blob: c01035dec1f4d55c337b3a847e92fd4f82bbcf9d [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <algorithm>
#include <map>
#include <sstream>
#include <string>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/call.h"
#include "webrtc/frame_callback.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8.h"
#include "webrtc/modules/video_coding/codecs/vp9/include/vp9.h"
#include "webrtc/modules/video_coding/main/interface/video_coding_defines.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/event_wrapper.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/system_wrappers/interface/sleep.h"
#include "webrtc/test/call_test.h"
#include "webrtc/test/direct_transport.h"
#include "webrtc/test/encoder_settings.h"
#include "webrtc/test/fake_audio_device.h"
#include "webrtc/test/fake_decoder.h"
#include "webrtc/test/fake_encoder.h"
#include "webrtc/test/frame_generator.h"
#include "webrtc/test/frame_generator_capturer.h"
#include "webrtc/test/null_transport.h"
#include "webrtc/test/rtcp_packet_parser.h"
#include "webrtc/test/rtp_rtcp_observer.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/gtest_disable.h"
#include "webrtc/test/testsupport/perf_test.h"
#include "webrtc/video/transport_adapter.h"
#include "webrtc/video_encoder.h"
namespace webrtc {
static const unsigned long kSilenceTimeoutMs = 2000;
class EndToEndTest : public test::CallTest {
public:
EndToEndTest() {}
virtual ~EndToEndTest() {
EXPECT_EQ(NULL, send_stream_);
EXPECT_TRUE(receive_streams_.empty());
}
protected:
class UnusedTransport : public newapi::Transport {
private:
virtual bool SendRtp(const uint8_t* packet, size_t length) OVERRIDE {
ADD_FAILURE() << "Unexpected RTP sent.";
return false;
}
virtual bool SendRtcp(const uint8_t* packet, size_t length) OVERRIDE {
ADD_FAILURE() << "Unexpected RTCP sent.";
return false;
}
};
void DecodesRetransmittedFrame(bool retransmit_over_rtx);
void ReceivesPliAndRecovers(int rtp_history_ms);
void RespectsRtcpMode(newapi::RtcpMode rtcp_mode);
void TestXrReceiverReferenceTimeReport(bool enable_rrtr);
void TestSendsSetSsrcs(size_t num_ssrcs, bool send_single_ssrc_first);
void TestRtpStatePreservation(bool use_rtx);
void TestReceivedFecPacketsNotNacked(const FakeNetworkPipe::Config& config);
};
TEST_F(EndToEndTest, ReceiverCanBeStartedTwice) {
test::NullTransport transport;
CreateCalls(Call::Config(&transport), Call::Config(&transport));
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
CreateStreams();
receive_streams_[0]->Start();
receive_streams_[0]->Start();
DestroyStreams();
}
TEST_F(EndToEndTest, ReceiverCanBeStoppedTwice) {
test::NullTransport transport;
CreateCalls(Call::Config(&transport), Call::Config(&transport));
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
CreateStreams();
receive_streams_[0]->Stop();
receive_streams_[0]->Stop();
DestroyStreams();
}
TEST_F(EndToEndTest, RendersSingleDelayedFrame) {
static const int kWidth = 320;
static const int kHeight = 240;
// This constant is chosen to be higher than the timeout in the video_render
// module. This makes sure that frames aren't dropped if there are no other
// frames in the queue.
static const int kDelayRenderCallbackMs = 1000;
class Renderer : public VideoRenderer {
public:
Renderer() : event_(EventWrapper::Create()) {}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int /*time_to_render_ms*/) OVERRIDE {
event_->Set();
}
EventTypeWrapper Wait() { return event_->Wait(kDefaultTimeoutMs); }
scoped_ptr<EventWrapper> event_;
} renderer;
class TestFrameCallback : public I420FrameCallback {
public:
TestFrameCallback() : event_(EventWrapper::Create()) {}
EventTypeWrapper Wait() { return event_->Wait(kDefaultTimeoutMs); }
private:
virtual void FrameCallback(I420VideoFrame* frame) OVERRIDE {
SleepMs(kDelayRenderCallbackMs);
event_->Set();
}
scoped_ptr<EventWrapper> event_;
};
test::DirectTransport sender_transport, receiver_transport;
CreateCalls(Call::Config(&sender_transport),
Call::Config(&receiver_transport));
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
TestFrameCallback pre_render_callback;
receive_configs_[0].pre_render_callback = &pre_render_callback;
receive_configs_[0].renderer = &renderer;
CreateStreams();
Start();
// Create frames that are smaller than the send width/height, this is done to
// check that the callbacks are done after processing video.
scoped_ptr<test::FrameGenerator> frame_generator(
test::FrameGenerator::Create(kWidth, kHeight));
send_stream_->Input()->SwapFrame(frame_generator->NextFrame());
EXPECT_EQ(kEventSignaled, pre_render_callback.Wait())
<< "Timed out while waiting for pre-render callback.";
EXPECT_EQ(kEventSignaled, renderer.Wait())
<< "Timed out while waiting for the frame to render.";
Stop();
sender_transport.StopSending();
receiver_transport.StopSending();
DestroyStreams();
}
TEST_F(EndToEndTest, TransmitsFirstFrame) {
class Renderer : public VideoRenderer {
public:
Renderer() : event_(EventWrapper::Create()) {}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int /*time_to_render_ms*/) OVERRIDE {
event_->Set();
}
EventTypeWrapper Wait() { return event_->Wait(kDefaultTimeoutMs); }
scoped_ptr<EventWrapper> event_;
} renderer;
test::DirectTransport sender_transport, receiver_transport;
CreateCalls(Call::Config(&sender_transport),
Call::Config(&receiver_transport));
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
receive_configs_[0].renderer = &renderer;
CreateStreams();
Start();
scoped_ptr<test::FrameGenerator> frame_generator(test::FrameGenerator::Create(
encoder_config_.streams[0].width, encoder_config_.streams[0].height));
send_stream_->Input()->SwapFrame(frame_generator->NextFrame());
EXPECT_EQ(kEventSignaled, renderer.Wait())
<< "Timed out while waiting for the frame to render.";
Stop();
sender_transport.StopSending();
receiver_transport.StopSending();
DestroyStreams();
}
TEST_F(EndToEndTest, SendsAndReceivesVP9) {
class VP9Observer : public test::EndToEndTest, public VideoRenderer {
public:
VP9Observer()
: EndToEndTest(2 * kDefaultTimeoutMs),
encoder_(VideoEncoder::Create(VideoEncoder::kVp9)),
decoder_(VP9Decoder::Create()),
frame_counter_(0) {}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for enough frames to be decoded.";
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->encoder_settings.encoder = encoder_.get();
send_config->encoder_settings.payload_name = "VP9";
send_config->encoder_settings.payload_type = VCM_VP9_PAYLOAD_TYPE;
encoder_config->streams[0].min_bitrate_bps = 50000;
encoder_config->streams[0].target_bitrate_bps =
encoder_config->streams[0].max_bitrate_bps = 2000000;
(*receive_configs)[0].renderer = this;
(*receive_configs)[0].decoders.resize(1);
(*receive_configs)[0].decoders[0].payload_type =
send_config->encoder_settings.payload_type;
(*receive_configs)[0].decoders[0].payload_name =
send_config->encoder_settings.payload_name;
(*receive_configs)[0].decoders[0].decoder = decoder_.get();
}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int time_to_render_ms) OVERRIDE {
const int kRequiredFrames = 500;
if (++frame_counter_ == kRequiredFrames)
observation_complete_->Set();
}
private:
scoped_ptr<webrtc::VideoEncoder> encoder_;
scoped_ptr<webrtc::VideoDecoder> decoder_;
int frame_counter_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, SendsAndReceivesH264) {
class H264Observer : public test::EndToEndTest, public VideoRenderer {
public:
H264Observer()
: EndToEndTest(2 * kDefaultTimeoutMs),
fake_encoder_(Clock::GetRealTimeClock()),
frame_counter_(0) {}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for enough frames to be decoded.";
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->encoder_settings.encoder = &fake_encoder_;
send_config->encoder_settings.payload_name = "H264";
send_config->encoder_settings.payload_type = kFakeSendPayloadType;
encoder_config->streams[0].min_bitrate_bps = 50000;
encoder_config->streams[0].target_bitrate_bps =
encoder_config->streams[0].max_bitrate_bps = 2000000;
(*receive_configs)[0].renderer = this;
(*receive_configs)[0].decoders.resize(1);
(*receive_configs)[0].decoders[0].payload_type =
send_config->encoder_settings.payload_type;
(*receive_configs)[0].decoders[0].payload_name =
send_config->encoder_settings.payload_name;
(*receive_configs)[0].decoders[0].decoder = &fake_decoder_;
}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int time_to_render_ms) OVERRIDE {
const int kRequiredFrames = 500;
if (++frame_counter_ == kRequiredFrames)
observation_complete_->Set();
}
private:
test::FakeH264Decoder fake_decoder_;
test::FakeH264Encoder fake_encoder_;
int frame_counter_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceiverUsesLocalSsrc) {
class SyncRtcpObserver : public test::EndToEndTest {
public:
SyncRtcpObserver() : EndToEndTest(kDefaultTimeoutMs) {}
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
uint32_t ssrc = 0;
ssrc |= static_cast<uint32_t>(packet[4]) << 24;
ssrc |= static_cast<uint32_t>(packet[5]) << 16;
ssrc |= static_cast<uint32_t>(packet[6]) << 8;
ssrc |= static_cast<uint32_t>(packet[7]) << 0;
EXPECT_EQ(kReceiverLocalSsrc, ssrc);
observation_complete_->Set();
return SEND_PACKET;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for a receiver RTCP packet to be sent.";
}
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceivesAndRetransmitsNack) {
static const int kNumberOfNacksToObserve = 2;
static const int kLossBurstSize = 2;
static const int kPacketsBetweenLossBursts = 9;
class NackObserver : public test::EndToEndTest {
public:
NackObserver()
: EndToEndTest(kLongTimeoutMs),
rtp_parser_(RtpHeaderParser::Create()),
sent_rtp_packets_(0),
packets_left_to_drop_(0),
nacks_left_(kNumberOfNacksToObserve) {}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(rtp_parser_->Parse(packet, length, &header));
// Never drop retransmitted packets.
if (dropped_packets_.find(header.sequenceNumber) !=
dropped_packets_.end()) {
retransmitted_packets_.insert(header.sequenceNumber);
if (nacks_left_ == 0 &&
retransmitted_packets_.size() == dropped_packets_.size()) {
observation_complete_->Set();
}
return SEND_PACKET;
}
++sent_rtp_packets_;
// Enough NACKs received, stop dropping packets.
if (nacks_left_ == 0)
return SEND_PACKET;
// Check if it's time for a new loss burst.
if (sent_rtp_packets_ % kPacketsBetweenLossBursts == 0)
packets_left_to_drop_ = kLossBurstSize;
if (packets_left_to_drop_ > 0) {
--packets_left_to_drop_;
dropped_packets_.insert(header.sequenceNumber);
return DROP_PACKET;
}
return SEND_PACKET;
}
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::kRtcpNotValidCode) {
if (packet_type == RTCPUtility::kRtcpRtpfbNackCode) {
--nacks_left_;
break;
}
packet_type = parser.Iterate();
}
return SEND_PACKET;
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out waiting for packets to be NACKed, retransmitted and "
"rendered.";
}
scoped_ptr<RtpHeaderParser> rtp_parser_;
std::set<uint16_t> dropped_packets_;
std::set<uint16_t> retransmitted_packets_;
uint64_t sent_rtp_packets_;
int packets_left_to_drop_;
int nacks_left_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, CanReceiveFec) {
class FecRenderObserver : public test::EndToEndTest, public VideoRenderer {
public:
FecRenderObserver()
: EndToEndTest(kDefaultTimeoutMs), state_(kFirstPacket) {}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE
EXCLUSIVE_LOCKS_REQUIRED(crit_) {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_EQ(kRedPayloadType, header.payloadType);
int encapsulated_payload_type =
static_cast<int>(packet[header.headerLength]);
if (encapsulated_payload_type != kFakeSendPayloadType)
EXPECT_EQ(kUlpfecPayloadType, encapsulated_payload_type);
if (protected_sequence_numbers_.count(header.sequenceNumber) != 0) {
// Retransmitted packet, should not count.
protected_sequence_numbers_.erase(header.sequenceNumber);
EXPECT_GT(protected_timestamps_.count(header.timestamp), 0u);
protected_timestamps_.erase(header.timestamp);
return SEND_PACKET;
}
switch (state_) {
case kFirstPacket:
state_ = kDropEveryOtherPacketUntilFec;
break;
case kDropEveryOtherPacketUntilFec:
if (encapsulated_payload_type == kUlpfecPayloadType) {
state_ = kDropNextMediaPacket;
return SEND_PACKET;
}
if (header.sequenceNumber % 2 == 0)
return DROP_PACKET;
break;
case kDropNextMediaPacket:
if (encapsulated_payload_type == kFakeSendPayloadType) {
protected_sequence_numbers_.insert(header.sequenceNumber);
protected_timestamps_.insert(header.timestamp);
state_ = kDropEveryOtherPacketUntilFec;
return DROP_PACKET;
}
break;
}
return SEND_PACKET;
}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int time_to_render_ms) OVERRIDE {
CriticalSectionScoped lock(crit_.get());
// Rendering frame with timestamp of packet that was dropped -> FEC
// protection worked.
if (protected_timestamps_.count(video_frame.timestamp()) != 0)
observation_complete_->Set();
}
enum {
kFirstPacket,
kDropEveryOtherPacketUntilFec,
kDropNextMediaPacket,
} state_;
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
// TODO(pbos): Run this test with combined NACK/FEC enabled as well.
// int rtp_history_ms = 1000;
// (*receive_configs)[0].rtp.nack.rtp_history_ms = rtp_history_ms;
// send_config->rtp.nack.rtp_history_ms = rtp_history_ms;
send_config->rtp.fec.red_payload_type = kRedPayloadType;
send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
(*receive_configs)[0].rtp.fec.red_payload_type = kRedPayloadType;
(*receive_configs)[0].rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
(*receive_configs)[0].renderer = this;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out waiting for dropped frames frames to be rendered.";
}
std::set<uint32_t> protected_sequence_numbers_ GUARDED_BY(crit_);
std::set<uint32_t> protected_timestamps_ GUARDED_BY(crit_);
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceivedFecPacketsNotNacked) {
// At low RTT (< kLowRttNackMs) -> NACK only, no FEC.
// Configure some network delay.
const int kNetworkDelayMs = 50;
FakeNetworkPipe::Config config;
config.queue_delay_ms = kNetworkDelayMs;
TestReceivedFecPacketsNotNacked(config);
}
void EndToEndTest::TestReceivedFecPacketsNotNacked(
const FakeNetworkPipe::Config& config) {
class FecNackObserver : public test::EndToEndTest {
public:
explicit FecNackObserver(const FakeNetworkPipe::Config& config)
: EndToEndTest(kDefaultTimeoutMs, config),
state_(kDropEveryOtherPacketUntilFec),
fec_sequence_number_(0),
has_last_sequence_number_(false),
last_sequence_number_(0) {}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_EQ(kRedPayloadType, header.payloadType);
int encapsulated_payload_type =
static_cast<int>(packet[header.headerLength]);
if (encapsulated_payload_type != kFakeSendPayloadType)
EXPECT_EQ(kUlpfecPayloadType, encapsulated_payload_type);
if (has_last_sequence_number_ &&
!IsNewerSequenceNumber(header.sequenceNumber,
last_sequence_number_)) {
// Drop retransmitted packets.
return DROP_PACKET;
}
last_sequence_number_ = header.sequenceNumber;
has_last_sequence_number_ = true;
bool fec_packet = encapsulated_payload_type == kUlpfecPayloadType;
switch (state_) {
case kDropEveryOtherPacketUntilFec:
if (fec_packet) {
state_ = kDropAllMediaPacketsUntilFec;
} else if (header.sequenceNumber % 2 == 0) {
return DROP_PACKET;
}
break;
case kDropAllMediaPacketsUntilFec:
if (!fec_packet)
return DROP_PACKET;
fec_sequence_number_ = header.sequenceNumber;
state_ = kVerifyFecPacketNotInNackList;
break;
case kVerifyFecPacketNotInNackList:
// Continue to drop packets. Make sure no frame can be decoded.
if (fec_packet || header.sequenceNumber % 2 == 0)
return DROP_PACKET;
break;
}
return SEND_PACKET;
}
virtual Action OnReceiveRtcp(const uint8_t* packet, size_t length)
OVERRIDE {
if (state_ == kVerifyFecPacketNotInNackList) {
test::RtcpPacketParser rtcp_parser;
rtcp_parser.Parse(packet, length);
std::vector<uint16_t> nacks = rtcp_parser.nack_item()->last_nack_list();
if (!nacks.empty() &&
IsNewerSequenceNumber(nacks.back(), fec_sequence_number_)) {
EXPECT_TRUE(std::find(
nacks.begin(), nacks.end(), fec_sequence_number_) == nacks.end());
observation_complete_->Set();
}
}
return SEND_PACKET;
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
// Configure hybrid NACK/FEC.
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
send_config->rtp.fec.red_payload_type = kRedPayloadType;
send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.fec.red_payload_type = kRedPayloadType;
(*receive_configs)[0].rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for FEC packets to be received.";
}
enum {
kDropEveryOtherPacketUntilFec,
kDropAllMediaPacketsUntilFec,
kVerifyFecPacketNotInNackList,
} state_;
uint16_t fec_sequence_number_;
bool has_last_sequence_number_;
uint16_t last_sequence_number_;
} test(config);
RunBaseTest(&test);
}
// This test drops second RTP packet with a marker bit set, makes sure it's
// retransmitted and renders. Retransmission SSRCs are also checked.
void EndToEndTest::DecodesRetransmittedFrame(bool retransmit_over_rtx) {
static const int kDroppedFrameNumber = 2;
class RetransmissionObserver : public test::EndToEndTest,
public I420FrameCallback {
public:
explicit RetransmissionObserver(bool expect_rtx)
: EndToEndTest(kDefaultTimeoutMs),
retransmission_ssrc_(expect_rtx ? kSendRtxSsrcs[0] : kSendSsrcs[0]),
retransmission_payload_type_(expect_rtx ? kSendRtxPayloadType
: kFakeSendPayloadType),
marker_bits_observed_(0),
retransmitted_timestamp_(0),
frame_retransmitted_(false) {}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
if (header.timestamp == retransmitted_timestamp_) {
EXPECT_EQ(retransmission_ssrc_, header.ssrc);
EXPECT_EQ(retransmission_payload_type_, header.payloadType);
frame_retransmitted_ = true;
return SEND_PACKET;
}
EXPECT_EQ(kSendSsrcs[0], header.ssrc);
EXPECT_EQ(kFakeSendPayloadType, header.payloadType);
// Found the second frame's final packet, drop this and expect a
// retransmission.
if (header.markerBit && ++marker_bits_observed_ == kDroppedFrameNumber) {
retransmitted_timestamp_ = header.timestamp;
return DROP_PACKET;
}
return SEND_PACKET;
}
virtual void FrameCallback(I420VideoFrame* frame) OVERRIDE {
CriticalSectionScoped lock(crit_.get());
if (frame->timestamp() == retransmitted_timestamp_) {
EXPECT_TRUE(frame_retransmitted_);
observation_complete_->Set();
}
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].pre_render_callback = this;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
if (retransmission_ssrc_ == kSendRtxSsrcs[0]) {
send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[0]);
send_config->rtp.rtx.payload_type = kSendRtxPayloadType;
(*receive_configs)[0].rtp.rtx[kSendRtxPayloadType].ssrc =
kSendRtxSsrcs[0];
(*receive_configs)[0].rtp.rtx[kSendRtxPayloadType].payload_type =
kSendRtxPayloadType;
}
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for retransmission to render.";
}
const uint32_t retransmission_ssrc_;
const int retransmission_payload_type_;
int marker_bits_observed_;
uint32_t retransmitted_timestamp_;
bool frame_retransmitted_;
} test(retransmit_over_rtx);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, DecodesRetransmittedFrame) {
DecodesRetransmittedFrame(false);
}
TEST_F(EndToEndTest, DecodesRetransmittedFrameOverRtx) {
DecodesRetransmittedFrame(true);
}
TEST_F(EndToEndTest, UsesFrameCallbacks) {
static const int kWidth = 320;
static const int kHeight = 240;
class Renderer : public VideoRenderer {
public:
Renderer() : event_(EventWrapper::Create()) {}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int /*time_to_render_ms*/) OVERRIDE {
EXPECT_EQ(0, *video_frame.buffer(kYPlane))
<< "Rendered frame should have zero luma which is applied by the "
"pre-render callback.";
event_->Set();
}
EventTypeWrapper Wait() { return event_->Wait(kDefaultTimeoutMs); }
scoped_ptr<EventWrapper> event_;
} renderer;
class TestFrameCallback : public I420FrameCallback {
public:
TestFrameCallback(int expected_luma_byte, int next_luma_byte)
: event_(EventWrapper::Create()),
expected_luma_byte_(expected_luma_byte),
next_luma_byte_(next_luma_byte) {}
EventTypeWrapper Wait() { return event_->Wait(kDefaultTimeoutMs); }
private:
virtual void FrameCallback(I420VideoFrame* frame) {
EXPECT_EQ(kWidth, frame->width())
<< "Width not as expected, callback done before resize?";
EXPECT_EQ(kHeight, frame->height())
<< "Height not as expected, callback done before resize?";
// Previous luma specified, observed luma should be fairly close.
if (expected_luma_byte_ != -1) {
EXPECT_NEAR(expected_luma_byte_, *frame->buffer(kYPlane), 10);
}
memset(frame->buffer(kYPlane),
next_luma_byte_,
frame->allocated_size(kYPlane));
event_->Set();
}
scoped_ptr<EventWrapper> event_;
int expected_luma_byte_;
int next_luma_byte_;
};
TestFrameCallback pre_encode_callback(-1, 255); // Changes luma to 255.
TestFrameCallback pre_render_callback(255, 0); // Changes luma from 255 to 0.
test::DirectTransport sender_transport, receiver_transport;
CreateCalls(Call::Config(&sender_transport),
Call::Config(&receiver_transport));
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1);
scoped_ptr<VideoEncoder> encoder(
VideoEncoder::Create(VideoEncoder::kVp8));
send_config_.encoder_settings.encoder = encoder.get();
send_config_.encoder_settings.payload_name = "VP8";
ASSERT_EQ(1u, encoder_config_.streams.size()) << "Test setup error.";
encoder_config_.streams[0].width = kWidth;
encoder_config_.streams[0].height = kHeight;
send_config_.pre_encode_callback = &pre_encode_callback;
CreateMatchingReceiveConfigs();
receive_configs_[0].pre_render_callback = &pre_render_callback;
receive_configs_[0].renderer = &renderer;
CreateStreams();
Start();
// Create frames that are smaller than the send width/height, this is done to
// check that the callbacks are done after processing video.
scoped_ptr<test::FrameGenerator> frame_generator(
test::FrameGenerator::Create(kWidth / 2, kHeight / 2));
send_stream_->Input()->SwapFrame(frame_generator->NextFrame());
EXPECT_EQ(kEventSignaled, pre_encode_callback.Wait())
<< "Timed out while waiting for pre-encode callback.";
EXPECT_EQ(kEventSignaled, pre_render_callback.Wait())
<< "Timed out while waiting for pre-render callback.";
EXPECT_EQ(kEventSignaled, renderer.Wait())
<< "Timed out while waiting for the frame to render.";
Stop();
sender_transport.StopSending();
receiver_transport.StopSending();
DestroyStreams();
}
void EndToEndTest::ReceivesPliAndRecovers(int rtp_history_ms) {
static const int kPacketsToDrop = 1;
class PliObserver : public test::EndToEndTest, public VideoRenderer {
public:
explicit PliObserver(int rtp_history_ms)
: EndToEndTest(kLongTimeoutMs),
rtp_history_ms_(rtp_history_ms),
nack_enabled_(rtp_history_ms > 0),
highest_dropped_timestamp_(0),
frames_to_drop_(0),
received_pli_(false) {}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
// Drop all retransmitted packets to force a PLI.
if (header.timestamp <= highest_dropped_timestamp_)
return DROP_PACKET;
if (frames_to_drop_ > 0) {
highest_dropped_timestamp_ = header.timestamp;
--frames_to_drop_;
return DROP_PACKET;
}
return SEND_PACKET;
}
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
for (RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
packet_type != RTCPUtility::kRtcpNotValidCode;
packet_type = parser.Iterate()) {
if (!nack_enabled_)
EXPECT_NE(packet_type, RTCPUtility::kRtcpRtpfbNackCode);
if (packet_type == RTCPUtility::kRtcpPsfbPliCode) {
received_pli_ = true;
break;
}
}
return SEND_PACKET;
}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int time_to_render_ms) OVERRIDE {
CriticalSectionScoped lock(crit_.get());
if (received_pli_ &&
video_frame.timestamp() > highest_dropped_timestamp_) {
observation_complete_->Set();
}
if (!received_pli_)
frames_to_drop_ = kPacketsToDrop;
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->rtp.nack.rtp_history_ms = rtp_history_ms_;
(*receive_configs)[0].rtp.nack.rtp_history_ms = rtp_history_ms_;
(*receive_configs)[0].renderer = this;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait()) << "Timed out waiting for PLI to be "
"received and a frame to be "
"rendered afterwards.";
}
int rtp_history_ms_;
bool nack_enabled_;
uint32_t highest_dropped_timestamp_;
int frames_to_drop_;
bool received_pli_;
} test(rtp_history_ms);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceivesPliAndRecoversWithNack) {
ReceivesPliAndRecovers(1000);
}
// TODO(pbos): Enable this when 2250 is resolved.
TEST_F(EndToEndTest, DISABLED_ReceivesPliAndRecoversWithoutNack) {
ReceivesPliAndRecovers(0);
}
TEST_F(EndToEndTest, UnknownRtpPacketGivesUnknownSsrcReturnCode) {
class PacketInputObserver : public PacketReceiver {
public:
explicit PacketInputObserver(PacketReceiver* receiver)
: receiver_(receiver), delivered_packet_(EventWrapper::Create()) {}
EventTypeWrapper Wait() {
return delivered_packet_->Wait(kDefaultTimeoutMs);
}
private:
virtual DeliveryStatus DeliverPacket(const uint8_t* packet,
size_t length) OVERRIDE {
if (RtpHeaderParser::IsRtcp(packet, length)) {
return receiver_->DeliverPacket(packet, length);
} else {
DeliveryStatus delivery_status =
receiver_->DeliverPacket(packet, length);
EXPECT_EQ(DELIVERY_UNKNOWN_SSRC, delivery_status);
delivered_packet_->Set();
return delivery_status;
}
}
PacketReceiver* receiver_;
scoped_ptr<EventWrapper> delivered_packet_;
};
test::DirectTransport send_transport, receive_transport;
CreateCalls(Call::Config(&send_transport), Call::Config(&receive_transport));
PacketInputObserver input_observer(receiver_call_->Receiver());
send_transport.SetReceiver(&input_observer);
receive_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
CreateStreams();
CreateFrameGeneratorCapturer();
Start();
receiver_call_->DestroyVideoReceiveStream(receive_streams_[0]);
receive_streams_.clear();
// Wait() waits for a received packet.
EXPECT_EQ(kEventSignaled, input_observer.Wait());
Stop();
DestroyStreams();
send_transport.StopSending();
receive_transport.StopSending();
}
void EndToEndTest::RespectsRtcpMode(newapi::RtcpMode rtcp_mode) {
static const int kNumCompoundRtcpPacketsToObserve = 10;
class RtcpModeObserver : public test::EndToEndTest {
public:
explicit RtcpModeObserver(newapi::RtcpMode rtcp_mode)
: EndToEndTest(kDefaultTimeoutMs),
rtcp_mode_(rtcp_mode),
sent_rtp_(0),
sent_rtcp_(0) {}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
if (++sent_rtp_ % 3 == 0)
return DROP_PACKET;
return SEND_PACKET;
}
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
++sent_rtcp_;
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
bool has_report_block = false;
while (packet_type != RTCPUtility::kRtcpNotValidCode) {
EXPECT_NE(RTCPUtility::kRtcpSrCode, packet_type);
if (packet_type == RTCPUtility::kRtcpRrCode) {
has_report_block = true;
break;
}
packet_type = parser.Iterate();
}
switch (rtcp_mode_) {
case newapi::kRtcpCompound:
if (!has_report_block) {
ADD_FAILURE() << "Received RTCP packet without receiver report for "
"kRtcpCompound.";
observation_complete_->Set();
}
if (sent_rtcp_ >= kNumCompoundRtcpPacketsToObserve)
observation_complete_->Set();
break;
case newapi::kRtcpReducedSize:
if (!has_report_block)
observation_complete_->Set();
break;
}
return SEND_PACKET;
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.rtcp_mode = rtcp_mode_;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< (rtcp_mode_ == newapi::kRtcpCompound
? "Timed out before observing enough compound packets."
: "Timed out before receiving a non-compound RTCP packet.");
}
newapi::RtcpMode rtcp_mode_;
int sent_rtp_;
int sent_rtcp_;
} test(rtcp_mode);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, UsesRtcpCompoundMode) {
RespectsRtcpMode(newapi::kRtcpCompound);
}
TEST_F(EndToEndTest, UsesRtcpReducedSizeMode) {
RespectsRtcpMode(newapi::kRtcpReducedSize);
}
// Test sets up a Call multiple senders with different resolutions and SSRCs.
// Another is set up to receive all three of these with different renderers.
// Each renderer verifies that it receives the expected resolution, and as soon
// as every renderer has received a frame, the test finishes.
TEST_F(EndToEndTest, SendsAndReceivesMultipleStreams) {
static const size_t kNumStreams = 3;
class VideoOutputObserver : public VideoRenderer {
public:
VideoOutputObserver(test::FrameGeneratorCapturer** capturer,
int width,
int height)
: capturer_(capturer),
width_(width),
height_(height),
done_(EventWrapper::Create()) {}
virtual void RenderFrame(const I420VideoFrame& video_frame,
int time_to_render_ms) OVERRIDE {
EXPECT_EQ(width_, video_frame.width());
EXPECT_EQ(height_, video_frame.height());
(*capturer_)->Stop();
done_->Set();
}
EventTypeWrapper Wait() { return done_->Wait(kDefaultTimeoutMs); }
private:
test::FrameGeneratorCapturer** capturer_;
int width_;
int height_;
scoped_ptr<EventWrapper> done_;
};
struct {
uint32_t ssrc;
int width;
int height;
} codec_settings[kNumStreams] = {{1, 640, 480}, {2, 320, 240}, {3, 240, 160}};
test::DirectTransport sender_transport, receiver_transport;
scoped_ptr<Call> sender_call(Call::Create(Call::Config(&sender_transport)));
scoped_ptr<Call> receiver_call(
Call::Create(Call::Config(&receiver_transport)));
sender_transport.SetReceiver(receiver_call->Receiver());
receiver_transport.SetReceiver(sender_call->Receiver());
VideoSendStream* send_streams[kNumStreams];
VideoReceiveStream* receive_streams[kNumStreams];
VideoOutputObserver* observers[kNumStreams];
test::FrameGeneratorCapturer* frame_generators[kNumStreams];
scoped_ptr<VideoEncoder> encoders[kNumStreams];
for (size_t i = 0; i < kNumStreams; ++i)
encoders[i].reset(VideoEncoder::Create(VideoEncoder::kVp8));
ScopedVector<VideoDecoder> allocated_decoders;
for (size_t i = 0; i < kNumStreams; ++i) {
uint32_t ssrc = codec_settings[i].ssrc;
int width = codec_settings[i].width;
int height = codec_settings[i].height;
observers[i] = new VideoOutputObserver(&frame_generators[i], width, height);
VideoSendStream::Config send_config;
send_config.rtp.ssrcs.push_back(ssrc);
send_config.encoder_settings.encoder = encoders[i].get();
send_config.encoder_settings.payload_name = "VP8";
send_config.encoder_settings.payload_type = 124;
VideoEncoderConfig encoder_config;
encoder_config.streams = test::CreateVideoStreams(1);
VideoStream* stream = &encoder_config.streams[0];
stream->width = width;
stream->height = height;
stream->max_framerate = 5;
stream->min_bitrate_bps = stream->target_bitrate_bps =
stream->max_bitrate_bps = 100000;
send_streams[i] =
sender_call->CreateVideoSendStream(send_config, encoder_config);
send_streams[i]->Start();
VideoReceiveStream::Config receive_config;
receive_config.renderer = observers[i];
receive_config.rtp.remote_ssrc = ssrc;
receive_config.rtp.local_ssrc = kReceiverLocalSsrc;
VideoReceiveStream::Decoder decoder =
test::CreateMatchingDecoder(send_config.encoder_settings);
allocated_decoders.push_back(decoder.decoder);
receive_config.decoders.push_back(decoder);
receive_streams[i] =
receiver_call->CreateVideoReceiveStream(receive_config);
receive_streams[i]->Start();
frame_generators[i] = test::FrameGeneratorCapturer::Create(
send_streams[i]->Input(), width, height, 30, Clock::GetRealTimeClock());
frame_generators[i]->Start();
}
for (size_t i = 0; i < kNumStreams; ++i) {
EXPECT_EQ(kEventSignaled, observers[i]->Wait())
<< "Timed out while waiting for observer " << i << " to render.";
}
for (size_t i = 0; i < kNumStreams; ++i) {
frame_generators[i]->Stop();
sender_call->DestroyVideoSendStream(send_streams[i]);
receiver_call->DestroyVideoReceiveStream(receive_streams[i]);
delete frame_generators[i];
delete observers[i];
}
sender_transport.StopSending();
receiver_transport.StopSending();
}
TEST_F(EndToEndTest, ObserversEncodedFrames) {
class EncodedFrameTestObserver : public EncodedFrameObserver {
public:
EncodedFrameTestObserver()
: length_(0),
frame_type_(kFrameEmpty),
called_(EventWrapper::Create()) {}
virtual ~EncodedFrameTestObserver() {}
virtual void EncodedFrameCallback(const EncodedFrame& encoded_frame) {
frame_type_ = encoded_frame.frame_type_;
length_ = encoded_frame.length_;
buffer_.reset(new uint8_t[length_]);
memcpy(buffer_.get(), encoded_frame.data_, length_);
called_->Set();
}
EventTypeWrapper Wait() { return called_->Wait(kDefaultTimeoutMs); }
void ExpectEqualFrames(const EncodedFrameTestObserver& observer) {
ASSERT_EQ(length_, observer.length_)
<< "Observed frames are of different lengths.";
EXPECT_EQ(frame_type_, observer.frame_type_)
<< "Observed frames have different frame types.";
EXPECT_EQ(0, memcmp(buffer_.get(), observer.buffer_.get(), length_))
<< "Observed encoded frames have different content.";
}
private:
scoped_ptr<uint8_t[]> buffer_;
size_t length_;
FrameType frame_type_;
scoped_ptr<EventWrapper> called_;
};
EncodedFrameTestObserver post_encode_observer;
EncodedFrameTestObserver pre_decode_observer;
test::DirectTransport sender_transport, receiver_transport;
CreateCalls(Call::Config(&sender_transport),
Call::Config(&receiver_transport));
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
send_config_.post_encode_callback = &post_encode_observer;
receive_configs_[0].pre_decode_callback = &pre_decode_observer;
CreateStreams();
Start();
scoped_ptr<test::FrameGenerator> frame_generator(test::FrameGenerator::Create(
encoder_config_.streams[0].width, encoder_config_.streams[0].height));
send_stream_->Input()->SwapFrame(frame_generator->NextFrame());
EXPECT_EQ(kEventSignaled, post_encode_observer.Wait())
<< "Timed out while waiting for send-side encoded-frame callback.";
EXPECT_EQ(kEventSignaled, pre_decode_observer.Wait())
<< "Timed out while waiting for pre-decode encoded-frame callback.";
post_encode_observer.ExpectEqualFrames(pre_decode_observer);
Stop();
sender_transport.StopSending();
receiver_transport.StopSending();
DestroyStreams();
}
TEST_F(EndToEndTest, ReceiveStreamSendsRemb) {
class RembObserver : public test::EndToEndTest {
public:
RembObserver() : EndToEndTest(kDefaultTimeoutMs) {}
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
bool received_psfb = false;
bool received_remb = false;
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::kRtcpNotValidCode) {
if (packet_type == RTCPUtility::kRtcpPsfbRembCode) {
const RTCPUtility::RTCPPacket& packet = parser.Packet();
EXPECT_EQ(packet.PSFBAPP.SenderSSRC, kReceiverLocalSsrc);
received_psfb = true;
} else if (packet_type == RTCPUtility::kRtcpPsfbRembItemCode) {
const RTCPUtility::RTCPPacket& packet = parser.Packet();
EXPECT_GT(packet.REMBItem.BitRate, 0u);
EXPECT_EQ(packet.REMBItem.NumberOfSSRCs, 1u);
EXPECT_EQ(packet.REMBItem.SSRCs[0], kSendSsrcs[0]);
received_remb = true;
}
packet_type = parser.Iterate();
}
if (received_psfb && received_remb)
observation_complete_->Set();
return SEND_PACKET;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait()) << "Timed out while waiting for a "
"receiver RTCP REMB packet to be "
"sent.";
}
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, VerifyBandwidthStats) {
class RtcpObserver : public test::EndToEndTest, public PacketReceiver {
public:
RtcpObserver()
: EndToEndTest(kDefaultTimeoutMs),
sender_call_(NULL),
receiver_call_(NULL),
has_seen_pacer_delay_(false) {}
virtual DeliveryStatus DeliverPacket(const uint8_t* packet,
size_t length) OVERRIDE {
Call::Stats sender_stats = sender_call_->GetStats();
Call::Stats receiver_stats = receiver_call_->GetStats();
if (!has_seen_pacer_delay_)
has_seen_pacer_delay_ = sender_stats.pacer_delay_ms > 0;
if (sender_stats.send_bandwidth_bps > 0 &&
receiver_stats.recv_bandwidth_bps > 0 && has_seen_pacer_delay_) {
observation_complete_->Set();
}
return receiver_call_->Receiver()->DeliverPacket(packet, length);
}
virtual void OnCallsCreated(Call* sender_call,
Call* receiver_call) OVERRIDE {
sender_call_ = sender_call;
receiver_call_ = receiver_call;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait()) << "Timed out while waiting for "
"non-zero bandwidth stats.";
}
virtual void SetReceivers(
PacketReceiver* send_transport_receiver,
PacketReceiver* receive_transport_receiver) OVERRIDE {
test::RtpRtcpObserver::SetReceivers(this, receive_transport_receiver);
}
private:
Call* sender_call_;
Call* receiver_call_;
bool has_seen_pacer_delay_;
} test;
RunBaseTest(&test);
}
void EndToEndTest::TestXrReceiverReferenceTimeReport(bool enable_rrtr) {
static const int kNumRtcpReportPacketsToObserve = 5;
class RtcpXrObserver : public test::EndToEndTest {
public:
explicit RtcpXrObserver(bool enable_rrtr)
: EndToEndTest(kDefaultTimeoutMs),
enable_rrtr_(enable_rrtr),
sent_rtcp_sr_(0),
sent_rtcp_rr_(0),
sent_rtcp_rrtr_(0),
sent_rtcp_dlrr_(0) {}
private:
// Receive stream should send RR packets (and RRTR packets if enabled).
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::kRtcpNotValidCode) {
if (packet_type == RTCPUtility::kRtcpRrCode) {
++sent_rtcp_rr_;
} else if (packet_type ==
RTCPUtility::kRtcpXrReceiverReferenceTimeCode) {
++sent_rtcp_rrtr_;
}
EXPECT_NE(packet_type, RTCPUtility::kRtcpSrCode);
EXPECT_NE(packet_type, RTCPUtility::kRtcpXrDlrrReportBlockItemCode);
packet_type = parser.Iterate();
}
return SEND_PACKET;
}
// Send stream should send SR packets (and DLRR packets if enabled).
virtual Action OnSendRtcp(const uint8_t* packet, size_t length) {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::kRtcpNotValidCode) {
if (packet_type == RTCPUtility::kRtcpSrCode) {
++sent_rtcp_sr_;
} else if (packet_type == RTCPUtility::kRtcpXrDlrrReportBlockItemCode) {
++sent_rtcp_dlrr_;
}
EXPECT_NE(packet_type, RTCPUtility::kRtcpXrReceiverReferenceTimeCode);
packet_type = parser.Iterate();
}
if (sent_rtcp_sr_ > kNumRtcpReportPacketsToObserve &&
sent_rtcp_rr_ > kNumRtcpReportPacketsToObserve) {
if (enable_rrtr_) {
EXPECT_GT(sent_rtcp_rrtr_, 0);
EXPECT_GT(sent_rtcp_dlrr_, 0);
} else {
EXPECT_EQ(0, sent_rtcp_rrtr_);
EXPECT_EQ(0, sent_rtcp_dlrr_);
}
observation_complete_->Set();
}
return SEND_PACKET;
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
(*receive_configs)[0].rtp.rtcp_mode = newapi::kRtcpReducedSize;
(*receive_configs)[0].rtp.rtcp_xr.receiver_reference_time_report =
enable_rrtr_;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for RTCP SR/RR packets to be sent.";
}
bool enable_rrtr_;
int sent_rtcp_sr_;
int sent_rtcp_rr_;
int sent_rtcp_rrtr_;
int sent_rtcp_dlrr_;
} test(enable_rrtr);
RunBaseTest(&test);
}
void EndToEndTest::TestSendsSetSsrcs(size_t num_ssrcs,
bool send_single_ssrc_first) {
class SendsSetSsrcs : public test::EndToEndTest {
public:
SendsSetSsrcs(const uint32_t* ssrcs,
size_t num_ssrcs,
bool send_single_ssrc_first)
: EndToEndTest(kDefaultTimeoutMs),
num_ssrcs_(num_ssrcs),
send_single_ssrc_first_(send_single_ssrc_first),
ssrcs_to_observe_(num_ssrcs),
expect_single_ssrc_(send_single_ssrc_first) {
for (size_t i = 0; i < num_ssrcs; ++i)
valid_ssrcs_[ssrcs[i]] = true;
}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_TRUE(valid_ssrcs_[header.ssrc])
<< "Received unknown SSRC: " << header.ssrc;
if (!valid_ssrcs_[header.ssrc])
observation_complete_->Set();
if (!is_observed_[header.ssrc]) {
is_observed_[header.ssrc] = true;
--ssrcs_to_observe_;
if (expect_single_ssrc_) {
expect_single_ssrc_ = false;
observation_complete_->Set();
}
}
if (ssrcs_to_observe_ == 0)
observation_complete_->Set();
return SEND_PACKET;
}
virtual size_t GetNumStreams() const OVERRIDE { return num_ssrcs_; }
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
if (num_ssrcs_ > 1) {
// Set low simulcast bitrates to not have to wait for bandwidth ramp-up.
for (size_t i = 0; i < encoder_config->streams.size(); ++i) {
encoder_config->streams[i].min_bitrate_bps = 10000;
encoder_config->streams[i].target_bitrate_bps = 15000;
encoder_config->streams[i].max_bitrate_bps = 20000;
}
}
encoder_config_all_streams_ = *encoder_config;
if (send_single_ssrc_first_)
encoder_config->streams.resize(1);
}
virtual void OnStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) OVERRIDE {
send_stream_ = send_stream;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for "
<< (send_single_ssrc_first_ ? "first SSRC." : "SSRCs.");
if (send_single_ssrc_first_) {
// Set full simulcast and continue with the rest of the SSRCs.
send_stream_->ReconfigureVideoEncoder(encoder_config_all_streams_);
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting on additional SSRCs.";
}
}
private:
std::map<uint32_t, bool> valid_ssrcs_;
std::map<uint32_t, bool> is_observed_;
const size_t num_ssrcs_;
const bool send_single_ssrc_first_;
size_t ssrcs_to_observe_;
bool expect_single_ssrc_;
VideoSendStream* send_stream_;
VideoEncoderConfig encoder_config_all_streams_;
} test(kSendSsrcs, num_ssrcs, send_single_ssrc_first);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, GetStats) {
static const int kStartBitrateBps = 3000000;
class StatsObserver : public test::EndToEndTest, public I420FrameCallback {
public:
StatsObserver()
: EndToEndTest(kLongTimeoutMs),
receive_stream_(NULL),
send_stream_(NULL),
expected_receive_ssrc_(),
expected_send_ssrcs_(),
check_stats_event_(EventWrapper::Create()) {}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
check_stats_event_->Set();
return SEND_PACKET;
}
virtual Action OnSendRtcp(const uint8_t* packet, size_t length) OVERRIDE {
check_stats_event_->Set();
return SEND_PACKET;
}
virtual Action OnReceiveRtp(const uint8_t* packet, size_t length) OVERRIDE {
check_stats_event_->Set();
return SEND_PACKET;
}
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
check_stats_event_->Set();
return SEND_PACKET;
}
virtual void FrameCallback(I420VideoFrame* video_frame) OVERRIDE {
// Ensure that we have at least 5ms send side delay.
int64_t render_time = video_frame->render_time_ms();
if (render_time > 0)
video_frame->set_render_time_ms(render_time - 5);
}
bool CheckReceiveStats() {
assert(receive_stream_ != NULL);
VideoReceiveStream::Stats stats = receive_stream_->GetStats();
EXPECT_EQ(expected_receive_ssrc_, stats.ssrc);
// Make sure all fields have been populated.
receive_stats_filled_["IncomingRate"] |=
stats.network_frame_rate != 0 || stats.total_bitrate_bps != 0;
receive_stats_filled_["FrameCallback"] |= stats.decode_frame_rate != 0;
receive_stats_filled_["FrameRendered"] |= stats.render_frame_rate != 0;
receive_stats_filled_["StatisticsUpdated"] |=
stats.rtcp_stats.cumulative_lost != 0 ||
stats.rtcp_stats.extended_max_sequence_number != 0 ||
stats.rtcp_stats.fraction_lost != 0 || stats.rtcp_stats.jitter != 0;
receive_stats_filled_["DataCountersUpdated"] |=
stats.rtp_stats.transmitted.payload_bytes != 0 ||
stats.rtp_stats.fec.packets != 0 ||
stats.rtp_stats.transmitted.header_bytes != 0 ||
stats.rtp_stats.transmitted.packets != 0 ||
stats.rtp_stats.transmitted.padding_bytes != 0 ||
stats.rtp_stats.retransmitted.packets != 0;
receive_stats_filled_["CodecStats"] |=
stats.avg_delay_ms != 0 || stats.discarded_packets != 0;
receive_stats_filled_["FrameCounts"] |=
stats.frame_counts.key_frames != 0 ||
stats.frame_counts.delta_frames != 0;
receive_stats_filled_["CName"] |= stats.c_name != "";
return AllStatsFilled(receive_stats_filled_);
}
bool CheckSendStats() {
assert(send_stream_ != NULL);
VideoSendStream::Stats stats = send_stream_->GetStats();
send_stats_filled_["NumStreams"] |=
stats.substreams.size() == expected_send_ssrcs_.size();
for (std::map<uint32_t, SsrcStats>::const_iterator it =
stats.substreams.begin();
it != stats.substreams.end();
++it) {
EXPECT_TRUE(expected_send_ssrcs_.find(it->first) !=
expected_send_ssrcs_.end());
send_stats_filled_[CompoundKey("IncomingRate", it->first)] |=
stats.input_frame_rate != 0;
const SsrcStats& stream_stats = it->second;
send_stats_filled_[CompoundKey("StatisticsUpdated", it->first)] |=
stream_stats.rtcp_stats.cumulative_lost != 0 ||
stream_stats.rtcp_stats.extended_max_sequence_number != 0 ||
stream_stats.rtcp_stats.fraction_lost != 0;
send_stats_filled_[CompoundKey("DataCountersUpdated", it->first)] |=
stream_stats.rtp_stats.fec.packets != 0 ||
stream_stats.rtp_stats.transmitted.padding_bytes != 0 ||
stream_stats.rtp_stats.retransmitted.packets != 0 ||
stream_stats.rtp_stats.transmitted.packets != 0;
send_stats_filled_[CompoundKey("BitrateStatisticsObserver",
it->first)] |=
stream_stats.total_bitrate_bps != 0;
send_stats_filled_[CompoundKey("FrameCountObserver", it->first)] |=
stream_stats.frame_counts.delta_frames != 0 ||
stream_stats.frame_counts.key_frames != 0;
send_stats_filled_[CompoundKey("OutgoingRate", it->first)] |=
stats.encode_frame_rate != 0;
send_stats_filled_[CompoundKey("Delay", it->first)] |=
stream_stats.avg_delay_ms != 0 || stream_stats.max_delay_ms != 0;
}
return AllStatsFilled(send_stats_filled_);
}
std::string CompoundKey(const char* name, uint32_t ssrc) {
std::ostringstream oss;
oss << name << "_" << ssrc;
return oss.str();
}
bool AllStatsFilled(const std::map<std::string, bool>& stats_map) {
for (std::map<std::string, bool>::const_iterator it = stats_map.begin();
it != stats_map.end();
++it) {
if (!it->second)
return false;
}
return true;
}
Call::Config GetSenderCallConfig() OVERRIDE {
Call::Config config = EndToEndTest::GetSenderCallConfig();
config.stream_bitrates.start_bitrate_bps = kStartBitrateBps;
return config;
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->pre_encode_callback = this; // Used to inject delay.
send_config->rtp.c_name = "SomeCName";
expected_receive_ssrc_ = (*receive_configs)[0].rtp.local_ssrc;
const std::vector<uint32_t>& ssrcs = send_config->rtp.ssrcs;
for (size_t i = 0; i < ssrcs.size(); ++i)
expected_send_ssrcs_.insert(ssrcs[i]);
expected_cname_ = send_config->rtp.c_name;
}
virtual size_t GetNumStreams() const OVERRIDE { return kNumSsrcs; }
virtual void OnStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) OVERRIDE {
send_stream_ = send_stream;
receive_stream_ = receive_streams[0];
}
virtual void PerformTest() OVERRIDE {
Clock* clock = Clock::GetRealTimeClock();
int64_t now = clock->TimeInMilliseconds();
int64_t stop_time = now + test::CallTest::kLongTimeoutMs;
bool receive_ok = false;
bool send_ok = false;
while (now < stop_time) {
if (!receive_ok)
receive_ok = CheckReceiveStats();
if (!send_ok)
send_ok = CheckSendStats();
if (receive_ok && send_ok)
return;
int64_t time_until_timout_ = stop_time - now;
if (time_until_timout_ > 0)
check_stats_event_->Wait(time_until_timout_);
now = clock->TimeInMilliseconds();
}
ADD_FAILURE() << "Timed out waiting for filled stats.";
for (std::map<std::string, bool>::const_iterator it =
receive_stats_filled_.begin();
it != receive_stats_filled_.end();
++it) {
if (!it->second) {
ADD_FAILURE() << "Missing receive stats: " << it->first;
}
}
for (std::map<std::string, bool>::const_iterator it =
send_stats_filled_.begin();
it != send_stats_filled_.end();
++it) {
if (!it->second) {
ADD_FAILURE() << "Missing send stats: " << it->first;
}
}
}
VideoReceiveStream* receive_stream_;
std::map<std::string, bool> receive_stats_filled_;
VideoSendStream* send_stream_;
std::map<std::string, bool> send_stats_filled_;
uint32_t expected_receive_ssrc_;
std::set<uint32_t> expected_send_ssrcs_;
std::string expected_cname_;
scoped_ptr<EventWrapper> check_stats_event_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceiverReferenceTimeReportEnabled) {
TestXrReceiverReferenceTimeReport(true);
}
TEST_F(EndToEndTest, ReceiverReferenceTimeReportDisabled) {
TestXrReceiverReferenceTimeReport(false);
}
TEST_F(EndToEndTest, TestReceivedRtpPacketStats) {
static const size_t kNumRtpPacketsToSend = 5;
class ReceivedRtpStatsObserver : public test::EndToEndTest {
public:
ReceivedRtpStatsObserver()
: EndToEndTest(kDefaultTimeoutMs),
receive_stream_(NULL),
sent_rtp_(0) {}
private:
virtual void OnStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) OVERRIDE {
receive_stream_ = receive_streams[0];
}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
if (sent_rtp_ >= kNumRtpPacketsToSend) {
VideoReceiveStream::Stats stats = receive_stream_->GetStats();
if (kNumRtpPacketsToSend == stats.rtp_stats.transmitted.packets) {
observation_complete_->Set();
}
return DROP_PACKET;
}
++sent_rtp_;
return SEND_PACKET;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while verifying number of received RTP packets.";
}
VideoReceiveStream* receive_stream_;
uint32_t sent_rtp_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, SendsSetSsrc) { TestSendsSetSsrcs(1, false); }
TEST_F(EndToEndTest, SendsSetSimulcastSsrcs) {
TestSendsSetSsrcs(kNumSsrcs, false);
}
TEST_F(EndToEndTest, CanSwitchToUseAllSsrcs) {
TestSendsSetSsrcs(kNumSsrcs, true);
}
TEST_F(EndToEndTest, DISABLED_RedundantPayloadsTransmittedOnAllSsrcs) {
class ObserveRedundantPayloads: public test::EndToEndTest {
public:
ObserveRedundantPayloads()
: EndToEndTest(kDefaultTimeoutMs), ssrcs_to_observe_(kNumSsrcs) {
for (size_t i = 0; i < kNumSsrcs; ++i) {
registered_rtx_ssrc_[kSendRtxSsrcs[i]] = true;
}
}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
if (!registered_rtx_ssrc_[header.ssrc])
return SEND_PACKET;
EXPECT_LE(header.headerLength + header.paddingLength, length);
const bool packet_is_redundant_payload =
header.headerLength + header.paddingLength < length;
if (!packet_is_redundant_payload)
return SEND_PACKET;
if (!observed_redundant_retransmission_[header.ssrc]) {
observed_redundant_retransmission_[header.ssrc] = true;
if (--ssrcs_to_observe_ == 0)
observation_complete_->Set();
}
return SEND_PACKET;
}
virtual size_t GetNumStreams() const OVERRIDE { return kNumSsrcs; }
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
// Set low simulcast bitrates to not have to wait for bandwidth ramp-up.
for (size_t i = 0; i < encoder_config->streams.size(); ++i) {
encoder_config->streams[i].min_bitrate_bps = 10000;
encoder_config->streams[i].target_bitrate_bps = 15000;
encoder_config->streams[i].max_bitrate_bps = 20000;
}
send_config->rtp.rtx.payload_type = kSendRtxPayloadType;
for (size_t i = 0; i < kNumSsrcs; ++i)
send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[i]);
// Significantly higher than max bitrates for all video streams -> forcing
// padding to trigger redundant padding on all RTX SSRCs.
encoder_config->min_transmit_bitrate_bps = 100000;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, Wait())
<< "Timed out while waiting for redundant payloads on all SSRCs.";
}
private:
size_t ssrcs_to_observe_;
std::map<uint32_t, bool> observed_redundant_retransmission_;
std::map<uint32_t, bool> registered_rtx_ssrc_;
} test;
RunBaseTest(&test);
}
void EndToEndTest::TestRtpStatePreservation(bool use_rtx) {
static const uint32_t kMaxSequenceNumberGap = 100;
static const uint64_t kMaxTimestampGap = kDefaultTimeoutMs * 90;
class RtpSequenceObserver : public test::RtpRtcpObserver {
public:
explicit RtpSequenceObserver(bool use_rtx)
: test::RtpRtcpObserver(kDefaultTimeoutMs),
crit_(CriticalSectionWrapper::CreateCriticalSection()),
ssrcs_to_observe_(kNumSsrcs) {
for (size_t i = 0; i < kNumSsrcs; ++i) {
configured_ssrcs_[kSendSsrcs[i]] = true;
if (use_rtx)
configured_ssrcs_[kSendRtxSsrcs[i]] = true;
}
}
void ResetExpectedSsrcs(size_t num_expected_ssrcs) {
CriticalSectionScoped lock(crit_.get());
ssrc_observed_.clear();
ssrcs_to_observe_ = num_expected_ssrcs;
}
private:
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
const uint32_t ssrc = header.ssrc;
const uint16_t sequence_number = header.sequenceNumber;
const uint32_t timestamp = header.timestamp;
const bool only_padding =
header.headerLength + header.paddingLength == length;
EXPECT_TRUE(configured_ssrcs_[ssrc])
<< "Received SSRC that wasn't configured: " << ssrc;
std::map<uint32_t, uint16_t>::iterator it =
last_observed_sequence_number_.find(header.ssrc);
if (it == last_observed_sequence_number_.end()) {
last_observed_sequence_number_[ssrc] = sequence_number;
last_observed_timestamp_[ssrc] = timestamp;
} else {
// Verify sequence numbers are reasonably close.
uint32_t extended_sequence_number = sequence_number;
// Check for roll-over.
if (sequence_number < last_observed_sequence_number_[ssrc])
extended_sequence_number += 0xFFFFu + 1;
EXPECT_LE(
extended_sequence_number - last_observed_sequence_number_[ssrc],
kMaxSequenceNumberGap)
<< "Gap in sequence numbers ("
<< last_observed_sequence_number_[ssrc] << " -> " << sequence_number
<< ") too large for SSRC: " << ssrc << ".";
last_observed_sequence_number_[ssrc] = sequence_number;
// TODO(pbos): Remove this check if we ever have monotonically
// increasing timestamps. Right now padding packets add a delta which
// can cause reordering between padding packets and regular packets,
// hence we drop padding-only packets to not flake.
if (only_padding) {
// Verify that timestamps are reasonably close.
uint64_t extended_timestamp = timestamp;
// Check for roll-over.
if (timestamp < last_observed_timestamp_[ssrc])
extended_timestamp += static_cast<uint64_t>(0xFFFFFFFFu) + 1;
EXPECT_LE(extended_timestamp - last_observed_timestamp_[ssrc],
kMaxTimestampGap)
<< "Gap in timestamps (" << last_observed_timestamp_[ssrc]
<< " -> " << timestamp << ") too large for SSRC: " << ssrc << ".";
}
last_observed_timestamp_[ssrc] = timestamp;
}
CriticalSectionScoped lock(crit_.get());
// Wait for media packets on all ssrcs.
if (!ssrc_observed_[ssrc] && !only_padding) {
ssrc_observed_[ssrc] = true;
if (--ssrcs_to_observe_ == 0)
observation_complete_->Set();
}
return SEND_PACKET;
}
std::map<uint32_t, uint16_t> last_observed_sequence_number_;
std::map<uint32_t, uint32_t> last_observed_timestamp_;
std::map<uint32_t, bool> configured_ssrcs_;
scoped_ptr<CriticalSectionWrapper> crit_;
size_t ssrcs_to_observe_ GUARDED_BY(crit_);
std::map<uint32_t, bool> ssrc_observed_ GUARDED_BY(crit_);
} observer(use_rtx);
CreateCalls(Call::Config(observer.SendTransport()),
Call::Config(observer.ReceiveTransport()));
observer.SetReceivers(sender_call_->Receiver(), NULL);
CreateSendConfig(kNumSsrcs);
if (use_rtx) {
for (size_t i = 0; i < kNumSsrcs; ++i) {
send_config_.rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[i]);
}
send_config_.rtp.rtx.payload_type = kSendRtxPayloadType;
}
// Lower bitrates so that all streams send initially.
for (size_t i = 0; i < encoder_config_.streams.size(); ++i) {
encoder_config_.streams[i].min_bitrate_bps = 10000;
encoder_config_.streams[i].target_bitrate_bps = 15000;
encoder_config_.streams[i].max_bitrate_bps = 20000;
}
// Use the same total bitrates when sending a single stream to avoid lowering
// the bitrate estimate and requiring a subsequent rampup.
VideoEncoderConfig one_stream = encoder_config_;
one_stream.streams.resize(1);
for (size_t i = 1; i < encoder_config_.streams.size(); ++i) {
one_stream.streams.front().min_bitrate_bps +=
encoder_config_.streams[i].min_bitrate_bps;
one_stream.streams.front().target_bitrate_bps +=
encoder_config_.streams[i].target_bitrate_bps;
one_stream.streams.front().max_bitrate_bps +=
encoder_config_.streams[i].max_bitrate_bps;
}
CreateMatchingReceiveConfigs();
CreateStreams();
CreateFrameGeneratorCapturer();
Start();
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out waiting for all SSRCs to send packets.";
// Test stream resetting more than once to make sure that the state doesn't
// get set once (this could be due to using std::map::insert for instance).
for (size_t i = 0; i < 3; ++i) {
frame_generator_capturer_->Stop();
sender_call_->DestroyVideoSendStream(send_stream_);
// Re-create VideoSendStream with only one stream.
send_stream_ =
sender_call_->CreateVideoSendStream(send_config_, one_stream);
send_stream_->Start();
CreateFrameGeneratorCapturer();
frame_generator_capturer_->Start();
observer.ResetExpectedSsrcs(1);
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out waiting for single RTP packet.";
// Reconfigure back to use all streams.
send_stream_->ReconfigureVideoEncoder(encoder_config_);
observer.ResetExpectedSsrcs(kNumSsrcs);
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out waiting for all SSRCs to send packets.";
// Reconfigure down to one stream.
send_stream_->ReconfigureVideoEncoder(one_stream);
observer.ResetExpectedSsrcs(1);
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out waiting for single RTP packet.";
// Reconfigure back to use all streams.
send_stream_->ReconfigureVideoEncoder(encoder_config_);
observer.ResetExpectedSsrcs(kNumSsrcs);
EXPECT_EQ(kEventSignaled, observer.Wait())
<< "Timed out waiting for all SSRCs to send packets.";
}
observer.StopSending();
Stop();
DestroyStreams();
}
TEST_F(EndToEndTest, DISABLED_RestartingSendStreamPreservesRtpState) {
TestRtpStatePreservation(false);
}
TEST_F(EndToEndTest, RestartingSendStreamPreservesRtpStatesWithRtx) {
TestRtpStatePreservation(true);
}
TEST_F(EndToEndTest, RespectsNetworkState) {
// TODO(pbos): Remove accepted downtime packets etc. when signaling network
// down blocks until no more packets will be sent.
// Pacer will send from its packet list and then send required padding before
// checking paused_ again. This should be enough for one round of pacing,
// otherwise increase.
static const int kNumAcceptedDowntimeRtp = 5;
// A single RTCP may be in the pipeline.
static const int kNumAcceptedDowntimeRtcp = 1;
class NetworkStateTest : public test::EndToEndTest, public test::FakeEncoder {
public:
NetworkStateTest()
: EndToEndTest(kDefaultTimeoutMs),
FakeEncoder(Clock::GetRealTimeClock()),
test_crit_(CriticalSectionWrapper::CreateCriticalSection()),
encoded_frames_(EventWrapper::Create()),
sender_packets_(EventWrapper::Create()),
receiver_packets_(EventWrapper::Create()),
sender_state_(Call::kNetworkUp),
down_sender_rtp_(0),
down_sender_rtcp_(0),
receiver_state_(Call::kNetworkUp),
down_receiver_rtcp_(0),
down_frames_(0) {}
virtual Action OnSendRtp(const uint8_t* packet, size_t length) OVERRIDE {
CriticalSectionScoped lock(test_crit_.get());
if (sender_state_ == Call::kNetworkDown) {
++down_sender_rtp_;
EXPECT_LE(down_sender_rtp_, kNumAcceptedDowntimeRtp)
<< "RTP sent during sender-side downtime.";
if (down_sender_rtp_> kNumAcceptedDowntimeRtp)
sender_packets_->Set();
} else {
sender_packets_->Set();
}
return SEND_PACKET;
}
virtual Action OnSendRtcp(const uint8_t* packet, size_t length) OVERRIDE {
CriticalSectionScoped lock(test_crit_.get());
if (sender_state_ == Call::kNetworkDown) {
++down_sender_rtcp_;
EXPECT_LE(down_sender_rtcp_, kNumAcceptedDowntimeRtcp)
<< "RTCP sent during sender-side downtime.";
if (down_sender_rtcp_ > kNumAcceptedDowntimeRtcp)
sender_packets_->Set();
} else {
sender_packets_->Set();
}
return SEND_PACKET;
}
virtual Action OnReceiveRtp(const uint8_t* packet, size_t length) OVERRIDE {
ADD_FAILURE() << "Unexpected receiver RTP, should not be sending.";
return SEND_PACKET;
}
virtual Action OnReceiveRtcp(const uint8_t* packet,
size_t length) OVERRIDE {
CriticalSectionScoped lock(test_crit_.get());
if (receiver_state_ == Call::kNetworkDown) {
++down_receiver_rtcp_;
EXPECT_LE(down_receiver_rtcp_, kNumAcceptedDowntimeRtcp)
<< "RTCP sent during receiver-side downtime.";
if (down_receiver_rtcp_ > kNumAcceptedDowntimeRtcp)
receiver_packets_->Set();
} else {
receiver_packets_->Set();
}
return SEND_PACKET;
}
virtual void OnCallsCreated(Call* sender_call,
Call* receiver_call) OVERRIDE {
sender_call_ = sender_call;
receiver_call_ = receiver_call;
}
virtual void ModifyConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) OVERRIDE {
send_config->encoder_settings.encoder = this;
}
virtual void PerformTest() OVERRIDE {
EXPECT_EQ(kEventSignaled, encoded_frames_->Wait(kDefaultTimeoutMs))
<< "No frames received by the encoder.";
EXPECT_EQ(kEventSignaled, sender_packets_->Wait(kDefaultTimeoutMs))
<< "Timed out waiting for send-side packets.";
EXPECT_EQ(kEventSignaled, receiver_packets_->Wait(kDefaultTimeoutMs))
<< "Timed out waiting for receiver-side packets.";
// Sender-side network down.
sender_call_->SignalNetworkState(Call::kNetworkDown);
{
CriticalSectionScoped lock(test_crit_.get());
sender_packets_->Reset(); // Earlier packets should not count.
sender_state_ = Call::kNetworkDown;
}
EXPECT_EQ(kEventTimeout, sender_packets_->Wait(kSilenceTimeoutMs))
<< "Packets sent during sender-network downtime.";
EXPECT_EQ(kEventSignaled, receiver_packets_->Wait(kDefaultTimeoutMs))
<< "Timed out waiting for receiver-side packets.";
// Receiver-side network down.
receiver_call_->SignalNetworkState(Call::kNetworkDown);
{
CriticalSectionScoped lock(test_crit_.get());
receiver_packets_->Reset(); // Earlier packets should not count.
receiver_state_ = Call::kNetworkDown;
}
EXPECT_EQ(kEventTimeout, receiver_packets_->Wait(kSilenceTimeoutMs))
<< "Packets sent during receiver-network downtime.";
// Network back up again for both.
{
CriticalSectionScoped lock(test_crit_.get());
sender_packets_->Reset(); // Earlier packets should not count.
receiver_packets_->Reset(); // Earlier packets should not count.
sender_state_ = receiver_state_ = Call::kNetworkUp;
}
sender_call_->SignalNetworkState(Call::kNetworkUp);
receiver_call_->SignalNetworkState(Call::kNetworkUp);
EXPECT_EQ(kEventSignaled, sender_packets_->Wait(kDefaultTimeoutMs))
<< "Timed out waiting for send-side packets.";
EXPECT_EQ(kEventSignaled, receiver_packets_->Wait(kDefaultTimeoutMs))
<< "Timed out waiting for receiver-side packets.";
}
virtual int32_t Encode(const I420VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<VideoFrameType>* frame_types)
OVERRIDE {
{
CriticalSectionScoped lock(test_crit_.get());
if (sender_state_ == Call::kNetworkDown) {
++down_frames_;
EXPECT_LE(down_frames_, 1)
<< "Encoding more than one frame while network is down.";
if (down_frames_ > 1)
encoded_frames_->Set();
} else {
encoded_frames_->Set();
}
}
return test::FakeEncoder::Encode(
input_image, codec_specific_info, frame_types);
}
private:
const scoped_ptr<CriticalSectionWrapper> test_crit_;
scoped_ptr<EventWrapper> encoded_frames_;
scoped_ptr<EventWrapper> sender_packets_;
scoped_ptr<EventWrapper> receiver_packets_;
Call* sender_call_;
Call* receiver_call_;
Call::NetworkState sender_state_ GUARDED_BY(test_crit_);
int down_sender_rtp_ GUARDED_BY(test_crit_);
int down_sender_rtcp_ GUARDED_BY(test_crit_);
Call::NetworkState receiver_state_ GUARDED_BY(test_crit_);
int down_receiver_rtcp_ GUARDED_BY(test_crit_);
int down_frames_ GUARDED_BY(test_crit_);
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, CallReportsRttForSender) {
static const int kSendDelayMs = 30;
static const int kReceiveDelayMs = 70;
FakeNetworkPipe::Config config;
config.queue_delay_ms = kSendDelayMs;
test::DirectTransport sender_transport(config);
config.queue_delay_ms = kReceiveDelayMs;
test::DirectTransport receiver_transport(config);
CreateCalls(Call::Config(&sender_transport),
Call::Config(&receiver_transport));
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
CreateStreams();
CreateFrameGeneratorCapturer();
Start();
int64_t start_time_ms = clock_->TimeInMilliseconds();
while (true) {
Call::Stats stats = sender_call_->GetStats();
ASSERT_GE(start_time_ms + kDefaultTimeoutMs,
clock_->TimeInMilliseconds())
<< "No RTT stats before timeout!";
if (stats.rtt_ms != -1) {
EXPECT_GE(stats.rtt_ms, kSendDelayMs + kReceiveDelayMs);
break;
}
SleepMs(10);
}
Stop();
DestroyStreams();
}
TEST_F(EndToEndTest, NewSendStreamsRespectNetworkDown) {
class UnusedEncoder : public test::FakeEncoder {
public:
UnusedEncoder() : FakeEncoder(Clock::GetRealTimeClock()) {}
virtual int32_t Encode(const I420VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<VideoFrameType>* frame_types)
OVERRIDE {
ADD_FAILURE() << "Unexpected frame encode.";
return test::FakeEncoder::Encode(
input_image, codec_specific_info, frame_types);
}
};
UnusedTransport transport;
CreateSenderCall(Call::Config(&transport));
sender_call_->SignalNetworkState(Call::kNetworkDown);
CreateSendConfig(1);
UnusedEncoder unused_encoder;
send_config_.encoder_settings.encoder = &unused_encoder;
CreateStreams();
CreateFrameGeneratorCapturer();
Start();
SleepMs(kSilenceTimeoutMs);
Stop();
DestroyStreams();
}
TEST_F(EndToEndTest, NewReceiveStreamsRespectNetworkDown) {
test::DirectTransport sender_transport;
CreateSenderCall(Call::Config(&sender_transport));
UnusedTransport transport;
CreateReceiverCall(Call::Config(&transport));
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_call_->SignalNetworkState(Call::kNetworkDown);
CreateSendConfig(1);
CreateMatchingReceiveConfigs();
CreateStreams();
CreateFrameGeneratorCapturer();
Start();
SleepMs(kSilenceTimeoutMs);
Stop();
sender_transport.StopSending();
DestroyStreams();
}
// TODO(pbos): Remove this regression test when VideoEngine is no longer used as
// a backend. This is to test that we hand channels back properly.
TEST_F(EndToEndTest, CanCreateAndDestroyManyVideoStreams) {
test::NullTransport transport;
scoped_ptr<Call> call(Call::Create(Call::Config(&transport)));
test::FakeDecoder fake_decoder;
test::FakeEncoder fake_encoder(Clock::GetRealTimeClock());
for (size_t i = 0; i < 100; ++i) {
VideoSendStream::Config send_config;
send_config.encoder_settings.encoder = &fake_encoder;
send_config.encoder_settings.payload_name = "FAKE";
send_config.encoder_settings.payload_type = 123;
VideoEncoderConfig encoder_config;
encoder_config.streams = test::CreateVideoStreams(1);
send_config.rtp.ssrcs.push_back(1);
VideoSendStream* send_stream =
call->CreateVideoSendStream(send_config, encoder_config);
call->DestroyVideoSendStream(send_stream);
VideoReceiveStream::Config receive_config;
receive_config.rtp.remote_ssrc = 1;
receive_config.rtp.local_ssrc = kReceiverLocalSsrc;
VideoReceiveStream::Decoder decoder;
decoder.decoder = &fake_decoder;
decoder.payload_type = 123;
decoder.payload_name = "FAKE";
receive_config.decoders.push_back(decoder);
VideoReceiveStream* receive_stream =
call->CreateVideoReceiveStream(receive_config);
call->DestroyVideoReceiveStream(receive_stream);
}
}
} // namespace webrtc