| /* |
| * This code implements the MD5 message-digest algorithm. |
| * The algorithm is due to Ron Rivest. This code was |
| * written by Colin Plumb in 1993, no copyright is claimed. |
| * This code is in the public domain; do with it what you wish. |
| * |
| * Equivalent code is available from RSA Data Security, Inc. |
| * This code has been tested against that, and is equivalent, |
| * except that you don't need to include two pages of legalese |
| * with every copy. |
| * |
| * To compute the message digest of a chunk of bytes, declare an |
| * MD5Context structure, pass it to MD5Init, call MD5Update as |
| * needed on buffers full of bytes, and then call MD5Final, which |
| * will fill a supplied 16-byte array with the digest. |
| */ |
| |
| // Changes from original C code: |
| // Ported to C++, type casting, Google code style. |
| |
| #include "webrtc/rtc_base/md5.h" |
| |
| // TODO: Avoid memcmpy - hash directly from memory. |
| #include <string.h> // for memcpy(). |
| |
| #include "webrtc/rtc_base/byteorder.h" // for RTC_ARCH_CPU_LITTLE_ENDIAN. |
| |
| namespace rtc { |
| |
| #ifdef RTC_ARCH_CPU_LITTLE_ENDIAN |
| #define ByteReverse(buf, len) // Nothing. |
| #else // RTC_ARCH_CPU_BIG_ENDIAN |
| static void ByteReverse(uint32_t* buf, int len) { |
| for (int i = 0; i < len; ++i) { |
| buf[i] = rtc::GetLE32(&buf[i]); |
| } |
| } |
| #endif |
| |
| // Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| // initialization constants. |
| void MD5Init(MD5Context* ctx) { |
| ctx->buf[0] = 0x67452301; |
| ctx->buf[1] = 0xefcdab89; |
| ctx->buf[2] = 0x98badcfe; |
| ctx->buf[3] = 0x10325476; |
| ctx->bits[0] = 0; |
| ctx->bits[1] = 0; |
| } |
| |
| // Update context to reflect the concatenation of another buffer full of bytes. |
| void MD5Update(MD5Context* ctx, const uint8_t* buf, size_t len) { |
| // Update bitcount. |
| uint32_t t = ctx->bits[0]; |
| if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) { |
| ctx->bits[1]++; // Carry from low to high. |
| } |
| ctx->bits[1] += static_cast<uint32_t>(len >> 29); |
| t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data. |
| |
| // Handle any leading odd-sized chunks. |
| if (t) { |
| uint8_t* p = reinterpret_cast<uint8_t*>(ctx->in) + t; |
| |
| t = 64-t; |
| if (len < t) { |
| memcpy(p, buf, len); |
| return; |
| } |
| memcpy(p, buf, t); |
| ByteReverse(ctx->in, 16); |
| MD5Transform(ctx->buf, ctx->in); |
| buf += t; |
| len -= t; |
| } |
| |
| // Process data in 64-byte chunks. |
| while (len >= 64) { |
| memcpy(ctx->in, buf, 64); |
| ByteReverse(ctx->in, 16); |
| MD5Transform(ctx->buf, ctx->in); |
| buf += 64; |
| len -= 64; |
| } |
| |
| // Handle any remaining bytes of data. |
| memcpy(ctx->in, buf, len); |
| } |
| |
| // Final wrapup - pad to 64-byte boundary with the bit pattern. |
| // 1 0* (64-bit count of bits processed, MSB-first) |
| void MD5Final(MD5Context* ctx, uint8_t digest[16]) { |
| // Compute number of bytes mod 64. |
| uint32_t count = (ctx->bits[0] >> 3) & 0x3F; |
| |
| // Set the first char of padding to 0x80. This is safe since there is |
| // always at least one byte free. |
| uint8_t* p = reinterpret_cast<uint8_t*>(ctx->in) + count; |
| *p++ = 0x80; |
| |
| // Bytes of padding needed to make 64 bytes. |
| count = 64 - 1 - count; |
| |
| // Pad out to 56 mod 64. |
| if (count < 8) { |
| // Two lots of padding: Pad the first block to 64 bytes. |
| memset(p, 0, count); |
| ByteReverse(ctx->in, 16); |
| MD5Transform(ctx->buf, ctx->in); |
| |
| // Now fill the next block with 56 bytes. |
| memset(ctx->in, 0, 56); |
| } else { |
| // Pad block to 56 bytes. |
| memset(p, 0, count - 8); |
| } |
| ByteReverse(ctx->in, 14); |
| |
| // Append length in bits and transform. |
| ctx->in[14] = ctx->bits[0]; |
| ctx->in[15] = ctx->bits[1]; |
| |
| MD5Transform(ctx->buf, ctx->in); |
| ByteReverse(ctx->buf, 4); |
| memcpy(digest, ctx->buf, 16); |
| memset(ctx, 0, sizeof(*ctx)); // In case it's sensitive. |
| } |
| |
| // The four core functions - F1 is optimized somewhat. |
| // #define F1(x, y, z) (x & y | ~x & z) |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define F2(x, y, z) F1(z, x, y) |
| #define F3(x, y, z) (x ^ y ^ z) |
| #define F4(x, y, z) (y ^ (x | ~z)) |
| |
| // This is the central step in the MD5 algorithm. |
| #define MD5STEP(f, w, x, y, z, data, s) \ |
| (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) |
| |
| // The core of the MD5 algorithm, this alters an existing MD5 hash to |
| // reflect the addition of 16 longwords of new data. MD5Update blocks |
| // the data and converts bytes into longwords for this routine. |
| void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { |
| uint32_t a = buf[0]; |
| uint32_t b = buf[1]; |
| uint32_t c = buf[2]; |
| uint32_t d = buf[3]; |
| |
| MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7); |
| MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12); |
| MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17); |
| MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22); |
| MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7); |
| MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12); |
| MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17); |
| MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22); |
| MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7); |
| MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12); |
| MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
| MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
| MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
| MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
| MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
| MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
| |
| MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5); |
| MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9); |
| MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
| MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20); |
| MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5); |
| MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
| MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
| MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20); |
| MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5); |
| MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
| MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14); |
| MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20); |
| MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
| MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9); |
| MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14); |
| MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
| |
| MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4); |
| MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11); |
| MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
| MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
| MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4); |
| MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11); |
| MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16); |
| MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
| MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
| MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11); |
| MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16); |
| MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23); |
| MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4); |
| MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
| MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
| MD5STEP(F3, b, c, d, a, in[ 2] + 0xc4ac5665, 23); |
| |
| MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6); |
| MD5STEP(F4, d, a, b, c, in[ 7] + 0x432aff97, 10); |
| MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
| MD5STEP(F4, b, c, d, a, in[ 5] + 0xfc93a039, 21); |
| MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
| MD5STEP(F4, d, a, b, c, in[ 3] + 0x8f0ccc92, 10); |
| MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
| MD5STEP(F4, b, c, d, a, in[ 1] + 0x85845dd1, 21); |
| MD5STEP(F4, a, b, c, d, in[ 8] + 0x6fa87e4f, 6); |
| MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
| MD5STEP(F4, c, d, a, b, in[ 6] + 0xa3014314, 15); |
| MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
| MD5STEP(F4, a, b, c, d, in[ 4] + 0xf7537e82, 6); |
| MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
| MD5STEP(F4, c, d, a, b, in[ 2] + 0x2ad7d2bb, 15); |
| MD5STEP(F4, b, c, d, a, in[ 9] + 0xeb86d391, 21); |
| buf[0] += a; |
| buf[1] += b; |
| buf[2] += c; |
| buf[3] += d; |
| } |
| |
| } // namespace rtc |