blob: 512c4eefe106047453312413a85defc2858a7cb1 [file] [log] [blame]
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(WEBRTC_WIN)
// clang-format off
#include <windows.h> // Must come first.
#include <mmsystem.h>
// clang-format on
#endif
#include <memory>
#include <vector>
#include "webrtc/rtc_base/bind.h"
#include "webrtc/rtc_base/event.h"
#include "webrtc/rtc_base/gunit.h"
#include "webrtc/rtc_base/task_queue.h"
#include "webrtc/rtc_base/timeutils.h"
namespace rtc {
namespace {
// Noop on all platforms except Windows, where it turns on high precision
// multimedia timers which increases the precision of TimeMillis() while in
// scope.
class EnableHighResTimers {
public:
#if !defined(WEBRTC_WIN)
EnableHighResTimers() {}
#else
EnableHighResTimers() : enabled_(timeBeginPeriod(1) == TIMERR_NOERROR) {}
~EnableHighResTimers() {
if (enabled_)
timeEndPeriod(1);
}
private:
const bool enabled_;
#endif
};
}
namespace {
void CheckCurrent(Event* signal, TaskQueue* queue) {
EXPECT_TRUE(queue->IsCurrent());
if (signal)
signal->Set();
}
} // namespace
TEST(TaskQueueTest, Construct) {
static const char kQueueName[] = "Construct";
TaskQueue queue(kQueueName);
EXPECT_FALSE(queue.IsCurrent());
}
TEST(TaskQueueTest, PostAndCheckCurrent) {
static const char kQueueName[] = "PostAndCheckCurrent";
Event event(false, false);
TaskQueue queue(kQueueName);
// We're not running a task, so there shouldn't be a current queue.
EXPECT_FALSE(queue.IsCurrent());
EXPECT_FALSE(TaskQueue::Current());
queue.PostTask(Bind(&CheckCurrent, &event, &queue));
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostCustomTask) {
static const char kQueueName[] = "PostCustomImplementation";
Event event(false, false);
TaskQueue queue(kQueueName);
class CustomTask : public QueuedTask {
public:
explicit CustomTask(Event* event) : event_(event) {}
private:
bool Run() override {
event_->Set();
return false; // Never allows the task to be deleted by the queue.
}
Event* const event_;
} my_task(&event);
// Please don't do this in production code! :)
queue.PostTask(std::unique_ptr<QueuedTask>(&my_task));
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostLambda) {
static const char kQueueName[] = "PostLambda";
Event event(false, false);
TaskQueue queue(kQueueName);
queue.PostTask([&event]() { event.Set(); });
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostDelayedZero) {
static const char kQueueName[] = "PostDelayedZero";
Event event(false, false);
TaskQueue queue(kQueueName);
queue.PostDelayedTask([&event]() { event.Set(); }, 0);
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostFromQueue) {
static const char kQueueName[] = "PostFromQueue";
Event event(false, false);
TaskQueue queue(kQueueName);
queue.PostTask(
[&event, &queue]() { queue.PostTask([&event]() { event.Set(); }); });
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostDelayed) {
static const char kQueueName[] = "PostDelayed";
Event event(false, false);
TaskQueue queue(kQueueName, TaskQueue::Priority::HIGH);
uint32_t start = Time();
queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 100);
EXPECT_TRUE(event.Wait(1000));
uint32_t end = Time();
// These tests are a little relaxed due to how "powerful" our test bots can
// be. Most recently we've seen windows bots fire the callback after 94-99ms,
// which is why we have a little bit of leeway backwards as well.
EXPECT_GE(end - start, 90u);
EXPECT_NEAR(end - start, 190u, 100u); // Accept 90-290.
}
// This task needs to be run manually due to the slowness of some of our bots.
// TODO(tommi): Can we run this on the perf bots?
TEST(TaskQueueTest, DISABLED_PostDelayedHighRes) {
EnableHighResTimers high_res_scope;
static const char kQueueName[] = "PostDelayedHighRes";
Event event(false, false);
TaskQueue queue(kQueueName, TaskQueue::Priority::HIGH);
uint32_t start = Time();
queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 3);
EXPECT_TRUE(event.Wait(1000));
uint32_t end = TimeMillis();
// These tests are a little relaxed due to how "powerful" our test bots can
// be. Most recently we've seen windows bots fire the callback after 94-99ms,
// which is why we have a little bit of leeway backwards as well.
EXPECT_GE(end - start, 3u);
EXPECT_NEAR(end - start, 3, 3u);
}
TEST(TaskQueueTest, PostMultipleDelayed) {
static const char kQueueName[] = "PostMultipleDelayed";
TaskQueue queue(kQueueName);
std::vector<std::unique_ptr<Event>> events;
for (int i = 0; i < 100; ++i) {
events.push_back(std::unique_ptr<Event>(new Event(false, false)));
queue.PostDelayedTask(
Bind(&CheckCurrent, events.back().get(), &queue), i);
}
for (const auto& e : events)
EXPECT_TRUE(e->Wait(1000));
}
TEST(TaskQueueTest, PostDelayedAfterDestruct) {
static const char kQueueName[] = "PostDelayedAfterDestruct";
Event event(false, false);
{
TaskQueue queue(kQueueName);
queue.PostDelayedTask(Bind(&CheckCurrent, &event, &queue), 100);
}
EXPECT_FALSE(event.Wait(200)); // Task should not run.
}
TEST(TaskQueueTest, PostAndReply) {
static const char kPostQueue[] = "PostQueue";
static const char kReplyQueue[] = "ReplyQueue";
Event event(false, false);
TaskQueue post_queue(kPostQueue);
TaskQueue reply_queue(kReplyQueue);
post_queue.PostTaskAndReply(
Bind(&CheckCurrent, nullptr, &post_queue),
Bind(&CheckCurrent, &event, &reply_queue), &reply_queue);
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostAndReuse) {
static const char kPostQueue[] = "PostQueue";
static const char kReplyQueue[] = "ReplyQueue";
Event event(false, false);
TaskQueue post_queue(kPostQueue);
TaskQueue reply_queue(kReplyQueue);
int call_count = 0;
class ReusedTask : public QueuedTask {
public:
ReusedTask(int* counter, TaskQueue* reply_queue, Event* event)
: counter_(counter), reply_queue_(reply_queue), event_(event) {
EXPECT_EQ(0, *counter_);
}
private:
bool Run() override {
if (++(*counter_) == 1) {
std::unique_ptr<QueuedTask> myself(this);
reply_queue_->PostTask(std::move(myself));
// At this point, the object is owned by reply_queue_ and it's
// theoratically possible that the object has been deleted (e.g. if
// posting wasn't possible). So, don't touch any member variables here.
// Indicate to the current queue that ownership has been transferred.
return false;
} else {
EXPECT_EQ(2, *counter_);
EXPECT_TRUE(reply_queue_->IsCurrent());
event_->Set();
return true; // Indicate that the object should be deleted.
}
}
int* const counter_;
TaskQueue* const reply_queue_;
Event* const event_;
};
std::unique_ptr<QueuedTask> task(
new ReusedTask(&call_count, &reply_queue, &event));
post_queue.PostTask(std::move(task));
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostAndReplyLambda) {
static const char kPostQueue[] = "PostQueue";
static const char kReplyQueue[] = "ReplyQueue";
Event event(false, false);
TaskQueue post_queue(kPostQueue);
TaskQueue reply_queue(kReplyQueue);
bool my_flag = false;
post_queue.PostTaskAndReply([&my_flag]() { my_flag = true; },
[&event]() { event.Set(); }, &reply_queue);
EXPECT_TRUE(event.Wait(1000));
EXPECT_TRUE(my_flag);
}
// This test covers a particular bug that we had in the libevent implementation
// where we could hit a deadlock while trying to post a reply task to a queue
// that was being deleted. The test isn't guaranteed to hit that case but it's
// written in a way that makes it likely and by running with --gtest_repeat=1000
// the bug would occur. Alas, now it should be fixed.
TEST(TaskQueueTest, PostAndReplyDeadlock) {
Event event(false, false);
TaskQueue post_queue("PostQueue");
TaskQueue reply_queue("ReplyQueue");
post_queue.PostTaskAndReply([&event]() { event.Set(); }, []() {},
&reply_queue);
EXPECT_TRUE(event.Wait(1000));
}
void TestPostTaskAndReply(TaskQueue* work_queue,
Event* event) {
ASSERT_FALSE(work_queue->IsCurrent());
work_queue->PostTaskAndReply(
Bind(&CheckCurrent, nullptr, work_queue),
NewClosure([event]() { event->Set(); }));
}
// Does a PostTaskAndReply from within a task to post and reply to the current
// queue. All in all there will be 3 tasks posted and run.
TEST(TaskQueueTest, PostAndReply2) {
static const char kQueueName[] = "PostAndReply2";
static const char kWorkQueueName[] = "PostAndReply2_Worker";
Event event(false, false);
TaskQueue queue(kQueueName);
TaskQueue work_queue(kWorkQueueName);
queue.PostTask(
Bind(&TestPostTaskAndReply, &work_queue, &event));
EXPECT_TRUE(event.Wait(1000));
}
// Tests posting more messages than a queue can queue up.
// In situations like that, tasks will get dropped.
TEST(TaskQueueTest, PostALot) {
// To destruct the event after the queue has gone out of scope.
Event event(false, false);
int tasks_executed = 0;
int tasks_cleaned_up = 0;
static const int kTaskCount = 0xffff;
{
static const char kQueueName[] = "PostALot";
TaskQueue queue(kQueueName);
// On linux, the limit of pending bytes in the pipe buffer is 0xffff.
// So here we post a total of 0xffff+1 messages, which triggers a failure
// case inside of the libevent queue implementation.
queue.PostTask([&event]() { event.Wait(Event::kForever); });
for (int i = 0; i < kTaskCount; ++i)
queue.PostTask(NewClosure([&tasks_executed]() { ++tasks_executed; },
[&tasks_cleaned_up]() { ++tasks_cleaned_up; }));
event.Set(); // Unblock the first task.
}
EXPECT_GE(tasks_cleaned_up, tasks_executed);
EXPECT_EQ(kTaskCount, tasks_cleaned_up);
}
} // namespace rtc