++k) | 
|  | sum_squared += output[k] * output[k]; | 
|  | if (bgn_mode == kBgnOn) { | 
|  | EXPECT_NE(0, sum_squared); | 
|  | } else if (bgn_mode == kBgnOff || n > kFadingThreshold) { | 
|  | EXPECT_EQ(0, sum_squared); | 
|  | } | 
|  | } else { | 
|  | EXPECT_EQ(kOutputPLC, type); | 
|  | } | 
|  | } | 
|  | EXPECT_TRUE(plc_to_cng);  // Just to be sure that PLC-to-CNG has occurred. | 
|  | } | 
|  |  | 
|  | #if defined(_WIN32) && defined(WEBRTC_ARCH_64_BITS) | 
|  | // Disabled for Windows 64-bit until webrtc:1458 is fixed. | 
|  | #define MAYBE_TestBitExactness DISABLED_TestBitExactness | 
|  | #else | 
|  | #define MAYBE_TestBitExactness TestBitExactness | 
|  | #endif | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(MAYBE_TestBitExactness)) { | 
|  | const std::string input_rtp_file = webrtc::test::ProjectRootPath() + | 
|  | "resources/audio_coding/neteq_universal_new.rtp"; | 
|  | #if defined(_MSC_VER) && (_MSC_VER >= 1700) | 
|  | // For Visual Studio 2012 and later, we will have to use the generic reference | 
|  | // file, rather than the windows-specific one. | 
|  | const std::string input_ref_file = webrtc::test::ProjectRootPath() + | 
|  | "resources/audio_coding/neteq4_universal_ref.pcm"; | 
|  | #else | 
|  | const std::string input_ref_file = | 
|  | webrtc::test::ResourcePath("audio_coding/neteq4_universal_ref", "pcm"); | 
|  | #endif | 
|  |  | 
|  | if (FLAGS_gen_ref) { | 
|  | DecodeAndCompare(input_rtp_file, ""); | 
|  | } else { | 
|  | DecodeAndCompare(input_rtp_file, input_ref_file); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(TestNetworkStatistics)) { | 
|  | const std::string input_rtp_file = webrtc::test::ProjectRootPath() + | 
|  | "resources/audio_coding/neteq_universal_new.rtp"; | 
|  | #if defined(_MSC_VER) && (_MSC_VER >= 1700) | 
|  | // For Visual Studio 2012 and later, we will have to use the generic reference | 
|  | // file, rather than the windows-specific one. | 
|  | const std::string network_stat_ref_file = webrtc::test::ProjectRootPath() + | 
|  | "resources/audio_coding/neteq4_network_stats.dat"; | 
|  | #else | 
|  | const std::string network_stat_ref_file = | 
|  | webrtc::test::ResourcePath("audio_coding/neteq4_network_stats", "dat"); | 
|  | #endif | 
|  | const std::string rtcp_stat_ref_file = | 
|  | webrtc::test::ResourcePath("audio_coding/neteq4_rtcp_stats", "dat"); | 
|  | if (FLAGS_gen_ref) { | 
|  | DecodeAndCheckStats(input_rtp_file, "", ""); | 
|  | } else { | 
|  | DecodeAndCheckStats(input_rtp_file, network_stat_ref_file, | 
|  | rtcp_stat_ref_file); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO(hlundin): Re-enable test once the statistics interface is up and again. | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(TestFrameWaitingTimeStatistics)) { | 
|  | // Use fax mode to avoid time-scaling. This is to simplify the testing of | 
|  | // packet waiting times in the packet buffer. | 
|  | neteq_->SetPlayoutMode(kPlayoutFax); | 
|  | ASSERT_EQ(kPlayoutFax, neteq_->PlayoutMode()); | 
|  | // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio. | 
|  | size_t num_frames = 30; | 
|  | const int kSamples = 10 * 16; | 
|  | const int kPayloadBytes = kSamples * 2; | 
|  | for (size_t i = 0; i < num_frames; ++i) { | 
|  | uint16_t payload[kSamples] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | rtp_info.header.sequenceNumber = i; | 
|  | rtp_info.header.timestamp = i * kSamples; | 
|  | rtp_info.header.ssrc = 0x1234;  // Just an arbitrary SSRC. | 
|  | rtp_info.header.payloadType = 94;  // PCM16b WB codec. | 
|  | rtp_info.header.markerBit = 0; | 
|  | ASSERT_EQ(0, neteq_->InsertPacket( | 
|  | rtp_info, | 
|  | reinterpret_cast<uint8_t*>(payload), | 
|  | kPayloadBytes, 0)); | 
|  | } | 
|  | // Pull out all data. | 
|  | for (size_t i = 0; i < num_frames; ++i) { | 
|  | int out_len; | 
|  | int num_channels; | 
|  | NetEqOutputType type; | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | } | 
|  |  | 
|  | std::vector<int> waiting_times; | 
|  | neteq_->WaitingTimes(&waiting_times); | 
|  | EXPECT_EQ(num_frames, waiting_times.size()); | 
|  | // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms | 
|  | // spacing (per definition), we expect the delay to increase with 10 ms for | 
|  | // each packet. | 
|  | for (size_t i = 0; i < waiting_times.size(); ++i) { | 
|  | EXPECT_EQ(static_cast<int>(i + 1) * 10, waiting_times[i]); | 
|  | } | 
|  |  | 
|  | // Check statistics again and make sure it's been reset. | 
|  | neteq_->WaitingTimes(&waiting_times); | 
|  | int len = waiting_times.size(); | 
|  | EXPECT_EQ(0, len); | 
|  |  | 
|  | // Process > 100 frames, and make sure that that we get statistics | 
|  | // only for 100 frames. Note the new SSRC, causing NetEQ to reset. | 
|  | num_frames = 110; | 
|  | for (size_t i = 0; i < num_frames; ++i) { | 
|  | uint16_t payload[kSamples] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | rtp_info.header.sequenceNumber = i; | 
|  | rtp_info.header.timestamp = i * kSamples; | 
|  | rtp_info.header.ssrc = 0x1235;  // Just an arbitrary SSRC. | 
|  | rtp_info.header.payloadType = 94;  // PCM16b WB codec. | 
|  | rtp_info.header.markerBit = 0; | 
|  | ASSERT_EQ(0, neteq_->InsertPacket( | 
|  | rtp_info, | 
|  | reinterpret_cast<uint8_t*>(payload), | 
|  | kPayloadBytes, 0)); | 
|  | int out_len; | 
|  | int num_channels; | 
|  | NetEqOutputType type; | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | } | 
|  |  | 
|  | neteq_->WaitingTimes(&waiting_times); | 
|  | EXPECT_EQ(100u, waiting_times.size()); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, | 
|  | DISABLED_ON_ANDROID(TestAverageInterArrivalTimeNegative)) { | 
|  | const int kNumFrames = 3000;  // Needed for convergence. | 
|  | int frame_index = 0; | 
|  | const int kSamples = 10 * 16; | 
|  | const int kPayloadBytes = kSamples * 2; | 
|  | while (frame_index < kNumFrames) { | 
|  | // Insert one packet each time, except every 10th time where we insert two | 
|  | // packets at once. This will create a negative clock-drift of approx. 10%. | 
|  | int num_packets = (frame_index % 10 == 0 ? 2 : 1); | 
|  | for (int n = 0; n < num_packets; ++n) { | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | ++frame_index; | 
|  | } | 
|  |  | 
|  | // Pull out data once. | 
|  | int out_len; | 
|  | int num_channels; | 
|  | NetEqOutputType type; | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | } | 
|  |  | 
|  | NetEqNetworkStatistics network_stats; | 
|  | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); | 
|  | EXPECT_EQ(-103196, network_stats.clockdrift_ppm); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, | 
|  | DISABLED_ON_ANDROID(TestAverageInterArrivalTimePositive)) { | 
|  | const int kNumFrames = 5000;  // Needed for convergence. | 
|  | int frame_index = 0; | 
|  | const int kSamples = 10 * 16; | 
|  | const int kPayloadBytes = kSamples * 2; | 
|  | for (int i = 0; i < kNumFrames; ++i) { | 
|  | // Insert one packet each time, except every 10th time where we don't insert | 
|  | // any packet. This will create a positive clock-drift of approx. 11%. | 
|  | int num_packets = (i % 10 == 9 ? 0 : 1); | 
|  | for (int n = 0; n < num_packets; ++n) { | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | ++frame_index; | 
|  | } | 
|  |  | 
|  | // Pull out data once. | 
|  | int out_len; | 
|  | int num_channels; | 
|  | NetEqOutputType type; | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | } | 
|  |  | 
|  | NetEqNetworkStatistics network_stats; | 
|  | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); | 
|  | EXPECT_EQ(110946, network_stats.clockdrift_ppm); | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::LongCngWithClockDrift(double drift_factor, | 
|  | double network_freeze_ms, | 
|  | bool pull_audio_during_freeze, | 
|  | int delay_tolerance_ms, | 
|  | int max_time_to_speech_ms) { | 
|  | uint16_t seq_no = 0; | 
|  | uint32_t timestamp = 0; | 
|  | const int kFrameSizeMs = 30; | 
|  | const int kSamples = kFrameSizeMs * 16; | 
|  | const int kPayloadBytes = kSamples * 2; | 
|  | double next_input_time_ms = 0.0; | 
|  | double t_ms; | 
|  | int out_len; | 
|  | int num_channels; | 
|  | NetEqOutputType type; | 
|  |  | 
|  | // Insert speech for 5 seconds. | 
|  | const int kSpeechDurationMs = 5000; | 
|  | for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { | 
|  | // Each turn in this for loop is 10 ms. | 
|  | while (next_input_time_ms <= t_ms) { | 
|  | // Insert one 30 ms speech frame. | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(seq_no, timestamp, &rtp_info); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | ++seq_no; | 
|  | timestamp += kSamples; | 
|  | next_input_time_ms += static_cast<double>(kFrameSizeMs) * drift_factor; | 
|  | } | 
|  | // Pull out data once. | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(kOutputNormal, type); | 
|  | int32_t delay_before = timestamp - neteq_->PlayoutTimestamp(); | 
|  |  | 
|  | // Insert CNG for 1 minute (= 60000 ms). | 
|  | const int kCngPeriodMs = 100; | 
|  | const int kCngPeriodSamples = kCngPeriodMs * 16;  // Period in 16 kHz samples. | 
|  | const int kCngDurationMs = 60000; | 
|  | for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { | 
|  | // Each turn in this for loop is 10 ms. | 
|  | while (next_input_time_ms <= t_ms) { | 
|  | // Insert one CNG frame each 100 ms. | 
|  | uint8_t payload[kPayloadBytes]; | 
|  | int payload_len; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); | 
|  | ++seq_no; | 
|  | timestamp += kCngPeriodSamples; | 
|  | next_input_time_ms += static_cast<double>(kCngPeriodMs) * drift_factor; | 
|  | } | 
|  | // Pull out data once. | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(kOutputCNG, type); | 
|  |  | 
|  | if (network_freeze_ms > 0) { | 
|  | // First keep pulling audio for |network_freeze_ms| without inserting | 
|  | // any data, then insert CNG data corresponding to |network_freeze_ms| | 
|  | // without pulling any output audio. | 
|  | const double loop_end_time = t_ms + network_freeze_ms; | 
|  | for (; t_ms < loop_end_time; t_ms += 10) { | 
|  | // Pull out data once. | 
|  | ASSERT_EQ(0, | 
|  | neteq_->GetAudio( | 
|  | kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | EXPECT_EQ(kOutputCNG, type); | 
|  | } | 
|  | bool pull_once = pull_audio_during_freeze; | 
|  | // If |pull_once| is true, GetAudio will be called once half-way through | 
|  | // the network recovery period. | 
|  | double pull_time_ms = (t_ms + next_input_time_ms) / 2; | 
|  | while (next_input_time_ms <= t_ms) { | 
|  | if (pull_once && next_input_time_ms >= pull_time_ms) { | 
|  | pull_once = false; | 
|  | // Pull out data once. | 
|  | ASSERT_EQ( | 
|  | 0, | 
|  | neteq_->GetAudio( | 
|  | kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | EXPECT_EQ(kOutputCNG, type); | 
|  | t_ms += 10; | 
|  | } | 
|  | // Insert one CNG frame each 100 ms. | 
|  | uint8_t payload[kPayloadBytes]; | 
|  | int payload_len; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); | 
|  | ++seq_no; | 
|  | timestamp += kCngPeriodSamples; | 
|  | next_input_time_ms += kCngPeriodMs * drift_factor; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert speech again until output type is speech. | 
|  | double speech_restart_time_ms = t_ms; | 
|  | while (type != kOutputNormal) { | 
|  | // Each turn in this for loop is 10 ms. | 
|  | while (next_input_time_ms <= t_ms) { | 
|  | // Insert one 30 ms speech frame. | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(seq_no, timestamp, &rtp_info); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | ++seq_no; | 
|  | timestamp += kSamples; | 
|  | next_input_time_ms += kFrameSizeMs * drift_factor; | 
|  | } | 
|  | // Pull out data once. | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, | 
|  | &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | // Increase clock. | 
|  | t_ms += 10; | 
|  | } | 
|  |  | 
|  | // Check that the speech starts again within reasonable time. | 
|  | double time_until_speech_returns_ms = t_ms - speech_restart_time_ms; | 
|  | EXPECT_LT(time_until_speech_returns_ms, max_time_to_speech_ms); | 
|  | int32_t delay_after = timestamp - neteq_->PlayoutTimestamp(); | 
|  | // Compare delay before and after, and make sure it differs less than 20 ms. | 
|  | EXPECT_LE(delay_after, delay_before + delay_tolerance_ms * 16); | 
|  | EXPECT_GE(delay_after, delay_before - delay_tolerance_ms * 16); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(LongCngWithNegativeClockDrift)) { | 
|  | // Apply a clock drift of -25 ms / s (sender faster than receiver). | 
|  | const double kDriftFactor = 1000.0 / (1000.0 + 25.0); | 
|  | const double kNetworkFreezeTimeMs = 0.0; | 
|  | const bool kGetAudioDuringFreezeRecovery = false; | 
|  | const int kDelayToleranceMs = 20; | 
|  | const int kMaxTimeToSpeechMs = 100; | 
|  | LongCngWithClockDrift(kDriftFactor, | 
|  | kNetworkFreezeTimeMs, | 
|  | kGetAudioDuringFreezeRecovery, | 
|  | kDelayToleranceMs, | 
|  | kMaxTimeToSpeechMs); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(LongCngWithPositiveClockDrift)) { | 
|  | // Apply a clock drift of +25 ms / s (sender slower than receiver). | 
|  | const double kDriftFactor = 1000.0 / (1000.0 - 25.0); | 
|  | const double kNetworkFreezeTimeMs = 0.0; | 
|  | const bool kGetAudioDuringFreezeRecovery = false; | 
|  | const int kDelayToleranceMs = 20; | 
|  | const int kMaxTimeToSpeechMs = 100; | 
|  | LongCngWithClockDrift(kDriftFactor, | 
|  | kNetworkFreezeTimeMs, | 
|  | kGetAudioDuringFreezeRecovery, | 
|  | kDelayToleranceMs, | 
|  | kMaxTimeToSpeechMs); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, | 
|  | DISABLED_ON_ANDROID(LongCngWithNegativeClockDriftNetworkFreeze)) { | 
|  | // Apply a clock drift of -25 ms / s (sender faster than receiver). | 
|  | const double kDriftFactor = 1000.0 / (1000.0 + 25.0); | 
|  | const double kNetworkFreezeTimeMs = 5000.0; | 
|  | const bool kGetAudioDuringFreezeRecovery = false; | 
|  | const int kDelayToleranceMs = 50; | 
|  | const int kMaxTimeToSpeechMs = 200; | 
|  | LongCngWithClockDrift(kDriftFactor, | 
|  | kNetworkFreezeTimeMs, | 
|  | kGetAudioDuringFreezeRecovery, | 
|  | kDelayToleranceMs, | 
|  | kMaxTimeToSpeechMs); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, | 
|  | DISABLED_ON_ANDROID(LongCngWithPositiveClockDriftNetworkFreeze)) { | 
|  | // Apply a clock drift of +25 ms / s (sender slower than receiver). | 
|  | const double kDriftFactor = 1000.0 / (1000.0 - 25.0); | 
|  | const double kNetworkFreezeTimeMs = 5000.0; | 
|  | const bool kGetAudioDuringFreezeRecovery = false; | 
|  | const int kDelayToleranceMs = 20; | 
|  | const int kMaxTimeToSpeechMs = 100; | 
|  | LongCngWithClockDrift(kDriftFactor, | 
|  | kNetworkFreezeTimeMs, | 
|  | kGetAudioDuringFreezeRecovery, | 
|  | kDelayToleranceMs, | 
|  | kMaxTimeToSpeechMs); | 
|  | } | 
|  |  | 
|  | TEST_F( | 
|  | NetEqDecodingTest, | 
|  | DISABLED_ON_ANDROID(LongCngWithPositiveClockDriftNetworkFreezeExtraPull)) { | 
|  | // Apply a clock drift of +25 ms / s (sender slower than receiver). | 
|  | const double kDriftFactor = 1000.0 / (1000.0 - 25.0); | 
|  | const double kNetworkFreezeTimeMs = 5000.0; | 
|  | const bool kGetAudioDuringFreezeRecovery = true; | 
|  | const int kDelayToleranceMs = 20; | 
|  | const int kMaxTimeToSpeechMs = 100; | 
|  | LongCngWithClockDrift(kDriftFactor, | 
|  | kNetworkFreezeTimeMs, | 
|  | kGetAudioDuringFreezeRecovery, | 
|  | kDelayToleranceMs, | 
|  | kMaxTimeToSpeechMs); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(LongCngWithoutClockDrift)) { | 
|  | const double kDriftFactor = 1.0;  // No drift. | 
|  | const double kNetworkFreezeTimeMs = 0.0; | 
|  | const bool kGetAudioDuringFreezeRecovery = false; | 
|  | const int kDelayToleranceMs = 10; | 
|  | const int kMaxTimeToSpeechMs = 50; | 
|  | LongCngWithClockDrift(kDriftFactor, | 
|  | kNetworkFreezeTimeMs, | 
|  | kGetAudioDuringFreezeRecovery, | 
|  | kDelayToleranceMs, | 
|  | kMaxTimeToSpeechMs); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(UnknownPayloadType)) { | 
|  | const int kPayloadBytes = 100; | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(0, 0, &rtp_info); | 
|  | rtp_info.header.payloadType = 1;  // Not registered as a decoder. | 
|  | EXPECT_EQ(NetEq::kFail, | 
|  | neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | EXPECT_EQ(NetEq::kUnknownRtpPayloadType, neteq_->LastError()); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(OversizePacket)) { | 
|  | // Payload size is greater than packet buffer size | 
|  | const int kPayloadBytes = NetEq::kMaxBytesInBuffer + 1; | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(0, 0, &rtp_info); | 
|  | rtp_info.header.payloadType = 103;  // iSAC, no packet splitting. | 
|  | EXPECT_EQ(NetEq::kFail, | 
|  | neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | EXPECT_EQ(NetEq::kOversizePacket, neteq_->LastError()); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(DecoderError)) { | 
|  | const int kPayloadBytes = 100; | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(0, 0, &rtp_info); | 
|  | rtp_info.header.payloadType = 103;  // iSAC, but the payload is invalid. | 
|  | EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | NetEqOutputType type; | 
|  | // Set all of |out_data_| to 1, and verify that it was set to 0 by the call | 
|  | // to GetAudio. | 
|  | for (int i = 0; i < kMaxBlockSize; ++i) { | 
|  | out_data_[i] = 1; | 
|  | } | 
|  | int num_channels; | 
|  | int samples_per_channel; | 
|  | EXPECT_EQ(NetEq::kFail, | 
|  | neteq_->GetAudio(kMaxBlockSize, out_data_, | 
|  | &samples_per_channel, &num_channels, &type)); | 
|  | // Verify that there is a decoder error to check. | 
|  | EXPECT_EQ(NetEq::kDecoderErrorCode, neteq_->LastError()); | 
|  | // Code 6730 is an iSAC error code. | 
|  | EXPECT_EQ(6730, neteq_->LastDecoderError()); | 
|  | // Verify that the first 160 samples are set to 0, and that the remaining | 
|  | // samples are left unmodified. | 
|  | static const int kExpectedOutputLength = 160;  // 10 ms at 16 kHz sample rate. | 
|  | for (int i = 0; i < kExpectedOutputLength; ++i) { | 
|  | std::ostringstream ss; | 
|  | ss << "i = " << i; | 
|  | SCOPED_TRACE(ss.str());  // Print out the parameter values on failure. | 
|  | EXPECT_EQ(0, out_data_[i]); | 
|  | } | 
|  | for (int i = kExpectedOutputLength; i < kMaxBlockSize; ++i) { | 
|  | std::ostringstream ss; | 
|  | ss << "i = " << i; | 
|  | SCOPED_TRACE(ss.str());  // Print out the parameter values on failure. | 
|  | EXPECT_EQ(1, out_data_[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(GetAudioBeforeInsertPacket)) { | 
|  | NetEqOutputType type; | 
|  | // Set all of |out_data_| to 1, and verify that it was set to 0 by the call | 
|  | // to GetAudio. | 
|  | for (int i = 0; i < kMaxBlockSize; ++i) { | 
|  | out_data_[i] = 1; | 
|  | } | 
|  | int num_channels; | 
|  | int samples_per_channel; | 
|  | EXPECT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, | 
|  | &samples_per_channel, | 
|  | &num_channels, &type)); | 
|  | // Verify that the first block of samples is set to 0. | 
|  | static const int kExpectedOutputLength = | 
|  | kInitSampleRateHz / 100;  // 10 ms at initial sample rate. | 
|  | for (int i = 0; i < kExpectedOutputLength; ++i) { | 
|  | std::ostringstream ss; | 
|  | ss << "i = " << i; | 
|  | SCOPED_TRACE(ss.str());  // Print out the parameter values on failure. | 
|  | EXPECT_EQ(0, out_data_[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(BackgroundNoise)) { | 
|  | neteq_->SetBackgroundNoiseMode(kBgnOn); | 
|  | CheckBgnOff(8000, kBgnOn); | 
|  | CheckBgnOff(16000, kBgnOn); | 
|  | CheckBgnOff(32000, kBgnOn); | 
|  | EXPECT_EQ(kBgnOn, neteq_->BackgroundNoiseMode()); | 
|  |  | 
|  | neteq_->SetBackgroundNoiseMode(kBgnOff); | 
|  | CheckBgnOff(8000, kBgnOff); | 
|  | CheckBgnOff(16000, kBgnOff); | 
|  | CheckBgnOff(32000, kBgnOff); | 
|  | EXPECT_EQ(kBgnOff, neteq_->BackgroundNoiseMode()); | 
|  |  | 
|  | neteq_->SetBackgroundNoiseMode(kBgnFade); | 
|  | CheckBgnOff(8000, kBgnFade); | 
|  | CheckBgnOff(16000, kBgnFade); | 
|  | CheckBgnOff(32000, kBgnFade); | 
|  | EXPECT_EQ(kBgnFade, neteq_->BackgroundNoiseMode()); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(SyncPacketInsert)) { | 
|  | WebRtcRTPHeader rtp_info; | 
|  | uint32_t receive_timestamp = 0; | 
|  | // For the readability use the following payloads instead of the defaults of | 
|  | // this test. | 
|  | uint8_t kPcm16WbPayloadType = 1; | 
|  | uint8_t kCngNbPayloadType = 2; | 
|  | uint8_t kCngWbPayloadType = 3; | 
|  | uint8_t kCngSwb32PayloadType = 4; | 
|  | uint8_t kCngSwb48PayloadType = 5; | 
|  | uint8_t kAvtPayloadType = 6; | 
|  | uint8_t kRedPayloadType = 7; | 
|  | uint8_t kIsacPayloadType = 9;  // Payload type 8 is already registered. | 
|  |  | 
|  | // Register decoders. | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, | 
|  | kPcm16WbPayloadType)); | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, kCngNbPayloadType)); | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, kCngWbPayloadType)); | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb32kHz, | 
|  | kCngSwb32PayloadType)); | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb48kHz, | 
|  | kCngSwb48PayloadType)); | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderAVT, kAvtPayloadType)); | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderRED, kRedPayloadType)); | 
|  | ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, kIsacPayloadType)); | 
|  |  | 
|  | PopulateRtpInfo(0, 0, &rtp_info); | 
|  | rtp_info.header.payloadType = kPcm16WbPayloadType; | 
|  |  | 
|  | // The first packet injected cannot be sync-packet. | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | // Payload length of 10 ms PCM16 16 kHz. | 
|  | const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | ASSERT_EQ(0, neteq_->InsertPacket( | 
|  | rtp_info, payload, kPayloadBytes, receive_timestamp)); | 
|  |  | 
|  | // Next packet. Last packet contained 10 ms audio. | 
|  | rtp_info.header.sequenceNumber++; | 
|  | rtp_info.header.timestamp += kBlockSize16kHz; | 
|  | receive_timestamp += kBlockSize16kHz; | 
|  |  | 
|  | // Unacceptable payload types CNG, AVT (DTMF), RED. | 
|  | rtp_info.header.payloadType = kCngNbPayloadType; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | rtp_info.header.payloadType = kCngWbPayloadType; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | rtp_info.header.payloadType = kCngSwb32PayloadType; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | rtp_info.header.payloadType = kCngSwb48PayloadType; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | rtp_info.header.payloadType = kAvtPayloadType; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | rtp_info.header.payloadType = kRedPayloadType; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | // Change of codec cannot be initiated with a sync packet. | 
|  | rtp_info.header.payloadType = kIsacPayloadType; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | // Change of SSRC is not allowed with a sync packet. | 
|  | rtp_info.header.payloadType = kPcm16WbPayloadType; | 
|  | ++rtp_info.header.ssrc; | 
|  | EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  |  | 
|  | --rtp_info.header.ssrc; | 
|  | EXPECT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  | } | 
|  |  | 
|  | // First insert several noise like packets, then sync-packets. Decoding all | 
|  | // packets should not produce error, statistics should not show any packet loss | 
|  | // and sync-packets should decode to zero. | 
|  | TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(SyncPacketDecode)) { | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(0, 0, &rtp_info); | 
|  | const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); | 
|  | uint8_t payload[kPayloadBytes]; | 
|  | int16_t decoded[kBlockSize16kHz]; | 
|  | for (int n = 0; n < kPayloadBytes; ++n) { | 
|  | payload[n] = (rand() & 0xF0) + 1;  // Non-zero random sequence. | 
|  | } | 
|  | // Insert some packets which decode to noise. We are not interested in | 
|  | // actual decoded values. | 
|  | NetEqOutputType output_type; | 
|  | int num_channels; | 
|  | int samples_per_channel; | 
|  | uint32_t receive_timestamp = 0; | 
|  | int delay_samples = 0; | 
|  | for (int n = 0; n < 100; ++n) { | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, | 
|  | receive_timestamp)); | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, | 
|  | &samples_per_channel, &num_channels, | 
|  | &output_type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, samples_per_channel); | 
|  | ASSERT_EQ(1, num_channels); | 
|  |  | 
|  | // Even if there is RTP packet in NetEq's buffer, the first frame pulled | 
|  | // from NetEq starts with few zero samples. Here we measure this delay. | 
|  | if (n == 0) { | 
|  | while (decoded[delay_samples] == 0) delay_samples++; | 
|  | } | 
|  | rtp_info.header.sequenceNumber++; | 
|  | rtp_info.header.timestamp += kBlockSize16kHz; | 
|  | receive_timestamp += kBlockSize16kHz; | 
|  | } | 
|  | const int kNumSyncPackets = 10; | 
|  | // Insert sync-packets, the decoded sequence should be all-zero. | 
|  | for (int n = 0; n < kNumSyncPackets; ++n) { | 
|  | ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, | 
|  | &samples_per_channel, &num_channels, | 
|  | &output_type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, samples_per_channel); | 
|  | ASSERT_EQ(1, num_channels); | 
|  | EXPECT_TRUE(IsAllZero(&decoded[delay_samples], | 
|  | samples_per_channel * num_channels - delay_samples)); | 
|  | delay_samples = 0;  // Delay only matters in the first frame. | 
|  | rtp_info.header.sequenceNumber++; | 
|  | rtp_info.header.timestamp += kBlockSize16kHz; | 
|  | receive_timestamp += kBlockSize16kHz; | 
|  | } | 
|  | // We insert a regular packet, if sync packet are not correctly buffered then | 
|  | // network statistics would show some packet loss. | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, | 
|  | receive_timestamp)); | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, | 
|  | &samples_per_channel, &num_channels, | 
|  | &output_type)); | 
|  | // Make sure the last inserted packet is decoded and there are non-zero | 
|  | // samples. | 
|  | EXPECT_FALSE(IsAllZero(decoded, samples_per_channel * num_channels)); | 
|  | NetEqNetworkStatistics network_stats; | 
|  | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); | 
|  | // Expecting a "clean" network. | 
|  | EXPECT_EQ(0, network_stats.packet_loss_rate); | 
|  | EXPECT_EQ(0, network_stats.expand_rate); | 
|  | EXPECT_EQ(0, network_stats.accelerate_rate); | 
|  | EXPECT_EQ(0, network_stats.preemptive_rate); | 
|  | } | 
|  |  | 
|  | // Test if the size of the packet buffer reported correctly when containing | 
|  | // sync packets. Also, test if network packets override sync packets. That is to | 
|  | // prefer decoding a network packet to a sync packet, if both have same sequence | 
|  | // number and timestamp. | 
|  | TEST_F(NetEqDecodingTest, | 
|  | DISABLED_ON_ANDROID(SyncPacketBufferSizeAndOverridenByNetworkPackets)) { | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(0, 0, &rtp_info); | 
|  | const int kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); | 
|  | uint8_t payload[kPayloadBytes]; | 
|  | int16_t decoded[kBlockSize16kHz]; | 
|  | for (int n = 0; n < kPayloadBytes; ++n) { | 
|  | payload[n] = (rand() & 0xF0) + 1;  // Non-zero random sequence. | 
|  | } | 
|  | // Insert some packets which decode to noise. We are not interested in | 
|  | // actual decoded values. | 
|  | NetEqOutputType output_type; | 
|  | int num_channels; | 
|  | int samples_per_channel; | 
|  | uint32_t receive_timestamp = 0; | 
|  | for (int n = 0; n < 1; ++n) { | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, | 
|  | receive_timestamp)); | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, | 
|  | &samples_per_channel, &num_channels, | 
|  | &output_type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, samples_per_channel); | 
|  | ASSERT_EQ(1, num_channels); | 
|  | rtp_info.header.sequenceNumber++; | 
|  | rtp_info.header.timestamp += kBlockSize16kHz; | 
|  | receive_timestamp += kBlockSize16kHz; | 
|  | } | 
|  | const int kNumSyncPackets = 10; | 
|  |  | 
|  | WebRtcRTPHeader first_sync_packet_rtp_info; | 
|  | memcpy(&first_sync_packet_rtp_info, &rtp_info, sizeof(rtp_info)); | 
|  |  | 
|  | // Insert sync-packets, but no decoding. | 
|  | for (int n = 0; n < kNumSyncPackets; ++n) { | 
|  | ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); | 
|  | rtp_info.header.sequenceNumber++; | 
|  | rtp_info.header.timestamp += kBlockSize16kHz; | 
|  | receive_timestamp += kBlockSize16kHz; | 
|  | } | 
|  | NetEqNetworkStatistics network_stats; | 
|  | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); | 
|  | EXPECT_EQ(kNumSyncPackets * 10, network_stats.current_buffer_size_ms); | 
|  |  | 
|  | // Rewind |rtp_info| to that of the first sync packet. | 
|  | memcpy(&rtp_info, &first_sync_packet_rtp_info, sizeof(rtp_info)); | 
|  |  | 
|  | // Insert. | 
|  | for (int n = 0; n < kNumSyncPackets; ++n) { | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, | 
|  | receive_timestamp)); | 
|  | rtp_info.header.sequenceNumber++; | 
|  | rtp_info.header.timestamp += kBlockSize16kHz; | 
|  | receive_timestamp += kBlockSize16kHz; | 
|  | } | 
|  |  | 
|  | // Decode. | 
|  | for (int n = 0; n < kNumSyncPackets; ++n) { | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, | 
|  | &samples_per_channel, &num_channels, | 
|  | &output_type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, samples_per_channel); | 
|  | ASSERT_EQ(1, num_channels); | 
|  | EXPECT_TRUE(IsAllNonZero(decoded, samples_per_channel * num_channels)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::WrapTest(uint16_t start_seq_no, | 
|  | uint32_t start_timestamp, | 
|  | const std::set<uint16_t>& drop_seq_numbers, | 
|  | bool expect_seq_no_wrap, | 
|  | bool expect_timestamp_wrap) { | 
|  | uint16_t seq_no = start_seq_no; | 
|  | uint32_t timestamp = start_timestamp; | 
|  | const int kBlocksPerFrame = 3;  // Number of 10 ms blocks per frame. | 
|  | const int kFrameSizeMs = kBlocksPerFrame * kTimeStepMs; | 
|  | const int kSamples = kBlockSize16kHz * kBlocksPerFrame; | 
|  | const int kPayloadBytes = kSamples * sizeof(int16_t); | 
|  | double next_input_time_ms = 0.0; | 
|  | int16_t decoded[kBlockSize16kHz]; | 
|  | int num_channels; | 
|  | int samples_per_channel; | 
|  | NetEqOutputType output_type; | 
|  | uint32_t receive_timestamp = 0; | 
|  |  | 
|  | // Insert speech for 2 seconds. | 
|  | const int kSpeechDurationMs = 2000; | 
|  | int packets_inserted = 0; | 
|  | uint16_t last_seq_no; | 
|  | uint32_t last_timestamp; | 
|  | bool timestamp_wrapped = false; | 
|  | bool seq_no_wrapped = false; | 
|  | for (double t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { | 
|  | // Each turn in this for loop is 10 ms. | 
|  | while (next_input_time_ms <= t_ms) { | 
|  | // Insert one 30 ms speech frame. | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | PopulateRtpInfo(seq_no, timestamp, &rtp_info); | 
|  | if (drop_seq_numbers.find(seq_no) == drop_seq_numbers.end()) { | 
|  | // This sequence number was not in the set to drop. Insert it. | 
|  | ASSERT_EQ(0, | 
|  | neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, | 
|  | receive_timestamp)); | 
|  | ++packets_inserted; | 
|  | } | 
|  | NetEqNetworkStatistics network_stats; | 
|  | ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); | 
|  |  | 
|  | // Due to internal NetEq logic, preferred buffer-size is about 4 times the | 
|  | // packet size for first few packets. Therefore we refrain from checking | 
|  | // the criteria. | 
|  | if (packets_inserted > 4) { | 
|  | // Expect preferred and actual buffer size to be no more than 2 frames. | 
|  | EXPECT_LE(network_stats.preferred_buffer_size_ms, kFrameSizeMs * 2); | 
|  | EXPECT_LE(network_stats.current_buffer_size_ms, kFrameSizeMs * 2); | 
|  | } | 
|  | last_seq_no = seq_no; | 
|  | last_timestamp = timestamp; | 
|  |  | 
|  | ++seq_no; | 
|  | timestamp += kSamples; | 
|  | receive_timestamp += kSamples; | 
|  | next_input_time_ms += static_cast<double>(kFrameSizeMs); | 
|  |  | 
|  | seq_no_wrapped |= seq_no < last_seq_no; | 
|  | timestamp_wrapped |= timestamp < last_timestamp; | 
|  | } | 
|  | // Pull out data once. | 
|  | ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, | 
|  | &samples_per_channel, &num_channels, | 
|  | &output_type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, samples_per_channel); | 
|  | ASSERT_EQ(1, num_channels); | 
|  |  | 
|  | // Expect delay (in samples) to be less than 2 packets. | 
|  | EXPECT_LE(timestamp - neteq_->PlayoutTimestamp(), | 
|  | static_cast<uint32_t>(kSamples * 2)); | 
|  | } | 
|  | // Make sure we have actually tested wrap-around. | 
|  | ASSERT_EQ(expect_seq_no_wrap, seq_no_wrapped); | 
|  | ASSERT_EQ(expect_timestamp_wrap, timestamp_wrapped); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, SequenceNumberWrap) { | 
|  | // Start with a sequence number that will soon wrap. | 
|  | std::set<uint16_t> drop_seq_numbers;  // Don't drop any packets. | 
|  | WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, SequenceNumberWrapAndDrop) { | 
|  | // Start with a sequence number that will soon wrap. | 
|  | std::set<uint16_t> drop_seq_numbers; | 
|  | drop_seq_numbers.insert(0xFFFF); | 
|  | drop_seq_numbers.insert(0x0); | 
|  | WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, TimestampWrap) { | 
|  | // Start with a timestamp that will soon wrap. | 
|  | std::set<uint16_t> drop_seq_numbers; | 
|  | WrapTest(0, 0xFFFFFFFF - 3000, drop_seq_numbers, false, true); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, TimestampAndSequenceNumberWrap) { | 
|  | // Start with a timestamp and a sequence number that will wrap at the same | 
|  | // time. | 
|  | std::set<uint16_t> drop_seq_numbers; | 
|  | WrapTest(0xFFFF - 10, 0xFFFFFFFF - 5000, drop_seq_numbers, true, true); | 
|  | } | 
|  |  | 
|  | void NetEqDecodingTest::DuplicateCng() { | 
|  | uint16_t seq_no = 0; | 
|  | uint32_t timestamp = 0; | 
|  | const int kFrameSizeMs = 10; | 
|  | const int kSampleRateKhz = 16; | 
|  | const int kSamples = kFrameSizeMs * kSampleRateKhz; | 
|  | const int kPayloadBytes = kSamples * 2; | 
|  |  | 
|  | // Insert three speech packet. Three are needed to get the frame length | 
|  | // correct. | 
|  | int out_len; | 
|  | int num_channels; | 
|  | NetEqOutputType type; | 
|  | uint8_t payload[kPayloadBytes] = {0}; | 
|  | WebRtcRTPHeader rtp_info; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | PopulateRtpInfo(seq_no, timestamp, &rtp_info); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  | ++seq_no; | 
|  | timestamp += kSamples; | 
|  |  | 
|  | // Pull audio once. | 
|  | ASSERT_EQ(0, | 
|  | neteq_->GetAudio( | 
|  | kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | } | 
|  | // Verify speech output. | 
|  | EXPECT_EQ(kOutputNormal, type); | 
|  |  | 
|  | // Insert same CNG packet twice. | 
|  | const int kCngPeriodMs = 100; | 
|  | const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; | 
|  | int payload_len; | 
|  | PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); | 
|  | // This is the first time this CNG packet is inserted. | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); | 
|  |  | 
|  | // Pull audio once and make sure CNG is played. | 
|  | ASSERT_EQ(0, | 
|  | neteq_->GetAudio( | 
|  | kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | EXPECT_EQ(kOutputCNG, type); | 
|  | EXPECT_EQ(timestamp - 10, neteq_->PlayoutTimestamp()); | 
|  |  | 
|  | // Insert the same CNG packet again. Note that at this point it is old, since | 
|  | // we have already decoded the first copy of it. | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); | 
|  |  | 
|  | // Pull audio until we have played |kCngPeriodMs| of CNG. Start at 10 ms since | 
|  | // we have already pulled out CNG once. | 
|  | for (int cng_time_ms = 10; cng_time_ms < kCngPeriodMs; cng_time_ms += 10) { | 
|  | ASSERT_EQ(0, | 
|  | neteq_->GetAudio( | 
|  | kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | EXPECT_EQ(kOutputCNG, type); | 
|  | EXPECT_EQ(timestamp - 10, neteq_->PlayoutTimestamp()); | 
|  | } | 
|  |  | 
|  | // Insert speech again. | 
|  | ++seq_no; | 
|  | timestamp += kCngPeriodSamples; | 
|  | PopulateRtpInfo(seq_no, timestamp, &rtp_info); | 
|  | ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); | 
|  |  | 
|  | // Pull audio once and verify that the output is speech again. | 
|  | ASSERT_EQ(0, | 
|  | neteq_->GetAudio( | 
|  | kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); | 
|  | ASSERT_EQ(kBlockSize16kHz, out_len); | 
|  | EXPECT_EQ(kOutputNormal, type); | 
|  | EXPECT_EQ(timestamp + kSamples - 10, neteq_->PlayoutTimestamp()); | 
|  | } | 
|  |  | 
|  | TEST_F(NetEqDecodingTest, DiscardDuplicateCng) { DuplicateCng(); } | 
|  | }  // namespace webrtc |