| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/rtc_base/win32.h" |
| |
| #include <winsock2.h> |
| #include <ws2tcpip.h> |
| #include <algorithm> |
| |
| #include "webrtc/rtc_base/arraysize.h" |
| #include "webrtc/rtc_base/basictypes.h" |
| #include "webrtc/rtc_base/byteorder.h" |
| #include "webrtc/rtc_base/checks.h" |
| #include "webrtc/rtc_base/logging.h" |
| |
| namespace rtc { |
| |
| // Helper function declarations for inet_ntop/inet_pton. |
| static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size); |
| static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size); |
| static int inet_pton_v4(const char* src, void* dst); |
| static int inet_pton_v6(const char* src, void* dst); |
| |
| // Implementation of inet_ntop (create a printable representation of an |
| // ip address). XP doesn't have its own inet_ntop, and |
| // WSAAddressToString requires both IPv6 to be installed and for Winsock |
| // to be initialized. |
| const char* win32_inet_ntop(int af, const void *src, |
| char* dst, socklen_t size) { |
| if (!src || !dst) { |
| return nullptr; |
| } |
| switch (af) { |
| case AF_INET: { |
| return inet_ntop_v4(src, dst, size); |
| } |
| case AF_INET6: { |
| return inet_ntop_v6(src, dst, size); |
| } |
| } |
| return nullptr; |
| } |
| |
| // As above, but for inet_pton. Implements inet_pton for v4 and v6. |
| // Note that our inet_ntop will output normal 'dotted' v4 addresses only. |
| int win32_inet_pton(int af, const char* src, void* dst) { |
| if (!src || !dst) { |
| return 0; |
| } |
| if (af == AF_INET) { |
| return inet_pton_v4(src, dst); |
| } else if (af == AF_INET6) { |
| return inet_pton_v6(src, dst); |
| } |
| return -1; |
| } |
| |
| // Helper function for inet_ntop for IPv4 addresses. |
| // Outputs "dotted-quad" decimal notation. |
| const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) { |
| if (size < INET_ADDRSTRLEN) { |
| return nullptr; |
| } |
| const struct in_addr* as_in_addr = |
| reinterpret_cast<const struct in_addr*>(src); |
| rtc::sprintfn(dst, size, "%d.%d.%d.%d", |
| as_in_addr->S_un.S_un_b.s_b1, |
| as_in_addr->S_un.S_un_b.s_b2, |
| as_in_addr->S_un.S_un_b.s_b3, |
| as_in_addr->S_un.S_un_b.s_b4); |
| return dst; |
| } |
| |
| // Helper function for inet_ntop for IPv6 addresses. |
| const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) { |
| if (size < INET6_ADDRSTRLEN) { |
| return nullptr; |
| } |
| const uint16_t* as_shorts = reinterpret_cast<const uint16_t*>(src); |
| int runpos[8]; |
| int current = 1; |
| int max = 0; |
| int maxpos = -1; |
| int run_array_size = arraysize(runpos); |
| // Run over the address marking runs of 0s. |
| for (int i = 0; i < run_array_size; ++i) { |
| if (as_shorts[i] == 0) { |
| runpos[i] = current; |
| if (current > max) { |
| maxpos = i; |
| max = current; |
| } |
| ++current; |
| } else { |
| runpos[i] = -1; |
| current = 1; |
| } |
| } |
| |
| if (max > 0) { |
| int tmpmax = maxpos; |
| // Run back through, setting -1 for all but the longest run. |
| for (int i = run_array_size - 1; i >= 0; i--) { |
| if (i > tmpmax) { |
| runpos[i] = -1; |
| } else if (runpos[i] == -1) { |
| // We're less than maxpos, we hit a -1, so the 'good' run is done. |
| // Setting tmpmax -1 means all remaining positions get set to -1. |
| tmpmax = -1; |
| } |
| } |
| } |
| |
| char* cursor = dst; |
| // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper. |
| // These addresses have an initial run of either eight zero-bytes followed |
| // by 0xFFFF, or an initial run of ten zero-bytes. |
| if (runpos[0] == 1 && (maxpos == 5 || |
| (maxpos == 4 && as_shorts[5] == 0xFFFF))) { |
| *cursor++ = ':'; |
| *cursor++ = ':'; |
| if (maxpos == 4) { |
| cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:"); |
| } |
| const struct in_addr* as_v4 = |
| reinterpret_cast<const struct in_addr*>(&(as_shorts[6])); |
| inet_ntop_v4(as_v4, cursor, |
| static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst))); |
| } else { |
| for (int i = 0; i < run_array_size; ++i) { |
| if (runpos[i] == -1) { |
| cursor += rtc::sprintfn(cursor, |
| INET6_ADDRSTRLEN - (cursor - dst), |
| "%x", NetworkToHost16(as_shorts[i])); |
| if (i != 7 && runpos[i + 1] != 1) { |
| *cursor++ = ':'; |
| } |
| } else if (runpos[i] == 1) { |
| // Entered the run; print the colons and skip the run. |
| *cursor++ = ':'; |
| *cursor++ = ':'; |
| i += (max - 1); |
| } |
| } |
| } |
| return dst; |
| } |
| |
| // Helper function for inet_pton for IPv4 addresses. |
| // |src| points to a character string containing an IPv4 network address in |
| // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number |
| // of up to three digits in the range 0 to 255. |
| // The address is converted and copied to dst, |
| // which must be sizeof(struct in_addr) (4) bytes (32 bits) long. |
| int inet_pton_v4(const char* src, void* dst) { |
| const int kIpv4AddressSize = 4; |
| int found = 0; |
| const char* src_pos = src; |
| unsigned char result[kIpv4AddressSize] = {0}; |
| |
| while (*src_pos != '\0') { |
| // strtol won't treat whitespace characters in the begining as an error, |
| // so check to ensure this is started with digit before passing to strtol. |
| if (!isdigit(*src_pos)) { |
| return 0; |
| } |
| char* end_pos; |
| long value = strtol(src_pos, &end_pos, 10); |
| if (value < 0 || value > 255 || src_pos == end_pos) { |
| return 0; |
| } |
| ++found; |
| if (found > kIpv4AddressSize) { |
| return 0; |
| } |
| result[found - 1] = static_cast<unsigned char>(value); |
| src_pos = end_pos; |
| if (*src_pos == '.') { |
| // There's more. |
| ++src_pos; |
| } else if (*src_pos != '\0') { |
| // If it's neither '.' nor '\0' then return fail. |
| return 0; |
| } |
| } |
| if (found != kIpv4AddressSize) { |
| return 0; |
| } |
| memcpy(dst, result, sizeof(result)); |
| return 1; |
| } |
| |
| // Helper function for inet_pton for IPv6 addresses. |
| int inet_pton_v6(const char* src, void* dst) { |
| // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex. |
| // Check for literal x in the input string. |
| const char* readcursor = src; |
| char c = *readcursor++; |
| while (c) { |
| if (c == 'x') { |
| return 0; |
| } |
| c = *readcursor++; |
| } |
| readcursor = src; |
| |
| struct in6_addr an_addr; |
| memset(&an_addr, 0, sizeof(an_addr)); |
| |
| uint16_t* addr_cursor = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[0]); |
| uint16_t* addr_end = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[16]); |
| bool seencompressed = false; |
| |
| // Addresses that start with "::" (i.e., a run of initial zeros) or |
| // "::ffff:" can potentially be IPv4 mapped or compatibility addresses. |
| // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1"). |
| if (*readcursor == ':' && *(readcursor+1) == ':' && |
| *(readcursor + 2) != 0) { |
| // Check for periods, which we'll take as a sign of v4 addresses. |
| const char* addrstart = readcursor + 2; |
| if (rtc::strchr(addrstart, ".")) { |
| const char* colon = rtc::strchr(addrstart, "::"); |
| if (colon) { |
| uint16_t a_short; |
| int bytesread = 0; |
| if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 || |
| a_short != 0xFFFF || bytesread != 4) { |
| // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't. |
| return 0; |
| } else { |
| an_addr.s6_addr[10] = 0xFF; |
| an_addr.s6_addr[11] = 0xFF; |
| addrstart = colon + 1; |
| } |
| } |
| struct in_addr v4; |
| if (inet_pton_v4(addrstart, &v4.s_addr)) { |
| memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4)); |
| memcpy(dst, &an_addr, sizeof(an_addr)); |
| return 1; |
| } else { |
| // Invalid v4 address. |
| return 0; |
| } |
| } |
| } |
| |
| // For addresses without a trailing IPv4 component ('normal' IPv6 addresses). |
| while (*readcursor != 0 && addr_cursor < addr_end) { |
| if (*readcursor == ':') { |
| if (*(readcursor + 1) == ':') { |
| if (seencompressed) { |
| // Can only have one compressed run of zeroes ("::") per address. |
| return 0; |
| } |
| // Hit a compressed run. Count colons to figure out how much of the |
| // address is skipped. |
| readcursor += 2; |
| const char* coloncounter = readcursor; |
| int coloncount = 0; |
| if (*coloncounter == 0) { |
| // Special case - trailing ::. |
| addr_cursor = addr_end; |
| } else { |
| while (*coloncounter) { |
| if (*coloncounter == ':') { |
| ++coloncount; |
| } |
| ++coloncounter; |
| } |
| // (coloncount + 1) is the number of shorts left in the address. |
| // If this number is greater than the number of available shorts, the |
| // address is malformed. |
| if (coloncount + 1 > addr_end - addr_cursor) { |
| return 0; |
| } |
| addr_cursor = addr_end - (coloncount + 1); |
| seencompressed = true; |
| } |
| } else { |
| ++readcursor; |
| } |
| } else { |
| uint16_t word; |
| int bytesread = 0; |
| if (sscanf(readcursor, "%4hx%n", &word, &bytesread) != 1) { |
| return 0; |
| } else { |
| *addr_cursor = HostToNetwork16(word); |
| ++addr_cursor; |
| readcursor += bytesread; |
| if (*readcursor != ':' && *readcursor != '\0') { |
| return 0; |
| } |
| } |
| } |
| } |
| |
| if (*readcursor != '\0' || addr_cursor < addr_end) { |
| // Catches addresses too short or too long. |
| return 0; |
| } |
| memcpy(dst, &an_addr, sizeof(an_addr)); |
| return 1; |
| } |
| |
| // |
| // Unix time is in seconds relative to 1/1/1970. So we compute the windows |
| // FILETIME of that time/date, then we add/subtract in appropriate units to |
| // convert to/from unix time. |
| // The units of FILETIME are 100ns intervals, so by multiplying by or dividing |
| // by 10000000, we can convert to/from seconds. |
| // |
| // FileTime = UnixTime*10000000 + FileTime(1970) |
| // UnixTime = (FileTime-FileTime(1970))/10000000 |
| // |
| |
| void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) { |
| RTC_DCHECK(nullptr != ut); |
| |
| // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off |
| // the difference. |
| SYSTEMTIME base_st; |
| memset(&base_st, 0, sizeof(base_st)); |
| base_st.wDay = 1; |
| base_st.wMonth = 1; |
| base_st.wYear = 1970; |
| |
| FILETIME base_ft; |
| SystemTimeToFileTime(&base_st, &base_ft); |
| |
| ULARGE_INTEGER base_ul, current_ul; |
| memcpy(&base_ul, &base_ft, sizeof(FILETIME)); |
| memcpy(¤t_ul, &ft, sizeof(FILETIME)); |
| |
| // Divide by big number to convert to seconds, then subtract out the 1970 |
| // base date value. |
| const ULONGLONG RATIO = 10000000; |
| *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO); |
| } |
| |
| void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) { |
| RTC_DCHECK(nullptr != ft); |
| |
| // FILETIME has an earlier date base than time_t (1/1/1970), so add in |
| // the difference. |
| SYSTEMTIME base_st; |
| memset(&base_st, 0, sizeof(base_st)); |
| base_st.wDay = 1; |
| base_st.wMonth = 1; |
| base_st.wYear = 1970; |
| |
| FILETIME base_ft; |
| SystemTimeToFileTime(&base_st, &base_ft); |
| |
| ULARGE_INTEGER base_ul; |
| memcpy(&base_ul, &base_ft, sizeof(FILETIME)); |
| |
| // Multiply by big number to convert to 100ns units, then add in the 1970 |
| // base date value. |
| const ULONGLONG RATIO = 10000000; |
| ULARGE_INTEGER current_ul; |
| current_ul.QuadPart = base_ul.QuadPart + static_cast<int64_t>(ut) * RATIO; |
| memcpy(ft, ¤t_ul, sizeof(FILETIME)); |
| } |
| |
| bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) { |
| // TODO: Integrate into fileutils.h |
| // TODO: Handle wide and non-wide cases via TCHAR? |
| // TODO: Skip \\?\ processing if the length is not > MAX_PATH? |
| // TODO: Write unittests |
| |
| // Convert to Utf16 |
| int wlen = |
| ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), |
| static_cast<int>(utf8.length() + 1), nullptr, 0); |
| if (0 == wlen) { |
| return false; |
| } |
| wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen); |
| if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), |
| static_cast<int>(utf8.length() + 1), |
| wfilename, wlen)) { |
| return false; |
| } |
| // Replace forward slashes with backslashes |
| std::replace(wfilename, wfilename + wlen, L'/', L'\\'); |
| // Convert to complete filename |
| DWORD full_len = ::GetFullPathName(wfilename, 0, nullptr, nullptr); |
| if (0 == full_len) { |
| return false; |
| } |
| wchar_t* filepart = nullptr; |
| wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6); |
| wchar_t* start = full_filename + 6; |
| if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) { |
| return false; |
| } |
| // Add long-path prefix |
| const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC"; |
| if ((start[0] != L'\\') || (start[1] != L'\\')) { |
| // Non-unc path: <pathname> |
| // Becomes: \\?\<pathname> |
| start -= 4; |
| RTC_DCHECK(start >= full_filename); |
| memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t)); |
| } else if (start[2] != L'?') { |
| // Unc path: \\<server>\<pathname> |
| // Becomes: \\?\UNC\<server>\<pathname> |
| start -= 6; |
| RTC_DCHECK(start >= full_filename); |
| memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t)); |
| } else { |
| // Already in long-path form. |
| } |
| filename->assign(start); |
| return true; |
| } |
| |
| bool GetOsVersion(int* major, int* minor, int* build) { |
| OSVERSIONINFO info = {0}; |
| info.dwOSVersionInfoSize = sizeof(info); |
| if (GetVersionEx(&info)) { |
| if (major) *major = info.dwMajorVersion; |
| if (minor) *minor = info.dwMinorVersion; |
| if (build) *build = info.dwBuildNumber; |
| return true; |
| } |
| return false; |
| } |
| |
| bool GetCurrentProcessIntegrityLevel(int* level) { |
| bool ret = false; |
| HANDLE process = ::GetCurrentProcess(), token; |
| if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) { |
| DWORD size; |
| if (!GetTokenInformation(token, TokenIntegrityLevel, nullptr, 0, &size) && |
| GetLastError() == ERROR_INSUFFICIENT_BUFFER) { |
| char* buf = STACK_ARRAY(char, size); |
| TOKEN_MANDATORY_LABEL* til = |
| reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf); |
| if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) { |
| |
| DWORD count = *GetSidSubAuthorityCount(til->Label.Sid); |
| *level = *GetSidSubAuthority(til->Label.Sid, count - 1); |
| ret = true; |
| } |
| } |
| CloseHandle(token); |
| } |
| return ret; |
| } |
| |
| } // namespace rtc |