blob: d525140541e51856714653cc5119697fe4e43a51 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_VIDEO_CODING_CODECS_TEST_VIDEOPROCESSOR_INTEGRATIONTEST_H_
#define WEBRTC_MODULES_VIDEO_CODING_CODECS_TEST_VIDEOPROCESSOR_INTEGRATIONTEST_H_
#include <math.h>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#if defined(WEBRTC_ANDROID)
#include "webrtc/modules/video_coding/codecs/test/android_test_initializer.h"
#include "webrtc/sdk/android/src/jni/androidmediadecoder_jni.h"
#include "webrtc/sdk/android/src/jni/androidmediaencoder_jni.h"
#elif defined(WEBRTC_IOS)
#include "webrtc/sdk/objc/Framework/Classes/VideoToolbox/decoder.h"
#include "webrtc/sdk/objc/Framework/Classes/VideoToolbox/encoder.h"
#endif
#include "webrtc/base/checks.h"
#include "webrtc/base/file.h"
#include "webrtc/base/logging.h"
#include "webrtc/media/engine/webrtcvideodecoderfactory.h"
#include "webrtc/media/engine/webrtcvideoencoderfactory.h"
#include "webrtc/modules/video_coding/codecs/h264/include/h264.h"
#include "webrtc/modules/video_coding/codecs/test/packet_manipulator.h"
#include "webrtc/modules/video_coding/codecs/test/videoprocessor.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h"
#include "webrtc/modules/video_coding/codecs/vp9/include/vp9.h"
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
#include "webrtc/modules/video_coding/include/video_coding.h"
#include "webrtc/modules/video_coding/utility/ivf_file_writer.h"
#include "webrtc/test/gtest.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/frame_reader.h"
#include "webrtc/test/testsupport/frame_writer.h"
#include "webrtc/test/testsupport/metrics/video_metrics.h"
#include "webrtc/test/testsupport/packet_reader.h"
#include "webrtc/typedefs.h"
namespace webrtc {
namespace test {
// Maximum number of rate updates (i.e., calls to encoder to change bitrate
// and/or frame rate) for the current tests.
const int kMaxNumRateUpdates = 3;
// Maximum number of temporal layers to use in tests.
const int kMaxNumTemporalLayers = 3;
const int kPercTargetvsActualMismatch = 20;
const int kBaseKeyFrameInterval = 3000;
// Default sequence is foreman (CIF): may be better to use VGA for resize test.
const int kCifWidth = 352;
const int kCifHeight = 288;
const char kFilenameForemanCif[] = "foreman_cif";
// Codec and network settings.
struct CodecParams {
VideoCodecType codec_type;
bool hw_codec;
bool use_single_core;
int width;
int height;
int num_temporal_layers;
int key_frame_interval;
bool error_concealment_on;
bool denoising_on;
bool frame_dropper_on;
bool spatial_resize_on;
float packet_loss_probability; // [0.0, 1.0].
std::string filename;
bool verbose_logging;
// In batch mode, the VideoProcessor is fed all the frames for processing
// before any metrics are calculated. This is useful for pipelining HW codecs,
// for which some calculated metrics otherwise would be incorrect. The
// downside with batch mode is that mid-test rate allocation is not supported.
bool batch_mode;
};
// Thresholds for the quality metrics. Defaults are maximally minimal.
struct QualityThresholds {
double min_avg_psnr = std::numeric_limits<double>::min();
double min_min_psnr = std::numeric_limits<double>::min();
double min_avg_ssim = 0;
double min_min_ssim = 0;
};
// The sequence of bit rate and frame rate changes for the encoder, the frame
// number where the changes are made, and the total number of frames for the
// test.
struct RateProfile {
int target_bit_rate[kMaxNumRateUpdates];
int input_frame_rate[kMaxNumRateUpdates];
int frame_index_rate_update[kMaxNumRateUpdates + 1];
int num_frames;
};
// Thresholds for the rate control metrics. The rate mismatch thresholds are
// defined as percentages. |max_time_hit_target| is defined as number of frames,
// after a rate update is made to the encoder, for the encoder to reach within
// |kPercTargetvsActualMismatch| of new target rate. The thresholds are defined
// for each rate update sequence.
struct RateControlThresholds {
int max_num_dropped_frames;
int max_key_frame_size_mismatch;
int max_delta_frame_size_mismatch;
int max_encoding_rate_mismatch;
int max_time_hit_target;
int num_spatial_resizes; // Set to -1 to disable check.
int num_key_frames; // Set to -1 to disable check.
};
// Should video files be saved persistently to disk for post-run visualization?
struct VisualizationParams {
bool save_source_y4m;
bool save_encoded_ivf;
bool save_decoded_y4m;
};
#if !defined(WEBRTC_IOS)
const int kNumFramesShort = 100;
#endif
const int kNumFramesLong = 299;
// Parameters from VP8 wrapper, which control target size of key frames.
const float kInitialBufferSize = 0.5f;
const float kOptimalBufferSize = 0.6f;
const float kScaleKeyFrameSize = 0.5f;
// Integration test for video processor. Encodes+decodes a clip and
// writes it to the output directory. After completion, quality metrics
// (PSNR and SSIM) and rate control metrics are computed and compared to given
// thresholds, to verify that the quality and encoder response is acceptable.
// The rate control tests allow us to verify the behavior for changing bit rate,
// changing frame rate, frame dropping/spatial resize, and temporal layers.
// The thresholds for the rate control metrics are set to be fairly
// conservative, so failure should only happen when some significant regression
// or breakdown occurs.
class VideoProcessorIntegrationTest : public testing::Test {
protected:
VideoProcessorIntegrationTest() {
#if defined(WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED) && \
defined(WEBRTC_ANDROID)
InitializeAndroidObjects();
external_encoder_factory_.reset(
new webrtc_jni::MediaCodecVideoEncoderFactory());
external_decoder_factory_.reset(
new webrtc_jni::MediaCodecVideoDecoderFactory());
#endif
}
virtual ~VideoProcessorIntegrationTest() = default;
void CreateEncoderAndDecoder(bool hw_codec, VideoCodecType codec_type) {
if (hw_codec) {
#if defined(WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED)
#if defined(WEBRTC_ANDROID)
// In general, external codecs should be destroyed by the factories that
// allocated them. For the particular case of the Android
// MediaCodecVideo{En,De}coderFactory's, however, it turns out that it is
// fine for the std::unique_ptr to destroy the owned codec directly.
switch (codec_type) {
case kVideoCodecH264:
encoder_.reset(external_encoder_factory_->CreateVideoEncoder(
cricket::VideoCodec(cricket::kH264CodecName)));
decoder_.reset(
external_decoder_factory_->CreateVideoDecoder(kVideoCodecH264));
break;
case kVideoCodecVP8:
encoder_.reset(external_encoder_factory_->CreateVideoEncoder(
cricket::VideoCodec(cricket::kVp8CodecName)));
decoder_.reset(
external_decoder_factory_->CreateVideoDecoder(kVideoCodecVP8));
break;
case kVideoCodecVP9:
encoder_.reset(external_encoder_factory_->CreateVideoEncoder(
cricket::VideoCodec(cricket::kVp9CodecName)));
decoder_.reset(
external_decoder_factory_->CreateVideoDecoder(kVideoCodecVP9));
break;
default:
RTC_NOTREACHED();
break;
}
#elif defined(WEBRTC_IOS)
ASSERT_EQ(kVideoCodecH264, codec_type)
<< "iOS HW codecs only support H264.";
encoder_.reset(new H264VideoToolboxEncoder(
cricket::VideoCodec(cricket::kH264CodecName)));
decoder_.reset(new H264VideoToolboxDecoder());
#else
RTC_NOTREACHED() << "Only support HW codecs on Android and iOS.";
#endif
#endif // WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED
RTC_CHECK(encoder_) << "HW encoder not successfully created.";
RTC_CHECK(decoder_) << "HW decoder not successfully created.";
return;
}
// SW codecs.
switch (codec_type) {
case kVideoCodecH264:
encoder_.reset(
H264Encoder::Create(cricket::VideoCodec(cricket::kH264CodecName)));
decoder_.reset(H264Decoder::Create());
break;
case kVideoCodecVP8:
encoder_.reset(VP8Encoder::Create());
decoder_.reset(VP8Decoder::Create());
break;
case kVideoCodecVP9:
encoder_.reset(VP9Encoder::Create());
decoder_.reset(VP9Decoder::Create());
break;
default:
RTC_NOTREACHED();
break;
}
}
void SetUpCodecConfig(const CodecParams& process,
const VisualizationParams* visualization_params) {
CreateEncoderAndDecoder(process.hw_codec, process.codec_type);
// Configure input filename.
config_.input_filename = test::ResourcePath(process.filename, "yuv");
if (process.verbose_logging)
printf("Filename: %s\n", process.filename.c_str());
// Generate an output filename in a safe way.
config_.output_filename = test::TempFilename(
test::OutputPath(), "videoprocessor_integrationtest");
config_.frame_length_in_bytes =
CalcBufferSize(VideoType::kI420, process.width, process.height);
config_.verbose = process.verbose_logging;
config_.use_single_core = process.use_single_core;
// Key frame interval and packet loss are set for each test.
config_.keyframe_interval = process.key_frame_interval;
config_.networking_config.packet_loss_probability =
packet_loss_probability_;
// Configure codec settings.
VideoCodingModule::Codec(process.codec_type, &codec_settings_);
config_.codec_settings = &codec_settings_;
config_.codec_settings->startBitrate = start_bitrate_;
config_.codec_settings->width = process.width;
config_.codec_settings->height = process.height;
// These features may be set depending on the test.
switch (config_.codec_settings->codecType) {
case kVideoCodecH264:
config_.codec_settings->H264()->frameDroppingOn =
process.frame_dropper_on;
config_.codec_settings->H264()->keyFrameInterval =
kBaseKeyFrameInterval;
break;
case kVideoCodecVP8:
config_.codec_settings->VP8()->errorConcealmentOn =
process.error_concealment_on;
config_.codec_settings->VP8()->denoisingOn = process.denoising_on;
config_.codec_settings->VP8()->numberOfTemporalLayers =
num_temporal_layers_;
config_.codec_settings->VP8()->frameDroppingOn =
process.frame_dropper_on;
config_.codec_settings->VP8()->automaticResizeOn =
process.spatial_resize_on;
config_.codec_settings->VP8()->keyFrameInterval = kBaseKeyFrameInterval;
break;
case kVideoCodecVP9:
config_.codec_settings->VP9()->denoisingOn = process.denoising_on;
config_.codec_settings->VP9()->numberOfTemporalLayers =
num_temporal_layers_;
config_.codec_settings->VP9()->frameDroppingOn =
process.frame_dropper_on;
config_.codec_settings->VP9()->automaticResizeOn =
process.spatial_resize_on;
config_.codec_settings->VP9()->keyFrameInterval = kBaseKeyFrameInterval;
break;
default:
RTC_NOTREACHED();
break;
}
// Create file objects for quality analysis.
analysis_frame_reader_.reset(new test::YuvFrameReaderImpl(
config_.input_filename, config_.codec_settings->width,
config_.codec_settings->height));
analysis_frame_writer_.reset(new test::YuvFrameWriterImpl(
config_.output_filename, config_.codec_settings->width,
config_.codec_settings->height));
RTC_CHECK(analysis_frame_reader_->Init());
RTC_CHECK(analysis_frame_writer_->Init());
if (visualization_params) {
// clang-format off
const std::string output_filename_base =
test::OutputPath() + process.filename +
"_cd-" + CodecTypeToPayloadName(process.codec_type).value_or("") +
"_hw-" + std::to_string(process.hw_codec) +
"_fr-" + std::to_string(start_frame_rate_) +
"_br-" + std::to_string(static_cast<int>(start_bitrate_));
// clang-format on
if (visualization_params->save_source_y4m) {
source_frame_writer_.reset(new test::Y4mFrameWriterImpl(
output_filename_base + "_source.y4m", config_.codec_settings->width,
config_.codec_settings->height, start_frame_rate_));
RTC_CHECK(source_frame_writer_->Init());
}
if (visualization_params->save_encoded_ivf) {
rtc::File post_encode_file =
rtc::File::Create(output_filename_base + "_encoded.ivf");
encoded_frame_writer_ =
IvfFileWriter::Wrap(std::move(post_encode_file), 0);
}
if (visualization_params->save_decoded_y4m) {
decoded_frame_writer_.reset(new test::Y4mFrameWriterImpl(
output_filename_base + "_decoded.y4m",
config_.codec_settings->width, config_.codec_settings->height,
start_frame_rate_));
RTC_CHECK(decoded_frame_writer_->Init());
}
}
packet_manipulator_.reset(new test::PacketManipulatorImpl(
&packet_reader_, config_.networking_config, config_.verbose));
processor_.reset(new test::VideoProcessorImpl(
encoder_.get(), decoder_.get(), analysis_frame_reader_.get(),
analysis_frame_writer_.get(), packet_manipulator_.get(), config_,
&stats_, source_frame_writer_.get(), encoded_frame_writer_.get(),
decoded_frame_writer_.get()));
RTC_CHECK(processor_->Init());
}
// Reset quantities after each encoder update, update the target
// per-frame bandwidth.
void ResetRateControlMetrics(int num_frames_to_hit_target) {
for (int i = 0; i < num_temporal_layers_; i++) {
num_frames_per_update_[i] = 0;
sum_frame_size_mismatch_[i] = 0.0f;
sum_encoded_frame_size_[i] = 0.0f;
encoding_bitrate_[i] = 0.0f;
// Update layer per-frame-bandwidth.
per_frame_bandwidth_[i] = static_cast<float>(bit_rate_layer_[i]) /
static_cast<float>(frame_rate_layer_[i]);
}
// Set maximum size of key frames, following setting in the VP8 wrapper.
float max_key_size = kScaleKeyFrameSize * kOptimalBufferSize * frame_rate_;
// We don't know exact target size of the key frames (except for first one),
// but the minimum in libvpx is ~|3 * per_frame_bandwidth| and maximum is
// set by |max_key_size_ * per_frame_bandwidth|. Take middle point/average
// as reference for mismatch. Note key frames always correspond to base
// layer frame in this test.
target_size_key_frame_ = 0.5 * (3 + max_key_size) * per_frame_bandwidth_[0];
num_frames_total_ = 0;
sum_encoded_frame_size_total_ = 0.0f;
encoding_bitrate_total_ = 0.0f;
perc_encoding_rate_mismatch_ = 0.0f;
num_frames_to_hit_target_ = num_frames_to_hit_target;
encoding_rate_within_target_ = false;
sum_key_frame_size_mismatch_ = 0.0;
num_key_frames_ = 0;
}
// For every encoded frame, update the rate control metrics.
void UpdateRateControlMetrics(int frame_number) {
RTC_CHECK_GE(frame_number, 0);
int tl_idx = TemporalLayerIndexForFrame(frame_number);
FrameType frame_type = processor_->EncodedFrameType(frame_number);
float encoded_size_kbits =
processor_->EncodedFrameSize(frame_number) * 8.0f / 1000.0f;
// Update layer data.
// Update rate mismatch relative to per-frame bandwidth for delta frames.
if (frame_type == kVideoFrameDelta) {
// TODO(marpan): Should we count dropped (zero size) frames in mismatch?
sum_frame_size_mismatch_[tl_idx] +=
fabs(encoded_size_kbits - per_frame_bandwidth_[tl_idx]) /
per_frame_bandwidth_[tl_idx];
} else {
float target_size = (frame_number == 0) ? target_size_key_frame_initial_
: target_size_key_frame_;
sum_key_frame_size_mismatch_ +=
fabs(encoded_size_kbits - target_size) / target_size;
num_key_frames_ += 1;
}
sum_encoded_frame_size_[tl_idx] += encoded_size_kbits;
// Encoding bit rate per temporal layer: from the start of the update/run
// to the current frame.
encoding_bitrate_[tl_idx] = sum_encoded_frame_size_[tl_idx] *
frame_rate_layer_[tl_idx] /
num_frames_per_update_[tl_idx];
// Total encoding rate: from the start of the update/run to current frame.
sum_encoded_frame_size_total_ += encoded_size_kbits;
encoding_bitrate_total_ =
sum_encoded_frame_size_total_ * frame_rate_ / num_frames_total_;
perc_encoding_rate_mismatch_ =
100 * fabs(encoding_bitrate_total_ - bit_rate_) / bit_rate_;
if (perc_encoding_rate_mismatch_ < kPercTargetvsActualMismatch &&
!encoding_rate_within_target_) {
num_frames_to_hit_target_ = num_frames_total_;
encoding_rate_within_target_ = true;
}
}
// Verify expected behavior of rate control and print out data.
void VerifyRateControlMetrics(int update_index,
const RateControlThresholds& rc_expected) {
int num_dropped_frames = processor_->NumberDroppedFrames();
int num_resize_actions = processor_->NumberSpatialResizes();
printf(
"For update #: %d,\n"
" Target Bitrate: %d,\n"
" Encoding bitrate: %f,\n"
" Frame rate: %d \n",
update_index, bit_rate_, encoding_bitrate_total_, frame_rate_);
printf(
" Number of frames to approach target rate: %d, \n"
" Number of dropped frames: %d, \n"
" Number of spatial resizes: %d, \n",
num_frames_to_hit_target_, num_dropped_frames, num_resize_actions);
EXPECT_LE(perc_encoding_rate_mismatch_,
rc_expected.max_encoding_rate_mismatch);
if (num_key_frames_ > 0) {
int perc_key_frame_size_mismatch =
100 * sum_key_frame_size_mismatch_ / num_key_frames_;
printf(
" Number of Key frames: %d \n"
" Key frame rate mismatch: %d \n",
num_key_frames_, perc_key_frame_size_mismatch);
EXPECT_LE(perc_key_frame_size_mismatch,
rc_expected.max_key_frame_size_mismatch);
}
printf("\n");
printf("Rates statistics for Layer data \n");
for (int i = 0; i < num_temporal_layers_; i++) {
printf("Temporal layer #%d \n", i);
int perc_frame_size_mismatch =
100 * sum_frame_size_mismatch_[i] / num_frames_per_update_[i];
int perc_encoding_rate_mismatch =
100 * fabs(encoding_bitrate_[i] - bit_rate_layer_[i]) /
bit_rate_layer_[i];
printf(
" Target Layer Bit rate: %f \n"
" Layer frame rate: %f, \n"
" Layer per frame bandwidth: %f, \n"
" Layer Encoding bit rate: %f, \n"
" Layer Percent frame size mismatch: %d, \n"
" Layer Percent encoding rate mismatch: %d, \n"
" Number of frame processed per layer: %d \n",
bit_rate_layer_[i], frame_rate_layer_[i], per_frame_bandwidth_[i],
encoding_bitrate_[i], perc_frame_size_mismatch,
perc_encoding_rate_mismatch, num_frames_per_update_[i]);
EXPECT_LE(perc_frame_size_mismatch,
rc_expected.max_delta_frame_size_mismatch);
EXPECT_LE(perc_encoding_rate_mismatch,
rc_expected.max_encoding_rate_mismatch);
}
printf("\n");
EXPECT_LE(num_frames_to_hit_target_, rc_expected.max_time_hit_target);
EXPECT_LE(num_dropped_frames, rc_expected.max_num_dropped_frames);
if (rc_expected.num_spatial_resizes >= 0) {
EXPECT_EQ(rc_expected.num_spatial_resizes, num_resize_actions);
}
if (rc_expected.num_key_frames >= 0) {
EXPECT_EQ(rc_expected.num_key_frames, num_key_frames_);
}
}
void VerifyQuality(const test::QualityMetricsResult& psnr_result,
const test::QualityMetricsResult& ssim_result,
const QualityThresholds& quality_thresholds) {
EXPECT_GT(psnr_result.average, quality_thresholds.min_avg_psnr);
EXPECT_GT(psnr_result.min, quality_thresholds.min_min_psnr);
EXPECT_GT(ssim_result.average, quality_thresholds.min_avg_ssim);
EXPECT_GT(ssim_result.min, quality_thresholds.min_min_ssim);
}
// Temporal layer index corresponding to frame number, for up to 3 layers.
int TemporalLayerIndexForFrame(int frame_number) {
int tl_idx = -1;
switch (num_temporal_layers_) {
case 1:
tl_idx = 0;
break;
case 2:
// temporal layer 0: 0 2 4 ...
// temporal layer 1: 1 3
tl_idx = (frame_number % 2 == 0) ? 0 : 1;
break;
case 3:
// temporal layer 0: 0 4 8 ...
// temporal layer 1: 2 6
// temporal layer 2: 1 3 5 7
if (frame_number % 4 == 0) {
tl_idx = 0;
} else if ((frame_number + 2) % 4 == 0) {
tl_idx = 1;
} else if ((frame_number + 1) % 2 == 0) {
tl_idx = 2;
}
break;
default:
RTC_NOTREACHED();
break;
}
return tl_idx;
}
// Set the bit rate and frame rate per temporal layer, for up to 3 layers.
void SetTemporalLayerRates() {
RTC_DCHECK_LE(num_temporal_layers_, kMaxNumTemporalLayers);
for (int i = 0; i < num_temporal_layers_; i++) {
float bit_rate_ratio =
kVp8LayerRateAlloction[num_temporal_layers_ - 1][i];
if (i > 0) {
float bit_rate_delta_ratio =
kVp8LayerRateAlloction[num_temporal_layers_ - 1][i] -
kVp8LayerRateAlloction[num_temporal_layers_ - 1][i - 1];
bit_rate_layer_[i] = bit_rate_ * bit_rate_delta_ratio;
} else {
bit_rate_layer_[i] = bit_rate_ * bit_rate_ratio;
}
frame_rate_layer_[i] =
frame_rate_ / static_cast<float>(1 << (num_temporal_layers_ - 1));
}
if (num_temporal_layers_ == 3) {
frame_rate_layer_[2] = frame_rate_ / 2.0f;
}
}
// Processes all frames in the clip and verifies the result.
// TODO(brandtr): Change the second last argument to be a
// const std::vector<RateControlThresholds>&, so we can ensure that the user
// does not expect us to do mid-clip rate updates when we are not able to,
// e.g., when we are operating in batch mode.
void ProcessFramesAndVerify(QualityThresholds quality_thresholds,
RateProfile rate_profile,
CodecParams process,
RateControlThresholds* rc_thresholds,
const VisualizationParams* visualization_params) {
// Codec/config settings.
start_bitrate_ = rate_profile.target_bit_rate[0];
start_frame_rate_ = rate_profile.input_frame_rate[0];
packet_loss_probability_ = process.packet_loss_probability;
num_temporal_layers_ = process.num_temporal_layers;
SetUpCodecConfig(process, visualization_params);
// Update the temporal layers and the codec with the initial rates.
bit_rate_ = rate_profile.target_bit_rate[0];
frame_rate_ = rate_profile.input_frame_rate[0];
SetTemporalLayerRates();
// Set the initial target size for key frame.
target_size_key_frame_initial_ =
0.5 * kInitialBufferSize * bit_rate_layer_[0];
processor_->SetRates(bit_rate_, frame_rate_);
// Process each frame, up to |num_frames|.
int frame_number = 0;
int update_index = 0;
int num_frames = rate_profile.num_frames;
ResetRateControlMetrics(
rate_profile.frame_index_rate_update[update_index + 1]);
if (process.batch_mode) {
// In batch mode, we calculate the metrics for all frames after all frames
// have been sent for encoding.
// TODO(brandtr): Refactor "frame number accounting" so we don't have to
// call ProcessFrame num_frames+1 times here.
for (frame_number = 0; frame_number <= num_frames; ++frame_number) {
EXPECT_TRUE(processor_->ProcessFrame(frame_number));
}
for (frame_number = 0; frame_number < num_frames; ++frame_number) {
++num_frames_per_update_[TemporalLayerIndexForFrame(frame_number)];
++num_frames_total_;
UpdateRateControlMetrics(frame_number);
}
} else {
// In online mode, we calculate the metrics for a given frame right after
// it has been sent for encoding.
if (process.hw_codec) {
LOG(LS_WARNING) << "HW codecs should mostly be run in batch mode, "
"since they may be pipelining.";
}
while (frame_number < num_frames) {
EXPECT_TRUE(processor_->ProcessFrame(frame_number));
++num_frames_per_update_[TemporalLayerIndexForFrame(frame_number)];
++num_frames_total_;
UpdateRateControlMetrics(frame_number);
++frame_number;
// If we hit another/next update, verify stats for current state and
// update layers and codec with new rates.
if (frame_number ==
rate_profile.frame_index_rate_update[update_index + 1]) {
VerifyRateControlMetrics(update_index, rc_thresholds[update_index]);
// Update layer rates and the codec with new rates.
++update_index;
bit_rate_ = rate_profile.target_bit_rate[update_index];
frame_rate_ = rate_profile.input_frame_rate[update_index];
SetTemporalLayerRates();
ResetRateControlMetrics(
rate_profile.frame_index_rate_update[update_index + 1]);
processor_->SetRates(bit_rate_, frame_rate_);
}
}
// TODO(brandtr): Refactor "frame number accounting" so we don't have to
// call ProcessFrame one extra time here.
EXPECT_TRUE(processor_->ProcessFrame(frame_number));
}
// Verify rate control metrics for all frames (if in batch mode), or for all
// frames since the last rate update (if not in batch mode).
VerifyRateControlMetrics(update_index, rc_thresholds[update_index]);
EXPECT_EQ(num_frames, frame_number);
EXPECT_EQ(num_frames + 1, static_cast<int>(stats_.stats_.size()));
// Release encoder and decoder to make sure they have finished processing.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Release());
// Close the analysis files before we use them for SSIM/PSNR calculations.
analysis_frame_reader_->Close();
analysis_frame_writer_->Close();
// Close visualization files.
if (source_frame_writer_) {
source_frame_writer_->Close();
}
if (encoded_frame_writer_) {
EXPECT_TRUE(encoded_frame_writer_->Close());
}
if (decoded_frame_writer_) {
decoded_frame_writer_->Close();
}
// TODO(marpan): Should compute these quality metrics per SetRates update.
test::QualityMetricsResult psnr_result, ssim_result;
EXPECT_EQ(0, test::I420MetricsFromFiles(config_.input_filename.c_str(),
config_.output_filename.c_str(),
config_.codec_settings->width,
config_.codec_settings->height,
&psnr_result, &ssim_result));
printf("PSNR avg: %f, min: %f\nSSIM avg: %f, min: %f\n",
psnr_result.average, psnr_result.min, ssim_result.average,
ssim_result.min);
VerifyQuality(psnr_result, ssim_result, quality_thresholds);
stats_.PrintSummary();
// Remove analysis file.
if (remove(config_.output_filename.c_str()) < 0) {
fprintf(stderr, "Failed to remove temporary file!\n");
}
}
static void SetCodecParams(CodecParams* process_settings,
VideoCodecType codec_type,
bool hw_codec,
bool use_single_core,
float packet_loss_probability,
int key_frame_interval,
int num_temporal_layers,
bool error_concealment_on,
bool denoising_on,
bool frame_dropper_on,
bool spatial_resize_on,
int width,
int height,
const std::string& filename,
bool verbose_logging,
bool batch_mode) {
process_settings->codec_type = codec_type;
process_settings->hw_codec = hw_codec;
process_settings->use_single_core = use_single_core;
process_settings->packet_loss_probability = packet_loss_probability;
process_settings->key_frame_interval = key_frame_interval;
process_settings->num_temporal_layers = num_temporal_layers,
process_settings->error_concealment_on = error_concealment_on;
process_settings->denoising_on = denoising_on;
process_settings->frame_dropper_on = frame_dropper_on;
process_settings->spatial_resize_on = spatial_resize_on;
process_settings->width = width;
process_settings->height = height;
process_settings->filename = filename;
process_settings->verbose_logging = verbose_logging;
process_settings->batch_mode = batch_mode;
}
static void SetCodecParams(CodecParams* process_settings,
VideoCodecType codec_type,
bool hw_codec,
bool use_single_core,
float packet_loss_probability,
int key_frame_interval,
int num_temporal_layers,
bool error_concealment_on,
bool denoising_on,
bool frame_dropper_on,
bool spatial_resize_on) {
SetCodecParams(process_settings, codec_type, hw_codec, use_single_core,
packet_loss_probability, key_frame_interval,
num_temporal_layers, error_concealment_on, denoising_on,
frame_dropper_on, spatial_resize_on, kCifWidth, kCifHeight,
kFilenameForemanCif, false /* verbose_logging */,
false /* batch_mode */);
}
static void SetQualityThresholds(QualityThresholds* quality_thresholds,
double min_avg_psnr,
double min_min_psnr,
double min_avg_ssim,
double min_min_ssim) {
quality_thresholds->min_avg_psnr = min_avg_psnr;
quality_thresholds->min_min_psnr = min_min_psnr;
quality_thresholds->min_avg_ssim = min_avg_ssim;
quality_thresholds->min_min_ssim = min_min_ssim;
}
static void SetRateProfile(RateProfile* rate_profile,
int update_index,
int bit_rate,
int frame_rate,
int frame_index_rate_update) {
rate_profile->target_bit_rate[update_index] = bit_rate;
rate_profile->input_frame_rate[update_index] = frame_rate;
rate_profile->frame_index_rate_update[update_index] =
frame_index_rate_update;
}
static void SetRateControlThresholds(RateControlThresholds* rc_thresholds,
int update_index,
int max_num_dropped_frames,
int max_key_frame_size_mismatch,
int max_delta_frame_size_mismatch,
int max_encoding_rate_mismatch,
int max_time_hit_target,
int num_spatial_resizes,
int num_key_frames) {
rc_thresholds[update_index].max_num_dropped_frames = max_num_dropped_frames;
rc_thresholds[update_index].max_key_frame_size_mismatch =
max_key_frame_size_mismatch;
rc_thresholds[update_index].max_delta_frame_size_mismatch =
max_delta_frame_size_mismatch;
rc_thresholds[update_index].max_encoding_rate_mismatch =
max_encoding_rate_mismatch;
rc_thresholds[update_index].max_time_hit_target = max_time_hit_target;
rc_thresholds[update_index].num_spatial_resizes = num_spatial_resizes;
rc_thresholds[update_index].num_key_frames = num_key_frames;
}
// Codecs.
std::unique_ptr<VideoEncoder> encoder_;
std::unique_ptr<cricket::WebRtcVideoEncoderFactory> external_encoder_factory_;
std::unique_ptr<VideoDecoder> decoder_;
std::unique_ptr<cricket::WebRtcVideoDecoderFactory> external_decoder_factory_;
VideoCodec codec_settings_;
// Helper objects.
std::unique_ptr<test::FrameReader> analysis_frame_reader_;
std::unique_ptr<test::FrameWriter> analysis_frame_writer_;
test::PacketReader packet_reader_;
std::unique_ptr<test::PacketManipulator> packet_manipulator_;
test::Stats stats_;
test::TestConfig config_;
// Must be destroyed before |encoder_| and |decoder_|.
std::unique_ptr<test::VideoProcessor> processor_;
// Visualization objects.
std::unique_ptr<test::FrameWriter> source_frame_writer_;
std::unique_ptr<IvfFileWriter> encoded_frame_writer_;
std::unique_ptr<test::FrameWriter> decoded_frame_writer_;
// Quantities defined/updated for every encoder rate update.
int num_frames_per_update_[kMaxNumTemporalLayers];
float sum_frame_size_mismatch_[kMaxNumTemporalLayers];
float sum_encoded_frame_size_[kMaxNumTemporalLayers];
float encoding_bitrate_[kMaxNumTemporalLayers];
float per_frame_bandwidth_[kMaxNumTemporalLayers];
float bit_rate_layer_[kMaxNumTemporalLayers];
float frame_rate_layer_[kMaxNumTemporalLayers];
int num_frames_total_;
float sum_encoded_frame_size_total_;
float encoding_bitrate_total_;
float perc_encoding_rate_mismatch_;
int num_frames_to_hit_target_;
bool encoding_rate_within_target_;
int bit_rate_;
int frame_rate_;
float target_size_key_frame_initial_;
float target_size_key_frame_;
float sum_key_frame_size_mismatch_;
int num_key_frames_;
float start_bitrate_;
int start_frame_rate_;
// Codec and network settings.
float packet_loss_probability_;
int num_temporal_layers_;
};
} // namespace test
} // namespace webrtc
#endif // WEBRTC_MODULES_VIDEO_CODING_CODECS_TEST_VIDEOPROCESSOR_INTEGRATIONTEST_H_